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Cauchy Integral on Time Scales: Constructive Sense
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abstract: We study the Cauchy integral on time scales in a constructive sense. We provide a definition of
the Cauchy ∆-integral, Cauchy ∇-integral and the Cauchy ♦α-integral. We establish the Cauchy criteria of
integrability using these definitions and also establish a few results.
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1. Introduction

Stefan Hilger under the supervision of Bernd Aulbach, in his Ph.D. Thesis- “Ein Maßkettenkalkül
mit Anwendungen auf Zentrumsmannigfaltigkeiten", 1988, introduced the theory of time scale Calculus,
which was later published as [10].

Hilger’s main motivation was the analogy between discrete and continuous analysis and the aim to
unify them. Hilger, in [10], states a system of axioms for the development of the theory of time scale, and
introduces the delta derivative, and also a descriptive sense of the integral (named the Cauchy integral).

More than a decade after the so-called delta derivative was formulated, another derivative called the
nabla derivative was introduced by Atici and Guseinov [3], which was previously hinted in the works of
Calvin and Bohner [2], who introduced a so-called alpha derivative which consisted both the delta and
nabla derivative as special cases.

For an excellent introduction to this subject with theoretical developmental summary and rich history,
the reader is referred to the following [4,6,10,11,12].

In 2005, Sheng et. al. [15] formulated a derivative on time scales, called the diamond-alpha (♦α)
derivative, which was a linear combination of the previously defined ∆ and ∇ derivatives (one may also
refer [16]). In 2007, this derivative was re-defined by Roger and Sheng [14] independently of the standard
∆ and ∇ derivatives.

Various integration notions in their constructive sense is discussed in literature, however the Cauchy
integral, in constructive sense, has not garnered much attention. In this article we attempt to give a
constructive definition of the Cauchy ∆-integral, Cauchy ∇-integral and the Cauchy ♦α-integral on time
scales. We establish the Cauchy criteria of integrability, used in time scale literature (see [8] or [9]), and
also discuss a few results using these definitions.
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2. Preliminary

In this section, we recall a few definitions and results on the theory of time scales (one may refer
[4,5,6,10] for more insight).

A time scale T is any non-empty closed subset of R.

Definition 2.1. [10] Forward Jump Operator: The forward jump operator denoted by σ is a mapping,
σ : T → T defined by σ(t) = inf

{

r ∈ T : r > t
}

.

Definition 2.2. [10] Backward Jump Operator: The backward jump operator denoted by ρ is a mapping,
ρ : T → T defined by ρ(t) = sup

{

r ∈ T : r < t
}

.

Definition 2.3. [1, pp. 5] Forward Shift: For f : T → R, the forward shift is defined as fσ : T → R by
fσ(t) = f(σ(t)) for any t ∈ T i.e. fσ = f ◦ σ.

Definition 2.4. [4] Backward Shift: For f : T → R, the forward shift is defined as fρ : T → R by
fρ(t) = f(ρ(t)) for any t ∈ T i.e. fρ = f ◦ ρ.

Definition 2.5. [10, pp. 27] ..Tk is defined as,

Tk =

{

T \
(

ρ(sup T), sup T
]

if sup T < ∞

T otherwise.

Definition 2.6. [3, pp. 77] Tk is defined as,

Tk =

{

T \
[

inf T, σ(inf T)
)

if inf T > −∞

T otherwise.

Note 1. Tk
k = Tk ∩ Tk.

Assuming p ≤ q, intervals in T are defined as [4]-
[p, q] = [p, q]T =

{

t ∈ T : p ≤ t ≤ q
}

; (p, q) = (p, q)T =
{

t ∈ T : p < t < q
}

[p, q) = [p, q)T =
{

t ∈ T : p ≤ t < q
}

; (p, q] = (p, q]T =
{

t ∈ T : p < t ≤ q
}

.

Throughtout the article [p, q], [p, q), (p, q] and (p, q) will denote intervals on T.

Definition 2.7. [10, pp. 27] Delta Derivative: Let function f be a mapping, f : T → R and t ∈ Tk.
The number f∆(t), provided it exist is called the delta derivative of f at t, if for any ǫ > 0, there exist a
neighbourhood W = (t − δ, t + δ) ∩ T of t for δ > 0 such that,

∣

∣f(σ(t)) − f(r) − f∆(t)(σ(t) − r)
∣

∣ ≤ ǫ
∣

∣σ(t) − r
∣

∣ for all r ∈ W.

Theorem 2.8. [4] ∆-Mean Value Theorem: Suppose that f is continuous on [p, q] and has a delta
derivative at each point of [p, q). Then there exist ξ1, ξ2 ∈ [p, q) such that,

f∆(ξ1)(q − p) ≤ f(q) − f(p) ≤ f∆(ξ2)(q − p).

Definition 2.9. [3, pp. 77] Nabla Derivative: Let function f be a mapping, f : T → R and t ∈ Tk.
The number f∇(t), provided it exist is called the nabla derivative of f at t, if for any ǫ > 0, there exist a
neighbourhood W = (t − δ, t + δ) ∩ T of t for δ > 0 such that,

∣

∣f(ρ(t)) − f(r) − f∇(t)(ρ(t) − r)
∣

∣ ≤ ǫ
∣

∣ρ(t) − r
∣

∣ for all r ∈ W.

Theorem 2.10. [4] ∇-Mean Value Theorem: Suppose that f is continuous on [p, q] and has a nabla
derivative at each point of (p, q]. Then there exist ξ1, ξ2 ∈ (p, q] such that,

f∇(ξ1)(q − p) ≤ f(q) − f(p) ≤ f∇(ξ2)(q − p).
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Definition 2.11. [14, pp. 231] Diamond-Alpha (♦α) Derivative: Let function f be a mapping, f : T → R

and t ∈ Tk
k. The number f♦α(t), provided it exist is called the diamond-alpha derivative of f at t, if for

any ǫ > 0, there exist a neighbourhood W = (t − δ, t + δ) ∩ T of t for δ > 0 such that for any r ∈ W ,

∣

∣α
[

fσ(t) − f(r)
](

ρ(t) − r
)

+ (1 − α)
[

fρ(t) − f(r)
](

σ(t) − r
)

− f♦α(t)
(

σ(t) − r
)

(

ρ(t) − r
)∣

∣ < ǫ
∣

∣

(

σ(t) − r
)(

ρ(t) − r
)∣

∣.

Here α ∈ [0, 1].

The diamond-alpha derivative as a linear combination of the ∆ and ∇ derivatives [15, pp. 397], [16,
pp. 65] is given as- for any t ∈ Tk

k,

f♦α(t) = αf∆(t) + (1 − α)f∇(t), α ∈ [0, 1].

If the number f♦α(t) exist, then we call this the diamond-alpha derivative of f at t.

We now proceed to give the definition of the Cauchy integral on time scales in the following sections.

3. Cauchy ∆-integral

In this section, we define the Cauchy ∆-integral on time scales. We establish the Cauchy criterion of
∆-integrability and formulate a few results.

Let [p, q]T = [p, q] be a closed interval on T such that p < q. Let P be the collection of all possible
partitions of [p, q].

Before proceeding we first establish a few preliminary information required for the definition.

Let Y ∈ P, Y =
{

p = t0 < t1 < . . . < tn = q
}

, with t0, t1, . . ., tn being the points of division. We
consider subintervals of the form [th−1, ρ(th)], for 1 ≤ h ≤ n, and from each subinterval we choose th−1

and call it the tag point of the respective subinterval. For Y ∈ P, we define a point-interval collection as
Y̆ =

{(

th−1, [th−1, ρ(th)]
)}n

h=1
, and call it the tagged partition.

We define the mesh of Y as, mesh-(Y) = max1≤h≤n(th − th−1) > 0.
For some δ > 0, Yδ will represent a partition of [p, q] with mesh δ satisfying the property: For each

h = 1, 2, . . . , n we have either- (th − th−1) ≤ δ or (th − th−1) > δ ∧ ρ(th) = th−1. Henceforth, Y̆δ will
mean a tagged partition with mesh δ satisfying the above property.

We now form the Cauchy ∆-sum, C, of the function f evaluated at the tags as-

C =

n
∑

h=1

f(th−1)
(

th − th−1

)

.

The limit of the above sum, provided it exist, as length of the subinterval tends to 0 is said to be the
Cauchy ∆-integral of f over [p, q], written as C

∫ q

p
f(t)∆t.

Definition 3.1. Cauchy ∆-integral: A bounded function f : [p, q]T → R is Cauchy ∆-integrable if there

exists a number I ∈ R such that for any ǫ > 0 there exists a δ > 0 such that for any tagged partition Y̆δ,
we have

∣

∣C − I
∣

∣ < ǫ.

Here I = C
∫ q

p
f(t)∆t and C =

∑n
h=1 f(th−1)

(

th − th−1

)

.

The set of all Cauchy ∆-integrable functions on [p, q] will be denoted by C∆[p, q].

Example 3.2. Suppose f is a constant function on [p, q], given by f(t) = r, r ∈ R. Then for any
partition on [p, q],

C =

n
∑

h=1

f(th−1)
(

th − th−1

)

= r
(

q − p
)

,

and,

C

∫ q

p

f(t)∆t = r
(

q − p
)

.
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Considering cases when T = R and when T = Z-

1. When T = R, the Cauchy ∆-integral coincides with the usual Cauchy integral in R.

2. When T = Z, C
∫ q

p
f(t)∆t =

∑n
h=1 f(th−1).

Theorem 3.3. If f ∈ C∆[p, q], then the value of integral, I, is unique.

Proof. Let us assume that f on [p, q] has two integral values, say I
′
and I

′′
, both satisfying the definition,

and let ǫ > 0.

Then, ∃ δ′
ǫ
2

> 0 such that for any tagged partition Y̆δ′
ǫ
2

, the respective Cauchy ∆-sum, C
′

satisfies,
∣

∣

∣
C

′
− I

′
∣

∣

∣
< ǫ

2 .

Also, ∃ δ′′
ǫ
2

> 0 such that for any tagged partition Y̆δ′′
ǫ
2

, the respective Cauchy ∆-sum, C
′′

satisfies,
∣

∣

∣
C

′′
− I

′′
∣

∣

∣
< ǫ

2 .

Now, let δǫ = min
{

δ′
ǫ
2

, δ′′
ǫ
2

}

> 0 and let Y̆δǫ
be the tagged partition. Since length of the partition of

Y̆δǫ
is lesser or equal to the length of the partitions of Y̆δ′

ǫ
2

and Y̆δ′′
ǫ
2

, thus taking C to be the respective

Cauchy ∆-sum we have,
∣

∣

∣
C − I

′
∣

∣

∣
<

ǫ

2
and

∣

∣

∣
C − I

′′
∣

∣

∣
<

ǫ

2
,

whence it follows from triangle inequality that,

∣

∣I
′
− I

′′∣
∣ =

∣

∣I
′
− C + C − I

′′∣
∣

≤
∣

∣I
′
− C

∣

∣ +
∣

∣C − I
′′∣
∣ < ǫ.

Since ǫ > 0 is arbitrary, thus we conclude that I
′

= I
′′
. �

Theorem 3.4. If f is continuous on the interval [p, q], then f is Cauchy ∆-integrable on [p, q].

Proof. Suppose that Y1 and Y2 are any two partitions of the interval [p, q], whose subintervals have length
less than δ.
Together, Y1 ∪ Y2 also form a subinterval whose length is less than δ, and Y1,Y2 ⊂ Y1 ∪ Y2.
Firstly, considering partition Y1 and Y1 ∪ Y2-

∣

∣

∣

∣

CY1
− CY1∪Y2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

h=1

f(th−1)
(

th − th−1

)

−

n
∑

h=1

ih
∑

j=1

f(t̃hj−1
)
(

t̃hj
− t̃hj−1

)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

h=1

ih
∑

j=1

[

f(th−1) − f(t̃hj−1
)
]

(

t̃hj
− t̃hj−1

)

∣

∣

∣

∣

∣

∣

.

Since given f is continuous on [p, q] ⇒ f is uniformly continuous on [p, q], and given ǫ∗ > 0 we have δ > 0
so that

∣

∣f(r) − f(s)
∣

∣ < ǫ∗ for r, s ∈ [p, q] within δ of each other.
Hence,

∣

∣

∣
CY1

− CY1∪Y2

∣

∣

∣
< ǫ∗

(

q − p
)

.

Similarly,
∣

∣

∣
CY2

− CY1∪Y2

∣

∣

∣
< ǫ∗

(

q − p
)

.
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Thus the associated sums, CY1
and CY2

are within ǫ∗
(

q − p
)

of CY1∪Y2
, and hence within 2ǫ∗

(

q − p
)

of
each other.
Let us choose ǫ = ǫ∗

2
(

q−p

) , then we get,

∣

∣

∣
CY1

− CY2

∣

∣

∣
< 2ǫ∗

(

q − p
)

= ǫ,

which is the desired result. �

Theorem 3.5. Cauchy Criterion for Cauchy ∆-integrability: A continuous function f on the interval
[p, q] is Cauchy ∆-integrable if and only if for each ǫ > 0 there exists a positive constant δ so that, if
Y1 and Y2 are any Cauchy partitions of [p, q] whose subintervals have length less than δ, the associated
Cauchy ∆-sums are within in ǫ of each other:

∣

∣

∣
CY1

− CY2

∣

∣

∣
< ǫ.

Proof. Proof is similar to Theorem 3.4. �

Theorem 3.6. Convergence for Cauchy ∆-integrable functions: If
{

fh

}

is a sequence of continuous
functions converging uniformly to the function f on [p, q], then f is Cauchy ∆-integrable on [p, q] and
C

∫ q

p
f(t)∆t = lim C

∫ q

p
fh(t)∆t.

Proof. Given
{

fh

}

is a sequence of continuous function converging uniformly to function f , thus from
Weierstrass’s Theorem f is continuous,

∣

∣f(t) − f(t̃)
∣

∣ ≤
∣

∣f(t) − fh(t)
∣

∣ +
∣

∣fh(t) − fh(t̃)
∣

∣ +
∣

∣fh(t̃) − f(t̃)
∣

∣.

Thus, from uniform convergence and by continuity of fh we conclude that f is Cauchy ∆-integrable on
[p, q].
As for the second conclusion,

∣

∣

∣

∣

C

∫ q

p

fh(t)∆t − C

∫ q

p

f(t)∆t

∣

∣

∣

∣

≤ C

∫ q

p

∣

∣fh(t) − f(t)
∣

∣∆t,

here C
∫ q

p

∣

∣fh(t) − f(t)
∣

∣∆t can be made arbitrarily small by uniform convergence: Given ǫ > 0, we have

a number K so that
∣

∣fh − f
∣

∣ < ǫ whenever h ≥ K, throughout the interval [p, q]. �

4. Cauchy ∇-integral

In this section, we define the Cauchy ∇-integral on time scales. We establish the Cauchy Criterion of
∇-integrability and formulate a few results.

Let [p, q]T = [p, q] be a closed interval on T such that p < q. Let P be the collection of all possible
partitions of [p, q].

Before proceeding we first establish a few preliminary information required for the definition.

Let Y ∈ P, Y =
{

p = t0 < t1 < . . . < tn = q
}

, with t0, t1, . . ., tn being the points of division.
We consider subintervals of the form [σ(th−1), th], for 1 ≤ h ≤ n, and from each subinterval we choose
σ(th−1) and call it the tag point of the respective subinterval. For Y ∈ P, we define a point-interval

collection as Y̆ =
{(

σ(th−1), [σ(th−1), th]
)}n

h=1
, and call it the tagged partition.

We define the mesh of Y as, mesh-(Y) = max1≤h≤n(th − th−1) > 0. For some δ > 0, Yδ will represent a
partition of [p, q] with mesh δ satisfying the property: For each h = 1, 2, . . . , n we have either- (th−th−1) ≤

δ or (th − th−1) > δ ∧ th = σ(th−1). Henceforth, Y̆δ will mean a tagged partition with mesh δ satisfying



6 V. Sekhose and H. Bharali

the above property.

We now form the Cauchy ∇-sum, C, of the function f evaluated at the tags as-

C =

n
∑

h=1

f
(

σ(th−1)
)(

th − th−1

)

=

n
∑

h=1

fσ(th−1)
(

th − th−1

)

.

The limit of the above sum, provided it exist, as length of the subinterval tends to 0 is said to be the
Cauchy ∇-integral of f over [p, q], written as C

∫ q

p
f(t)∇t.

Definition 4.1. Cauchy ∇-integral: A bounded function f : [p, q]T → R is Cauchy ∇-integrable if there

exists a number I ∈ R such that for any ǫ > 0 there exists a δ > 0 such that for any tagged partition Y̆δ,
we have

∣

∣C − I
∣

∣ < ǫ.

Here I = C
∫ q

p
f(t)∇t and C =

∑n
h=1 f

(

σ(th−1)
)(

th − th−1

)

=
∑n

h=1 fσ(th−1)
(

th − th−1

)

.

The set of all Cauchy ∇-integrable functions on [p, q] will be denoted by C∇[p, q].

Example 4.2. Suppose f is a constant function on [p, q], given by f(t) = r, r ∈ R. Then for any
partition on [p, q],

C =
n

∑

h=1

fσ(th−1)
(

th − th−1

)

= r
(

q − p
)

,

and,

C

∫ q

p

f(t)∇t = r
(

q − p
)

.

Considering cases when T = R and when T = Z-

1. When T = R, the Cauchy ∇-integral coincides with the usual Cauchy integral in R.

2. When T = Z,

C

∫ q

p

f(t)∇t =
n

∑

h=1

f(th).

Theorem 4.3. If f ∈ C∇[p, q], then the value of integral, I, is unique.

Proof. Proof is similar to Theorem 3.3. �

Theorem 4.4. If f is continuous on the interval [p, q] then f is Cauchy ∇-integrable on [p, q].

Proof. Suppose that Y1 and Y2 are any two partitions of the interval [p, q] whose subintervals have length
less than δ.
Together, Y1 ∪ Y2 also form a subinterval whose length is less than δ, and Y1,Y2 ⊂ Y1 ∪ Y2.
Firstly, considering partition Y1 and Y1 ∪ Y2-

∣

∣

∣

∣

CY1
− CY1∪Y2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

h=1

f
(

σ(th−1)
)(

th − th−1

)

−

n
∑

h=1

ih
∑

j=1

f
(

σ(t̃hj−1
)
)(

t̃hj
− t̃hj−1

)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

h=1

ih
∑

j=1

[

f(σ
(

th−1)
)

− f
(

σ(t̃hj−1
)
)

]

(

t̃hj
− t̃hj−1

)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

h=1

ih
∑

j=1

[

fσ(th−1) − fσ(t̃hj−1
)
]

(

t̃hj
− t̃hj−1

)

∣

∣

∣

∣

∣

∣

.
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Since given f is continuous on [p, q] ⇒ f is uniformly continuous on [p, q], and given ǫ∗ > 0 we have δ > 0
so that

∣

∣f(r) − f(s)
∣

∣ < ǫ∗ for r, s ∈ [p, q] within δ of each other.
Hence,

∣

∣

∣
CY1

− CY1∪Y2

∣

∣

∣
< ǫ∗

(

q − p
)

.

Similarly,
∣

∣

∣
CY2

− CY1∪Y2

∣

∣

∣
< ǫ∗

(

q − p
)

.

Thus the associated sums, CY1
and CY2

are within ǫ∗
(

q − p
)

of CY1∪Y2
, and hence within 2ǫ∗

(

q − p
)

of
each other.
Let us choose ǫ = ǫ∗

2
(

q−p
) , then we get,

∣

∣

∣
CY1

− CY2

∣

∣

∣
< 2ǫ∗

(

q − p
)

= ǫ,

which is the desired result. �

Theorem 4.5. Cauchy Criterion for Cauchy ∇-integrability: A continuous function f on the interval
[p, q] is Cauchy ∇-integrable if and only if for each ǫ > 0 there exists a positive constant δ so that, if
Y1 and Y2 are any Cauchy partitions of [p, q] whose subintervals have length less than δ, the associated
Cauchy ∇-sums are within in ǫ of each other:

∣

∣

∣
CY1

− CY2

∣

∣

∣
< ǫ.

Proof. Proof is similar to Theorem 4.4. �

Theorem 4.6. Convergence for Cauchy ∇-integrable functions: If
{

fh

}

is a sequence of continuous
functions converging uniformly to the function f on [p, q], then f is Cauchy ∇-integrable on [p, q] and
C

∫ q

p
f(t)∇t = lim C

∫ q

p
fh(t)∇t.

Proof. Proof is similar to Theorem 3.6. �

5. Fundamental Theorem of Calculus

Theorem 5.1. If F is a ∆-differentiable function on the interval [p, q], and F ∆ is continuous on [p, q]
then, F ∆ is Cauchy ∆-integrable on [p, q] and,

C

∫ q

p

F ∆(t)∆t = F (q) − F (p).

Proof. Given F ∆ is continuous on [p, q], we conclude that F ∆ is Cauchy ∆-integrable on [p, q] from
Theorem 3.4.
Thus, given ǫ > 0 there exist δ1 > 0 such that, for partition Yδ1

∈ P we get,

∣

∣C − I
∣

∣ < ǫ ⇒

∣

∣

∣

∣

∣

n
∑

h=1

F ∆(th−1)
(

th − th−1

)

− C

∫ q

p

F ∆(t)∆t

∣

∣

∣

∣

∣

< ǫ.

Given subintervals of Yδ1
are of the form [th−1, th), applying the ∆-Mean Value Theorem (Theorem 2.8)

on each subinterval implies that there exists rh ∈ (th−1, th) such that

F (th) − F (th−1) = F ∆(rh).(th − th−1).



8 V. Sekhose and H. Bharali

Because F ∆ is continuous by assumption, thus it is uniformly continuous on [p, q], hence for δ2 > 0,
∣

∣F ∆(u) − F ∆(v)
∣

∣ < ǫ whenever u, v ∈ [p, q] satisfying
∣

∣u − v
∣

∣ < δ2.
Letting δ be the smaller of the two numbers δ1 and δ2, we may conclude that,

∣

∣

∣

∣

∣

F (q) − F (p) − C

∫ q

p

F ∆(t)∆t

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

h=1

[F (th) − F (th−1)] −
n

∑

h=1

F ∆(th−1)(th − th−1)

+

n
∑

h=1

F ∆(th−1)(th − th−1) − C

∫ q

p

F ∆(t)∆t

∣

∣

∣

∣

∣

≤

n
∑

h=1

∣

∣F ∆(rh) − F ∆(th−1)
∣

∣(th − th−1) +

∣

∣

∣

∣

∣

n
∑

h=1

F ∆(th−1)
(

th − th−1

)

− C

∫ q

p

F ∆(t)∆t

∣

∣

∣

∣

∣

< ǫ(q − p) + ǫ,

which is the desired result. �

Theorem 5.2. If F is a ∇-differentiable function on the interval [p, q], and F ∇ is continuous on [p, q]
then, F ∇ is Cauchy ∇-integrable on [p, q] and,

C

∫ q

p

F ∇(t)∇t = F (q) − F (p).

Proof. Given F ∇ is continuous on [p, q], we conclude that F ∇ is Cauchy ∇-integrable on [p, q] from
Theorem 4.4.
Thus, given ǫ > 0 there exist δ1 > 0 such that, for partition Yδ1

∈ P we get,

∣

∣C − I
∣

∣ < ǫ ⇒

∣

∣

∣

∣

∣

n
∑

h=1

F ∇(σ(th−1))
(

th − th−1

)

− C

∫ q

p

F ∇(t)∇t

∣

∣

∣

∣

∣

< ǫ.

Given subintervals of Yδ1
are of the form (th−1, th], applying the ∇-Mean Value Theorem (Theorem 2.10)

on each subinterval implies that there exists rh ∈ (th−1, th) such that

F (th) − F (th−1) = F ∇(rh).(th − th−1).

Because F ∇ is continuous by assumption, thus it is uniformly continuous on [p, q], hence for δ2 > 0,
∣

∣F ∇(u) − F ∇(v)
∣

∣ < ǫ whenever u, v ∈ [p, q] satisfying
∣

∣u − v
∣

∣ < δ2.
Letting δ be the smaller of the two numbers δ1 and δ2, we may conclude that,

∣

∣

∣

∣

∣

F (q) − F (p) − C

∫ q

p

F ∇(t)∇t

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

h=1

[F (th) − F (th−1)] −

n
∑

h=1

F ∇(σ(th−1))(th − th−1)

+

n
∑

h=1

F ∇(σ(th−1))(th − th−1) − C

∫ q

p

F ∇(t)∇t

∣

∣

∣

∣

∣

≤
n

∑

h=1

∣

∣F ∇(rh) − F ∇(σ(th−1))
∣

∣(th − th−1) +

∣

∣

∣

∣

∣

n
∑

h=1

F ∇(σ(th−1))
(

th − th−1

)

− C

∫ q

p

F ∇(t)∇t

∣

∣

∣

∣

∣

< ǫ(q − p) + ǫ,

which is the desired result. �

Theorem 5.3. Let f is a function which is Cauchy ∆-integrable on [p, q]. For r ∈ [p, q], let

F (r) = C

∫ r

p

f(t)∆t.
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Then F is continuous on [p, q]. If f is continuous at t0 ∈ [p, q), then F is ∆-differentiable at t0 and

F ∆(t0) = f(t0).

Proof. Select D > 0 so that |f(r)| ≤ D for all r ∈ [p, q]. If r, u ∈ [p, q] and |r − u| < ǫ
D

, where r < u, say
then

|F (u) − F (r)| =

∣

∣

∣

∣

∫ u

r

f(t)∆t

∣

∣

∣

∣

≤

∫ u

r

|f(t)|∆t ≤

∫ u

r

D∆t = D(u − r) < ǫ.

This shows that F is uniformly continuous on [p, q].
Suppose that f is continuous at t0 ∈ [p, q). If t0 is right-scattered, then we have

F ∆(t0) =
F (σ(t0)) − F (t0)

σ(t0) − t0
=

1

σ(t0) − t0

[
∫ σ(t0)

p

f(t)∆t −

∫ t0

p

f(t)∆t

]

=
1

σ(t0) − t0

∫ σ(t0)

t0

f(t)∆t = f(t0),

which is the desired result.
Further, consider the case when t0 is right-dense. In this case,

F ∆(t0) = lim
r→t0

F (r) − F (t0)

r − t0
.

On the other hand,

F (r) − F (t0)

r − t0
=

1

r − t0

[
∫ r

p

f(t)∆t −

∫ t0

p

f(t)∆t

]

=
1

r − t0

∫ r

t0

f(t)∆t.

Therefore, it suffices to prove that

lim
r→t0

1

r − t0

∫ r

t0

f(t)∆t = f(t0). (5.1)

Let ǫ > 0. Since f is continuous at t0, ∃ δ > 0 such that t ∈ [p, q] and |t − t0| < δ imply |f(t) − f(t0)| < ǫ.
Then,

∣

∣

∣

∣

1

r − t0

∫ r

t0

f(t)∆t − f(t0)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

r − t0

∫ r

t0

[f(t) − f(t0)]∆t

∣

∣

∣

∣

≤
1

|r − t0|

∣

∣

∣

∣

∫ r

t0

[f(t) − f(t0)]∆t

∣

∣

∣

∣

≤
ǫ

|r − t0|

∣

∣

∣

∣

∫ r

t0

∆t

∣

∣

∣

∣

= ǫ

for all r ∈ [p, q] such that |r − t0| < δ, and r 6= t0. Hence Eq. 5.1 follows. �

Theorem 5.4. Let f is a function which is Cauchy ∇-integrable on [p, q]. For r ∈ [p, q], let

F (r) =

∫ r

p

f(t)∇t.

Then F is continuous on [p, q]. If f is continuous at t0 ∈ (p, q], then F is ∇-differentiable at t0 and

F ∇(t0) = f(t0).

Proof. Proof is similar to Theorem 5.3. �
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6. Cauchy ♦α-integral

In this section, we define the Cauchy ♦α-integral on time scales. We and establish the Cauchy
Criterion of ♦α-integrability and formulate a few results.

Let [p, q]T = [p, q] be a closed interval on T such that p < q. Let P be the collection of all possible
partitions of [p, q].

Before proceeding we first establish a few preliminary information required for the definition.

Let Y ∈ P, Y =
{

p = t0 < t1 < . . . < tn = q
}

, with t0, t1, . . ., tn being the points of division.
We consider subintervals of the form [th−1, ρ(th)], for 1 ≤ h ≤ n with corresponding tag th−1; and
subintervals of the form [σ(th−1), th] for 1 ≤ h ≤ n with corresponding tag σ(th−1). We define the
mesh of Y, as mesh-(Y) = max1≤h≤n(th − th−1) > 0. For some δ > 0, Yδ will represent a partition of
[p, q] with mesh δ satisfying the property: For each h = 1, 2, . . . , n we have either- (th − th−1) ≤ δ or
(th − th−1) > δ ∧ {σ(th−1) = th or ρ(th) = th−1}. Henceforth, Yδ will mean a partition Y with mesh δ

satisfying the above property.

We now form the Cauchy ♦α-sum, C♦α
, of the function f evaluated at the tags as-

C♦α
=

n
∑

h=1

(

αf(th−1) +
(

1 − α
)

f(σ(th−1))
)

(

th − th−1

)

= αC + (1 − α)C,

here α ∈ [0, 1] ⊂ R.
The limit of the above sum, provided it exist, as length of the subinterval tends to 0 is said to be the
Cauchy ♦α-integral of f over [p, q], written as C♦α

∫ q

p
f(t)♦αt.

Definition 6.1. Cauchy ♦α-integral: A bounded function f : [p, q]T → R is Cauchy ♦α-integrable if
there exists a number I♦α

∈ R such that, for any ǫ > 0 there exists a δ > 0 such that for any partition
Yδ, we have

∣

∣C♦α
− I♦α

∣

∣ < ǫ.

Here I♦α
= C♦α

∫ q

p
f(t)♦αt and C♦α

=
∑n

h=1

(

αf(th−1) +
(

1 − α
)

f(σ(th−1))
)

(

th − th−1

)

.

The set of all Cauchy ♦α-integrable functions on [p, q] will be denoted by C♦α
[p, q].

Example 6.2. Suppose f is a constant function on [p, q], given by f(t) = r, r ∈ R. Then for any
partition on [p, q],

C♦α
=

n
∑

h=1

(

αr +
(

1 − α
)

r
)

(

th − th−1

)

= r
(

q − p
)

,

and,

C♦α

∫ q

p

f(t)♦αt = r
(

q − p
)

.

Corollary 6.3. Let f be Cauchy ♦α-integrable on [p, q]-

1. If α = 1, then f is Cauchy ∆-integrable on [p, q].

2. If α = 0, then f is Cauchy ∇-integrable on [p, q].

3. If α = 1
2 , then for T = R, the Cauchy ♦α-integral coincides with the usual Cauchy integral in R

and for T = Z, the Cauchy ♦α-integral becomes,

C♦α

∫ q

p

f(t)♦αt =

n
∑

h=1

(

f(th−1) + f(th)

2

)

.

Theorem 6.4. If f ∈ C♦α
[p, q], then the value of integral, I♦α

, is unique.
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Proof. Let us assume that f on [p, q] has two integral values, say I ′
♦α

and I ′′
♦α

, both satisfying the
definition and let ǫ > 0.

Then, ∃ δ′
ǫ
2

> 0 such that for any partition Yδ′
ǫ
2

, the respective Cauchy ♦α-sum, C′
♦α

satisfies,
∣

∣

∣
C′

♦α
−

I ′
♦α

∣

∣

∣
< ǫ

2 .

Also, ∃ δ′′
ǫ
2

> 0 such that for any partition Yδ′′
ǫ
2

, the respective Cauchy ♦α-sum, C′′
♦α

satisfies,
∣

∣

∣
C′′

♦α
−

I ′′
♦α

∣

∣

∣
< ǫ

2 .

Now, let δǫ = min
{

δ′
ǫ
2

, δ′′
ǫ
2

}

> 0 and let Yδǫ
be the partition. Since length of the partition of Yδǫ

is lesser

or equal to the length of the partitions of Yδ′
ǫ
2

and Yδ′′
ǫ
2

, thus taking C♦α
to be the respective Cauchy

♦α-sum we have,
∣

∣

∣
C♦α

− I ′
♦α

∣

∣

∣
<

ǫ

2
and

∣

∣

∣
C♦α

− I ′′
♦α

∣

∣

∣
<

ǫ

2
,

whence it follows from triangle inequality that,

∣

∣I ′
♦α

− I ′′
♦α

∣

∣ =
∣

∣I ′
♦α

− C♦α
+ C♦α

− I ′′
♦α

∣

∣

≤
∣

∣I ′
♦α

− C♦α

∣

∣ +
∣

∣C♦α
− I ′′

♦α

∣

∣ < ǫ.

Since ǫ > 0 is arbitrary, thus we conclude that I ′
♦α

= I ′′
♦α

. �

Theorem 6.5. If f is Cauchy ∆-integrable and Cauchy ∇-integrable on [p, q], then it is Cauchy ♦α-
integrable on [p, q] and,

I♦α
= α C

∫ q

p

f(t)∆t + (1 − α) C

∫ q

p

f(t)∇t.

Proof. Assume f is Cauchy ∆-integrable and Cauchy ∇-integrable on [p, q], then it is Cauchy ♦α-
integrable on [p, q]. Then for each ǫ > 0 ∃ δ1 > 0 and δ2 > 0 such that -
Partition Yδ1

implies,
∣

∣C − C
∫ q

p
f(t)∆t

∣

∣ < ǫ. Partition Yδ2
implies,

∣

∣C − C
∫ q

p
f(t)∇t

∣

∣ < ǫ.

Now, let Yδ be another partition with δ = min
{

δ1, δ2

}

then we have,

∣

∣

∣

∣

C♦α
−

{

α C

∫ q

p

f(t)∆t + (1 − α) C

∫ q

p

f(t)∇t
}

∣

∣

∣

∣

=

∣

∣

∣

∣

αC + (1 − α)C − α C

∫ q

p

f(t)∆t − (1 − α) C

∫ q

p

f(t)∇t

∣

∣

∣

∣

≤

∣

∣

∣

∣

αC − α C

∫ q

p

f(t)∆t

∣

∣

∣

∣

+

∣

∣

∣

∣

(1 − α)C − (1 − α) C

∫ q

p

f(t)∇t

∣

∣

∣

∣

≤ ǫ

Thus f is Cauchy ♦α-integrable on [p, q] and,

I♦α
= α C

∫ q

p

f(t)∆t + (1 − α) C

∫ q

p

f(t)∇t.

�

Theorem 6.6. If f is continuous on the interval [p, q] then f is Cauchy ♦α-integrable on [p, q].

Proof. Suppose that Y1 and Y2 are any two partitions of the interval [p, q] whose subintervals have length
less than δ.
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Together, Y1 ∪ Y2 also form a subinterval whose length is less than δ, and Y1,Y2 ⊂ Y1 ∪ Y2.
Firstly, considering partition Y1 and Y1 ∪ Y2-

∣

∣

∣
C♦αY1

− C♦αY1∪Y2

∣

∣

∣
=

∣

∣

∣

∣

∣

n
∑

h=1

[

αf(th−1) + (1 − α)f(σ(th−1))
]

(

th − th−1

)

−

n
∑

h=1

ih
∑

j=1

[

αf(t̃hj−1
) + (1 − α)f(σ(t̃hj−1

))
]

(

t̃hj
− t̃hj−1

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

h=1

ih
∑

j=1

[

αf(th−1) − αf(t̃hj−1
) + (1 − α)f(σ(th−1)) − (1 − α)f(σ(t̃hj−1

))
]

(

t̃hj
− t̃hj−1

)

∣

∣

∣

∣

∣

.

Since given f is continuous on [p, q] ⇒ f is uniformly continuous on [p, q], and given ǫ∗ > 0 we have δ > 0
so that

∣

∣f(r) − f(s)
∣

∣ < ǫ∗ for r, s ∈ [p, q] within δ of each other.
Hence,

∣

∣

∣
C♦αY1

− C♦αY1∪Y2

∣

∣

∣
< ǫ∗

(

q − p
)

.

Similarly,
∣

∣

∣
C♦αY2

− C♦αY1∪Y2

∣

∣

∣
< ǫ∗

(

q − p
)

.

Thus the associated sums,
∑

Y1
f(t)♦αt and

∑

Y2
f(t)♦αt are within ǫ∗

(

q − p
)

of
∑

Y1∪Y2
f(t)♦αt and

hence within 2ǫ∗
(

q − p
)

of each other.

Let us choose ǫ = ǫ∗

2
(

q−p
) , then we get,

∣

∣

∣
C♦αY1

− C♦αY2

∣

∣

∣
< 2ǫ∗

(

q − p
)

= ǫ,

which is the desired result. �

Theorem 6.7. Cauchy Criterion for Cauchy ♦α-integrability: A continuous function f on the interval
[p, q] is Cauchy ♦α-integrable if and only if for each ǫ > 0 there exists a positive constant δ so that, if
Y1 and Y2 are any Cauchy partitions of [p, q] whose subintervals have length less than δ, the associated
Cauchy ♦α-sums are within in ǫ of each other:

∣

∣

∣
C♦αY1

− C♦αY2

∣

∣

∣
< ǫ.

Proof. Proof is similar to Theorem 6.6. �

Theorem 6.8. Convergence for Cauchy ♦α-integrable functions: If
{

fh

}

is a sequence of continuous
functions converging uniformly to the function f on [p, q], then f is Cauchy ♦α-integrable on [p, q] and
C♦α

∫ q

p
f(t)♦αt = lim C♦α

∫ q

p
fh(t)♦αt.

Proof. Given
{

fh

}

is a sequence of continuous function converging uniformly to function f , thus from
Weierstrass’s Theorem f is continuous,

∣

∣f(t) − f(t̃)
∣

∣ ≤
∣

∣f(t) − fh(t)
∣

∣ +
∣

∣fh(t) − fh(t̃)
∣

∣ +
∣

∣fh(t̃) − f(t̃)
∣

∣.

Thus, from uniform convergence and by continuity of fh we conclude that f is Cauchy ♦α-integrable on
[p, q].
As for the second conclusion,

∣

∣

∣

∣

C♦α

∫ q

p

fh(t)♦αt − C♦α

∫ q

p

f(t)♦αt

∣

∣

∣

∣

≤ C♦α

∫ q

p

∣

∣fh(t) − f(t)
∣

∣♦αt,

here C♦α

∫ q

p

∣

∣fh(t) − f(t)
∣

∣♦αt can be made arbitrarily small by uniform convergence: Given ǫ > 0, we

have a number K so that
∣

∣fh − f
∣

∣ < ǫ whenever h ≥ K, throughout the interval [p, q]. �
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7. Conclusion

In this article we provide constructive definitions of the Cauchy ∆-integral, the Cauchy ∇-integral
and the Cauchy ♦α-integral on time scales. We also establish the Cauchy criterion of integrability for
these integrals and discuss a few results.
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