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Degree of Convergence of Functions Using Hausdorff-Matrix Operator

H. K. Nigam

abstract: In this paper, we review the works of the authors ( [10], [23]) etc. and establish two theorems on

degree of convergence of a function g and conjugate of a function g̃ in generalized Zygmund (Z(λ)
r , r ≥ 1) space

using Hausdorff-Matrix (∧T ) operator of its Fourier series and conjugate Fourier series respectively based on
the findings of the review. Our results generalize several earlier results. Some important corollaries are also
deduced from our main theorems.
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1. Introduction

Degree of approximation of a function g and conjugate function g̃ in different function spaces has been
of great interest among the researchers in recent past. Recently, Nigam and Sharma [18], Singh and Sri-
vastava [21], Albayrak et. al. [1], Lal [8] and Singh and Singh [24] have studied degree of approximation
of a function g in Lipschitz and weighted Lipschitz classes. In last few years, the studies on the degree of
approximation of conjugate of a function g̃ in the different Lipschitz and weighted Lipschitz classes have
been made by Rhoades [20] Singh and Srivastava [22], Kranz et al. [7], Nigam [14,15] and Nigam and
Sharma [16,17].
The investigators like ( [10], [23]) etc. have obtained the results on the degree of approximation of a
function g in generalized Zygmund space. In each of the papers ( [10], [23]) etc., the second theorem

has been proved by considering λ1(l)
lλ2(l) as non-increasing function g in addition to the condition λ1(l)

λ2(l) is

non-decreasing, which is considered in their first theorems.

But, since the modulus of continuity λ1 is subadditive function, whence λ1(l)
l

is non-increasing function
of l, the second theorem in each of the earlier work follows from the first theorem without any additional
condition. Thus, the second theorem in each of the earlier work is superfluous. Moreover, since λ1 and
λ2 are moduli of continuity of second order, then second theorem in each of the earlier work should have
been a corollary.
Furthermore, we observe that the degree of approximation of functions of Fourier series and conjugate
Fourier series only give the degree of polynomial with respect to the functions but the degree of con-
vergence of functions of Fourier series and conjugate Fourier series give convergence of polynomial with
respect to the functions.

2010 Mathematics Subject Classification: 42A10.
Submitted August 25, 2022. Published February 06, 2023

1
Typeset by B

S
P
M

style.

© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.64781


2 H. K. Nigam

Therefore, in this paper, we resolve this issue by dropping second theorem for the condition λ1(l)
lλ2(l) as non-

increasing and obtain the degree of convergence of a function g and conjugate function g̃ in generalized

Zygmund class Z
(λ)
r , r ≥ 1 using ∧T means of its Fourier series and conjugate Fourier series respectively.

The results obtained in the paper generalizes the results of ( [1], [8], [12]- [15], [18] and [21]).
We denote the dth partial sum of Fourier series as

sd(g;x) − g(x) =
1

2π

∫ π

0

αx(l)
sin(d+ 1

2 )l

sin( l
2 )

dl.

The dth partial sum of conjugate Fourier series is given by

sd(g̃;x) − g̃(x) =
1

2π

∫ π

0

βx(l)
cos(d+ 1

2 )l

sin( l
2 )

dl,

where g̃ is the conjugate function of g and is given by

g̃ = −
1

2π

∫ π

0

βx(l) cot

(

l

2

)

dt.

Note 1. The conjugate Fourier series is not necessarily a Fourier series for example: The series
∑∞

n=2
sin(nx)

log n
conjugate to the Fourier series

∑∞
n=2

cos(nx)
log n

is not a Fourier series ( [27], p. 186).

Hausdorff [5] proved the following theorem:

Theorem 1.1. Given the sequence (µd)∞
d=1, defines

∆pµd =

p
∑

i=0

(

p
i

)

(−1)iµd+i.

Then the matrix with elements,

λmd =











(

m

d

)

∆m−dµd for d ≤ m

0 for d > m

(1.1)

is regular if and only if µd is the moment sequence

µd =

∫ 1

0

xddχ(x), (1.2)

where, χ, known as mass function, is a real, bounded variation function defined on the interval [0,1]
satisfying the conditions

χ(0+) = χ(0) = 0 and χ(1) = 1 (1.3)

A sequence µn that satisfies the condition (1.3) is known as a moment sequence, while a sequence that
satisfies both the conditions (1.3) and (1.4), is known as a Hausdorff moment sequence. The matrix in
(1.2) that satisfies both (1.3) and (1.4) is known as a Hausdorff (∧) matrix (method)

The Hausdorff means of the Fourier series are defined by

∧m(g;x) =

m
∑

d=0

λmdsd(g;x),m = 0, 1, 2, 3, ... (1.4)

The Fourier series is said to be summable to s by Hausdorff (∧)method if

∧m(g;x) → s as m → ∞.

An infinite matrix T = [cmd];m, d = 0, 1, ..... is called a regular matrix (method) if it transforms any
convergent sequence into convergent sequence with the same limit.
Toeplitz [26] presented the following equivalent conditions for regularity:
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Theorem 1.2. The matrix T = [cmd] is regular if and only if
(i) ∀d ≥ 0 limm→∞ cmd = 0;
(ii) limm→∞

∑m

d=0 cmd = 1;
(iii) ∃M > 0∀m ≥ 0,

∑∞
d=0 |cmd| < M.

The matrix (T ) method of the Fourier series is given by

Tm(g;x) =

m
∑

d=0

cmdsd(g;x),m = 0, 1, 2, 3, ... (1.5)

Fourier series is said to be summable to s by T method if Tm(g;x) → s as m → ∞.
By superimposing Hausdorff (∧) method on Matrix (T ) method, Hausdorff-Matrix (∧T ) method is ob-
tained, which is defined as

M∧T
d (g;x) =

d
∑

k=0

λd,k

k
∑

ν=0

ck,νsν(g;x).

If M∧T
d (g;x) → s as d → ∞, then the Fourier series is said to be summable to s by Hausdorff-Matrix

(∧T ) method.
Similarly, we can define

M̃∧T
d (g̃;x) =

d
∑

k=0

λd,k

k
∑

ν=0

ck,νsν(g̃;x).

If M̃∧T
d (g̃;x) → s as d → ∞, then the conjugate Fourier series is said to be summable to s by Hausdorff-

Matrix (∧T ) method.

Remark 1.3. It is worthwhile to mention here that Hausdorff matrices represent a wider class of summa-
bility matrices. Cesàro (C, 1) and the Euler matrix (E, q); q > 0 are Hausdorff matrices and their products
are also Hausdorff matrices. Moreover, Hausdorff-Matrix (∧T ) product means, which is considered in
the present paper, is more powerful than the individual operators such as Hausdorff (∧) and Matrix (T )
means.

Remark 1.4. Particular cases of Hausdorff-Matrix (∧T ) method:
Hausdorff-Matrix (∧T ) means reduces to

(i) ∧
(

H, 1
m+1

)

or ∧H means if cmd = 1
m−d+1 log(m+ 1).

(ii) ∧ (C, 1)or ∧C1 means if cmd = 1
m+1 .

(iii) ∧ (N, pm) or ∧Np means if cmd =
pm−d

Pm
where Pm =

∑m

d=0 pd = 0.

(iv) ∧ (N, p, q) or ∧Np,q means if cmd =
pm−dqd

Rm
where Rm =

∑m

d=0 pmqm−d.

(v) ∧
(

N̄ , pm

)

or ∧ N̄p means if cmd = pd

Pm

.

(vi) ∧ (E, q) or ∧ Eq means if cmd = 1
(1−q)m

(

m
n

)

qm−d.

(vii) Cesàro-Matrix((C,m)T ) or CmT means if the mass function χ(x) = m
∫ x

0
(1 − l)m−1dl.

(viii) Hölder-Matrix((H,m)T ) or HmT means if the mass function χ(x) =
∫ x

0
1

(m−1)
(

log 1
l

)m−1
dl.

(ix) Euler-Matrix((E, q)T ) or EqT means if the mass function χ(x) =

{

0, if x ∈ [0, b]

1, if x ∈ [b, 1]
,

where b = 1
q+1 , q > 0.

Remark 1.5. In view of Remark 1.4(vii) to 1.4(ix), Hausdorff-Matrix (∧T ) means also reduces to
(i) CmNp.(ii) CmNp,q. (iii) CmN̄p.(iv) HmNp.(v) HmNp,q.(vi) HmN̄p.(vii) EqNp. (viii) EqNp,q.
(ix) EqN̄p. means for m, q > 0.

Remark 1.6. Our Theorems 2.1 and 2.2 also hold for all the cases mentioned in Remarks 1.2 and 1.3



4 H. K. Nigam

Remark 1.7. Since Cesàro and Euler means and their product are again Hausdorff means ( [19]), our
Theorems 2.1 and 2.2 also hold for CmEq and EqCm means for m, q > 0.

The space of all functions (2π-periodic and integrable) be

Lr[0, 2π] =

{

g : [0, 2π] → R;

∫ 2π

0

| g(x) |rdx < ∞

}

, r ≥ 1.

We define ‖ · ‖ by

‖g‖r =











{

1
2π

∫ 2π

0 | g(x) |r dx
}

1
r

, 1 ≤ r < ∞

ess sup
0<x<2π

|g(x)|, r = ∞.

As defined in Zygmund [28], λ1 : [0, 2π] → R be an arbitrary function with λ1(l) > 0 for 0 < l ≤ 2π and
lim

l→0+
λ1(l) = λ1(0) = 0.

We also define

Z(λ1)
r =

{

g ∈ Lr[0, 2π] : r ≥ 1, sup
l 6=0

‖g(· + l) + g(· − l) − 2g(·)‖r

λ1(l)
< ∞

}

and

‖g‖(λ1)
r = ‖g‖r + sup

l 6=0

‖g(· + l) + g(· − l) − 2g(·)‖r

λ1(l)
, r ≥ 1.

Hence, the space Z
(λ1)
r is a Banach space under the norm ‖‖

(λ1)
r .

The completeness of the space of Lr, r ≥ 1 implies the completeness of the space Z
(λ1)
r .

Remark 1.8. Throughout the paper λ1(l) and λ2(l) denote moduli of continuity of order two ( [28]) such

that λ1(l)
λ2(l) be positive and non-decreasing in l, then

‖g‖(λ2)
r ≤ max

(

1,
λ1(2π)

λ2(2π)

)

‖g‖(λ1)
r < ∞.

We also observe that
Z(λ1)

r ⊂ Z(λ2)
r ⊂ Lr, r ≥ 1.

Remark 1.9. In addition to the conditions of moduli of continuity of order two, further condition is
defined as

λ1(nl) ≤ n2λ1(l) for l ≥ 0 and n ∈ N,

which follows from the condition that for non-negative functions

λ1(l)

l2
is non-increasing on (0,+∞) ( [3]).

Thus, in view of Remark 1.7, [6] and [27], in this paper, we drop the second theorem established in the
papers ( [10], [23]) etc.

Remark 1.10. (i) If we take r → ∞ in Z
(λ1)
r then Z

(λ1)
r reduces to Z(λ1).

(ii) If we take λ1(l) = lα in Z(λ1) then Z(λ1) reduces to Zα.

(iii) If we take λ1(l) = lα in Z
(λ1)
r then Z

(λ1)
r reduces to Zα,r.

(iv) If we take r → ∞ in Zα,r then Zα,r reduces to Zα.

(v) Let 0 ≤ δ2 < δ1 < 1, if λ1(l) = lδ1 and λ2(l) = lδ2 then λ1(l)
λ2(l) is increasing, while λ1(l)

lλ2(l) is decreasing.
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Degree of Convergence:

The degree of convergence of a summation method to a given function g is a measure that how fast ld
converges to g and is given by

||g − ld|| = O

(

1

ka

)

( [11]),

where ka → ∞ as a → ∞.
We use the following notations:

φ(x)(l) = g(x+ l) + g(x− l) − 2g(x);

ψ(x)(l) = g(x+ l) − g(x− l);

Dd(l) =
1

2π

∫ 1

0

[{

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−ν

}{

ν
∑

k=0

cν,k

sin
(

k + 1
2

)

l

sin(l/2)

}]

dγ(u);

D̃d(l) =
1

2π

∫ 1

0

[{

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−ν

}{

ν
∑

k=0

cν,k

cos
(

k + 1
2

)

l

sin(l/2)

}]

dγ(u);

τ

(

Integral part of
1

l

)

=

[

1

l

]

.

2. Main Results

Theorem 2.1. Error estimation of a function g (2π-periodic) in generalized Zygmund class Z
(λ1)
r , r ≥ 1,

by ∧T means of its Fourier series is given by

inf
M∧T

d

‖M∧T
d (x) − g(x)‖(λ2)

r = O

[

log πe(d+ 1)

log π(d+ 1)

∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]

,

where λ1(l) and λ2(l) are moduli of continuity of order two such that λ1(l)
λ2(l) is positive and non-decreasing.

Theorem 2.2. Error estimation of conjugate of a function g̃ (2π-periodic) in generalized Zygmund class

Z
(λ1)
r , r ≥ 1, by ∧T means of its conjugate Fourier series is given by

inf
M̃∧T

d

‖M̃∧T
d (x) − g̃(x)‖(λ2)

r = O

[

log π(d+ 1)2

log π(d+ 1)

∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]

,

where λ1(l) and λ2(l) are moduli of continuity of order two such that λ1(l)
λ2(l) is positive and non-decreasing.

3. Lemmas

Lemma 3.1. For l ∈
(

0, 1
d+1

)

, |Dd(l)| = O(d+ 1)

Proof. For l ∈
(

0, 1
d+1

)

, sin dl ≤ dl, sin(l/2) ≥ l/π and sup
0≤u≤1

|γ
′

(u)| = N

|Dd(l)| =
1

2π

∣

∣

∣

∣

∣

∫ 1

0

[{

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−ν

}{

ν
∑

k=0

cν,k

sin
(

k + 1
2

)

l

sin(l/2)

}]

dγ(u)

∣

∣

∣

∣

∣

(3.1)
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First, we solve the following

ν
∑

k=0

cν,k

sin
(

k + 1
2

)

l

sin(l/2)
≤

ν
∑

k=0

cν,k

sin
(

k + 1
2

)

l

sin(l/2)

≤

ν
∑

k=0

cν,k

(

k + 1
2

)

l

(l/π)

=
π

2

{

ν
∑

k=0

cν,k(2k + 1)

}

=
π

2

{

ν
∑

k=0

cν,k + 2

ν
∑

k=0

k cν,k

}

=
π

2
{1 + 2(cν,1 + 2cν,2 + cν,1 + ....νcν,ν)}

≤
π

2
{1 + 2(νcν,1 + νcν,2 + νcν,3 + ....νcν,ν)}

≤
π

2
{1 + 2ν(cν,1 + cν,2 + cν,3 + ....cν,ν)}

≤
π

2
{1 + 2ν(cν,0 + cν,1 + cν,2 + ....cν,ν) − 2νcν,0}

≤
π

2
{1 + 2ν(1 − cν,0}

≤
π

2
(1 + 2ν)

=O(ν + 1) (3.2)

Using (3.2) in (3.1), we have

|Dd(l)| =
1

2π

∣

∣

∣

∣

∣

∫ 1

0

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−ν(ν + 1)dγ(u)

∣

∣

∣

∣

∣

=
1

2π

∣

∣

∣

∣

∫ 1

0

h(u)dγ(u)

∣

∣

∣

∣

, (3.3)

where h(u) =
d
∑

ν=0

(

d
ν

)

uν(1 − u)d−ν(ν + 1).

Now, solving

h(u) =

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−ν(ν + 1)

=(1 − u)d

d
∑

ν=0

(

d
ν

){

u

1 − u

}ν

(ν + 1)

=(1 − u)d

[

d
∑

ν=0

(

d
ν

)

ν

{

u

1 − u

}ν

+

d
∑

ν=0

(

d
ν

){

u

1 − u

}ν
]

=(1 − u)d

[

d
∑

ν=0

(

d
ν

)

ν pν +
d
∑

ν=0

(

d
ν

)

pν

]

,where p =
u

1 − u

=(1 − u)d

[

d
∑

ν=0

(

d
ν

)

ν pν + (1 + p)d

]

(3.4)
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Now, solving

d
∑

ν=0

(

d
ν

)

ν pν =0

(

d
0

)

p0 + 1

(

d
1

)

p1 + 2

(

d
2

)

p2 + ....+ d

(

d
d

)

pd

=p

[(

d
1

)

+ 2

(

d
2

)

p+ .......+ d

(

d
d

)

pd−1

]

(3.5)

We know that

(1 + p)d =

[(

d
1

)

+

(

d
2

)

p+ .....+

(

d
d

)

pd

]

(3.6)

Differentiating (3.6) with respect to p on both sides,

d(1 + p)d−1 =

[(

d
1

)

+ ....+ d

(

d
d

)

pd−1

]

(3.7)

Using (3.7) in (3.5), we get

d
∑

ν=0

(

d
ν

)

ν pν = pd(1 + p)d−1 (3.8)

Using (3.8) in (3.4), we get

h(u) =(1 − u)d
[

pd(1 + p)d−1 + (1 + p)d
]

=(1 − u)d

{

d

(

u

1 − u

)(

1

1 − u

)d−1

+

(

1

1 − u

)d
}

=ud+ 1 (3.9)

From (3.3) and (3.9), we get

|Dd(l)| =
N

2π

[{
∫ 1

0

(ud+ 1)du

}]

=O(d+ 1) (3.10)

�

Lemma 3.2. For l ∈
[

1
d+1 , π

]

, |Dd(l)| = O
(

1
l

)

Proof. For l ∈
[

1
d+1 , π

]

, sin(l/2) ≥ l/π [28] and sup
0≤u≤1

|γ
′

(u)| = N

|Dd(l)| ≤
1

2π

∫ 1

0

[
∣

∣

∣

∣

∣

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−ν

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ν
∑

k=0

cν,k

sin
(

k + 1
2

)

l

sin(l/2)

∣

∣

∣

∣

∣

]

dγ(u) (3.11)

First, we solve
∣

∣

∣

∣

∣

ν
∑

k=0

cν,k

sin
(

k + 1
2

)

l

sin(l/2)

∣

∣

∣

∣

∣

≤
π

l

∣

∣

∣

∣

∣

ν
∑

k=0

cν,k Im ei(k+ 1
2 )l

∣

∣

∣

∣

∣

≤
π

l

∣

∣

∣

∣

∣

ν
∑

k=0

cν,k Im eikl

∣

∣

∣

∣

∣

∣

∣

∣
ei l

2

∣

∣

∣

≤
π

l

∣

∣

∣

∣

∣

τ−1
∑

k=0

cν,k Im eikl

∣

∣

∣

∣

∣

+
π

l

∣

∣

∣

∣

∣

ν
∑

k=τ

cν,k Im eikl

∣

∣

∣

∣

∣

(3.12)
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Now, considering the first term of (3.12), we get

π

l

∣

∣

∣

∣

∣

τ−1
∑

k=0

cν,k Im eikl

∣

∣

∣

∣

∣

≤
π

l

∣

∣

∣

∣

∣

τ−1
∑

k=0

cν,k

∣

∣

∣

∣

∣

∣

∣eikl
∣

∣

≤
π

l

∣

∣

∣

∣

∣

τ−1
∑

k=0

cν,k

∣

∣

∣

∣

∣

(3.13)

Now, considering the second term of (3.12) and using Abel’s lemma, we get

π

l

∣

∣

∣

∣

∣

ν
∑

k=τ

cν,k Im eikl

∣

∣

∣

∣

∣

≤
π

l

ν
∑

k=τ

cν,k max
0≤m≤k

∣

∣eiml
∣

∣

≤
π

l

ν
∑

k=τ

cν,k (3.14)

Combining (3.12), (3.13) and (3.14), we get
∣

∣

∣

∣

∣

ν
∑

k=0

cν,k

sin
(

k + 1
2

)

l

sin(l/2)

∣

∣

∣

∣

∣

≤
π

l

τ−1
∑

k=0

cν,k +
π

l

ν
∑

k=τ

cν,k

=O

(

1

l

)

(3.15)

From (3.11) and (3.15), we get

|Dd(l)| =O

[

N

2πl

{

∫ 1

0

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−νdu

}]

=O

[

N

2πl

{
∫ 1

0

(u+ 1 − u)ddu

}]

=O

(

1

l

)

�

Lemma 3.3. For l ∈
(

0, 1
d+1

)

, |Dd(l)| = O
(

1
l

)

Proof. For l ∈
(

0, 1
d+1

)

, sin(l/2) ≥ l/π, | cos dl| ≤ 1 and sup
0≤u≤1

|γ
′

(u)| = N

|Dd(l)| ≤
1

2π

∫ 1

0

[
∣

∣

∣

∣

∣

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−ν

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ν
∑

k=0

cν,k

cos
(

k + 1
2

)

l

sin(l/2)

∣

∣

∣

∣

∣

]

dγ(u)

≤
1

2l

∣

∣

∣

∣

∣

{

∫ 1

0

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−νdγ(u)

}
∣

∣

∣

∣

∣

≤
1

2l

{

∫ 1

0

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−ν|dγ(u)|

}

=
N

2l

{

∫ 1

0

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−νdu

}

=
N

2l

{
∫ 1

0

j(u)du

}

, (3.16)
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where j(u) =
d
∑

ν=0

(

d
ν

)

uν(1 − u)d−ν.

Now, considering

j(u) =

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−ν

=(1 − u)d

d
∑

ν=0

(

d
ν

){

u

1 − u

}ν

=(1 − u)d

[

d
∑

ν=0

(

d
ν

)

pν

]

,where p =
u

1 − u

=(1 − u)d
[

(1 + p)d
]

=(1 − u)d

[

(

1

1 − u

)d
]

=1 (3.17)

From (3.16) and (3.17), we get

|D̃d(l)| =O

[

N

2l

{
∫ 1

0

1du

}]

=O

(

1

l

)

�

Lemma 3.4. For l ∈
[

1
d+1 , π

]

, |D̃d(l)| = O
(

1
l

)

Proof. For l ∈
[

1
d+1 , π

]

, sin(l/2) ≥ l/π and sup
0≤u≤1

|γ
′

(u)| = N

|D̃d(l)| ≤
1

2π

∫ 1

0

[∣

∣

∣

∣

∣

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−ν

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ν
∑

k=0

cν,k

cos
(

k + 1
2

)

l

sin(l/2)

∣

∣

∣

∣

∣

]

dγ(u) (3.18)

First, we solve
∣

∣

∣

∣

∣

ν
∑

k=0

cν,k

cos
(

k + 1
2

)

l

sin(l/2)

∣

∣

∣

∣

∣

≤

ν
∑

k=0

cν,k

cos
(

k + 1
2

)

l

sin(l/2)

≤
π

l

∣

∣

∣

∣

∣

ν
∑

k=0

cν,k Re ei(k+ 1
2 )l

∣

∣

∣

∣

∣

≤
π

l

∣

∣

∣

∣

∣

ν
∑

k=0

cν,k Re eikl

∣

∣

∣

∣

∣

∣

∣

∣
ei l

2

∣

∣

∣

≤
π

l

∣

∣

∣

∣

∣

τ−1
∑

k=0

cν,k Re eikl

∣

∣

∣

∣

∣

+
π

l

∣

∣

∣

∣

∣

ν
∑

k=τ

cν,k Re eikl

∣

∣

∣

∣

∣

(3.19)

Now, considering the first term of (3.19), we get

π

l

∣

∣

∣

∣

∣

τ−1
∑

k=0

cν,k Re eikl

∣

∣

∣

∣

∣

≤
π

l

∣

∣

∣

∣

∣

τ−1
∑

k=0

cν,k

∣

∣

∣

∣

∣

∣

∣eikl
∣

∣

≤
π

l

∣

∣

∣

∣

∣

τ−1
∑

k=0

cν,k

∣

∣

∣

∣

∣

(3.20)
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Now, considering the second term of (3.19) and using Abel’s lemma, we get

π

l

∣

∣

∣

∣

∣

ν
∑

k=τ

cν,k Re eikl

∣

∣

∣

∣

∣

≤
π

l

ν
∑

k=τ

cν,k max
0≤m≤k

∣

∣eiml
∣

∣

≤
π

l

ν
∑

k=τ

cν,k (3.21)

Combining (3.19), (3.20) and (3.21), we get

∣

∣

∣

∣

∣

ν
∑

k=0

cν,k

cos
(

k + 1
2

)

l

sin(l/2)

∣

∣

∣

∣

∣

≤
π

l

τ−1
∑

k=0

cν,k +
π

l

ν
∑

k=τ

cν,k

=O

(

1

l

)

(3.22)

From (3.18) and (3.22), we get

|D̃d(l)| = O

[

N

2l

{

∫ 1

0

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−νdu

}]

Further solving along the same lines of Lemma 3.3, we get

|D̃d(l)| =O

(

1

l

)

�

Lemma 3.5. (i) Let g ∈ Z
(λ1)
r , then for 0 < l ≤ π,

‖ φ(·+z)(l) + φ(·−z)(l) − 2φ(·)(l) ‖r= O
(

λ2(|z|)λ1(l)
λ2(l)

)

,

where λ1(l) and λ2(l) are moduli of continuity of order two.

(ii) Let g̃ ∈ Z
(λ1)
r , then for 0 < l ≤ π,

‖ ψ(·+z)(l) − ψ(·−z)(l) ‖r= O
(

λ2(|z|)λ1(l)
λ2(l)

)

,

where λ1(l) and λ2(l) are moduli of continuity of order two.

Proof. This Lemma can be proved along the same lines of the proof of Lemma 3 of ( [9], p.93). �

4. Proof of the Main Results

4.1. Proof of Theorem 2.1

The integral representation of sd(g;x) is given by [25] in the following form:

sd(g;x) − g(x) =
1

2π

∫ π

0

φx(l)
sin(d+ 1

2 )l

sin l
2

dl.

Denoting ∧T transform of sd(g;x) by M∧T , we get

M∧T
d (x) − g(x)

=

∫ π

0

φ(x)(l)

2π

[

∫ 1

0

{{

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−νdγ(u)

}{

ν
∑

k=0

cν,k

sin
(

k + 1
2

)

l

sin(l/2)

}}]

dl

=

∫ π

0

φ(x)(l)Dd(l) = ρd(l) (say). (4.1)
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Let

ρd(x) = M∧T
d (x) − g(x) =

∫ π

0

φ(x)(l)Dd(l).

Then,

ρd(x+ z) + ρd(x− z) − 2ρd(x) =

∫ π

0

{

φ(x+z)(l) − φ(x−z)(l) − 2φ(x)(l)
}

Dd(l)dl

Using generalized Minkowski’s inequality ( [2]), we can write

‖ ρd(· + z) + ρd(· − z) − 2ρd(·) ‖r

≤

∫ 1
d+1

0

‖ φ(·+z)(l) − φ(·−z)(l) − 2φ(·)(l) ‖r| Dd(l) | dl

+

∫ π

1
d+1

‖ φ(·+z)(l) − φ(·−z)(l) − 2φ(·)(l) ‖r| Dd(l) | dl

=I1 + I2 (4.2)

Using Lemmas 3.1 and 3.5(i),

I1 =O

[

∫ 1
d+1

0

λ2(|z|)
λ1(l)

λ2(l)
(d+ 1)dl

]

=O

[

(d+ 1)λ2(|z|)

∫ 1
d+1

0

λ1(l)

λ2(l)
dl

]

=O



(d+ 1)λ2(|z|)
λ1

(

1
d+1

)

λ2

(

1
d+1

)

∫ 1
d+1

0

dl





=O



λ2(|z|)
λ1

(

1
d+1

)

λ2

(

1
d+1

)



 (4.3)

Using Lemmas 3.2 and 3.5(i),

I2 =O

[

∫ π

1
d+1

λ2(|z|)
λ1(l)

λ2(l)

1

l
dl

]

=O

[

λ2(|z|)

∫ π

1
d+1

λ1(l)

λ2(l)

1

l
dl

]

(4.4)

Combining (4.2) to (4.4), we have

‖ ρd(· + z) + ρd(· − z) − 2ρd(·) ‖r=O



λ2(|z|)
λ1

(

1
d+1

)

λ2

(

1
d+1

)



+O

[

λ2(|z|)

∫ π

1
d+1

λ1(l)

λ2(l)

1

l
dl

]

sup
z 6=0

‖ ρd(· + z) + ρd(· − z) − 2ρd(·) ‖r

λ2(|z|)
=O





λ1

(

1
d+1

)

λ2

(

1
d+1

)



+O

[

∫ π

1
d+1

λ1(l)

λ2(l)

1

l
dl

]

(4.5)
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Again, using Lemmas 3.1 and 3.2; and ‖ φ(·)(l) ‖r= O (λ1(l)), we have

‖ ρd(·) ‖r≤

[

∫ 1
d+1

0

+

∫ π

1
d+1

]

‖ φ(·)(l) ‖r| Dd(l) | dl

=O

[

(d+ 1)

∫ 1
d+1

0

λ1(l)dl

]

+O

[

∫ π

1
d+1

λ1(l)

l
dl

]

=O

[

λ1

(

1

d+ 1

)]

+O

[

∫ π

1
d+1

λ1(l)

l
dl

]

(4.6)

We know that

‖ ρd(·) ‖(λ2)
r =‖ ρd(·) ‖r + sup

z 6=0

‖ ρd(· + z) + ρd(· − z) − 2ρd(·) ‖r

λ2(z)
(4.7)

Combining (4.5) to (4.7), we get

‖ ρd(·) ‖(λ2)
r = O





λ1

(

1
d+1

)

λ2

(

1
d+1

)



+O

[

∫ π

1
d+1

λ1(l)

λ2(l)

1

l
dl

]

+O

[

λ1

(

1

d+ 1

)]

+O

[

∫ π

1
d+1

λ1(l)

l
dl

]

In view of monotonicity of λ2(l), we have

λ1(l) = λ1(l)
λ2(l)λ2(l) ≤ λ2(π)λ1(l)

λ2(l) = O
(

λ1(l)
λ2(l)

)

for 0 < l ≤ π. Hence

‖ ρd(·) ‖(λ2)
r =O





λ1

(

1
d+1

)

λ2

(

1
d+1

)



+O

[

∫ π

1
d+1

λ1(l)

λ2(l)

1

l
dl

]

(4.8)

Since λ1 and λ2 are moduli of continuity of order two such that λ1(l)
λ2(l) is positive and non-decreasing, then

∫ π

1
d+1

λ1(l)

lλ2(l)
dl ≥

λ1

(

1
d+1

)

λ2

(

1
d+1

)

∫ π

1
d+1

1

l
dl =

λ1

(

1
d+1

)

λ2

(

1
d+1

) log π(d+ 1).

i.e.

λ1

(

1
d+1

)

λ2

(

1
d+1

) = O

[

1

log π(d+ 1)

∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]

(4.9)

From (4.8) and (4.9), we get

‖ ρd(·) ‖(λ2)
r = O

[

1

log π(d+ 1)

∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]

+O

[

∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]

= O

[

(

1

log π(d+ 1)
+ 1

)
∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]

= O

[

log πe(d+ 1)

log π(d+ 1)

∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]

This completes the proof of the theorem 2.1.
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4.2. Proof of Theorem 2.2

The integral representation of sd(g̃;x) is given by

sd(g̃;x) − g̃(x) =
1

2π

∫ π

0

ψx(l)
cos(d+ 1

2 )l

sin l
2

dl.

Denoting ∧T transform of sd(g̃;x) by M̃∧T , we get

M̃∧T
d (x) − g̃(x)

=

∫ π

0

ψ(x)(l)

2π

[

∫ 1

0

{

d
∑

ν=0

(

d
ν

)

uν(1 − u)d−ν

(

ν
∑

k=0

cν,k

cos
(

k + 1
2

)

l

sin(l/2)

)}

dγ(u)

]

dl

=

∫ π

0

ψ(x)(l)D̃d(l). (4.10)

Let

ρ̃d(x) = M̃∧T
d (x) − g̃(x) =

∫ π

0

ψ(x)(l)D̃d(l).

Then,

ρ̃d(x+ z) − ρ̃d(x− z) =

∫ π

0

{

ψ(x+z)(l) − ψ(x−z)(l)
}

D̃d(l)dl

Using generalized Minkowski inequality ( [2]), we can write

‖ ρ̃d(· + z) − ρ̃d(· − z) ‖r≤

∫ π

0

‖ ψ(x+z)(l) − ψ(x−z)(l) ‖r D̃d(l)dl

≤

∫ 1
d+1

0

‖ ψ(·+z)(l) − ψ(·−z)(l) ‖r| D̃d(l) | dl

+

∫ π

1
d+1

‖ ψ(·+z)(l) − ψ(·−z)(l) ‖r| D̃d(l) | dl

=J1 + J2. (4.11)

Using Lemmas 3.3 and 3.5(ii),

J1 =O

[

∫ 1
d+1

0

λ2(|z|)
λ1(l)

λ2(l)

(

1

l

)

dl

]

=O

[

λ2(|z|)

∫ 1
d+1

0

λ1(l)

l λ2(l)
dl

]

=O



λ2(|z|)
λ1

(

1
d+1

)

λ2

(

1
d+1

)

∫ 1
d+1

0

1

l
dl





=O



λ2(|z|)
λ1

(

1
d+1

)

λ2

(

1
d+1

) log(d+ 1)



 . (4.12)

Using Lemmas 3.4 and 3.5(ii),

J2 =O

[

∫ π

1
d+1

λ2(|z|)
λ1(l)

λ2(l)

1

l
dl

]

=O

[

λ2(|z|)

∫ π

1
d+1

λ1(l)

λ2(l)

1

l
dl

]

. (4.13)



14 H. K. Nigam

Combining (4.11) to (4.13), we have

sup
z 6=0

‖ ρd(· + z) − ρd(· − z) ‖r

λ2(|z|)
= O





λ1

(

1
d+1

)

λ2

(

1
d+1

) log(d+ 1)



+O

[

∫ π

1
d+1

λ1(l)

λ2(l)

1

l
dl

]

. (4.14)

Again, using Lemmas 3.3 and 3.4; and ‖ ψ(·)(l) ‖r= O (λ1(l)), we have

‖ ρ̃d(·) ‖r≤

[

∫ 1
d+1

0

+

∫ π

1
d+1

]

‖ ψ(·)(l) ‖r| D̃d(l) | dl

=O

[

∫ 1
d+1

0

λ1(l)

l
dl

]

+O

[

∫ π

1
d+1

λ1(l)

l
dl

]

=O

[

λ1

(

1

d+ 1

)

log(d+ 1)

]

+O

[

∫ π

1
d+1

λ1(l)

l
dl

]

. (4.15)

We know that

‖ ρ̃d(·) ‖(λ2)
r =‖ ρ̃d(·) ‖r + sup

z 6=0

‖ ρ̃d(· + z) − ρ̃d(· − z) ‖r

λ2(z)
. (4.16)

Combining (4.14) and (4.16), we get

‖ ρ̃d(·) ‖(λ2)
r =O





λ1

(

1
d+1

)

λ2

(

1
d+1

) log(d+ 1)



+O

[

∫ π

1
d+1

λ1(l)

λ2(l)

1

l
dl

]

+O

[

λ1

(

1

d+ 1

)

log(d+ 1)

]

+O

[

∫ π

1
d+1

λ1(l)

l
dl

]

.

In view of monotonicity of λ2(l), we have

λ1(l) = λ1(l)
λ2(l)λ2(l) ≤ λ2(π)λ1(l)

λ2(l) = O
(

λ1(l)
λ2(l)

)

for 0 < l ≤ π. Hence

‖ ρ̃d(·) ‖(λ2)
r =O





λ1

(

1
d+1

)

λ2

(

1
d+1

) log(d+ 1)



+O

[

∫ π

1
d+1

λ1(l)

λ2(l)

1

l
dl

]

. (4.17)

Since λ1 and λ2 are moduli of continuity of order two such that λ1(l)
λ2(l) is positive and non-decreasing, then

∫ π

1
d+1

λ1(l)

lλ2(l)
dl ≥

λ1

(

1
d+1

)

λ2

(

1
d+1

)

∫ π

1
d+1

1

l
dl =

λ1

(

1
d+1

)

λ2

(

1
d+1

) log π(d+ 1).

i.e.

λ1

(

1
d+1

)

λ2

(

1
d+1

) = O

[

1

log π(d+ 1)

∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]

. (4.18)
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From (4.17) and (4.18), we get

‖ ρ̃d(·) ‖(λ2)
r = O

[

log(d+ 1)

log π(d+ 1)

∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]

+O

[

∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]

Ed(g̃) = O

[

(

log(d+ 1)

log π(d+ 1)
+ 1

)
∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]

= O

[

log π(d+ 1)2

log π(d+ 1)

∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]

.

This completes the proof of the Theorem 2.2.

5. Corollaries

Corollary 5.1. Error estimates of the function g (2π-periodic) in the class Zα,r, r ≥ 1, using ∧T means
of Fourier Series is given by

inf
M∧T

d

‖M∧T
d (x) − g(x)‖(λ2)

r =







O
{

log πe(d+1)
log π(d+1) (d+ 1)δ2−δ1

}

, 0 ≤ δ2 < δ1 < 1

O
{

log πe(d+1)
(d+1) log π(d+1)

}

, δ2 = 0, δ1 = 1.

Proof. Putting λ1(l) = lδ1 and λ2(l) = lδ2 in Theorems 2.1, the result follows. �

Corollary 5.2. If amn = 1
m−n+1 log(m+ 1) in Theorem 2.1, then error estimates of the function g (2π-

periodic) in generalized Zygmund class Z
(λ1)
r , r ≥ 1, using ∧

(

H, 1
m+1

)

or ∧ H means of Fourier Series

is given by

inf
M∧H

d

‖M∧H
d (x) − g(x)‖(λ2)

r = O

[

log πe(d+ 1)

log π(d+ 1)

∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]

,

where λ1(l) and λ2(l) are moduli of continuity of order two such that λ1(l)
λ2(l) is positive and non-decreasing.

Remark 5.3. Other corollaries for obtaining error estimates of the function g in the classes Z
(λ1)
r , r ≥ 1,

and Zα,r, r ≥ 1, can be deduced for the particular cases of ∧T defined in Remark 1.2 ((ii) to (ix)), Remark
1.3 ((i) to (ix)) and Remark 1.5.

Corollary 5.4. Error estimates of the function g̃ (2π-periodic) in the class Zα,r, r ≥ 1, using ∧T means
of conjugate Fourier Series is given by

inf
M̃∧T

d

‖M∧T
d (x) − g̃(x)‖(λ2)

r =







O
{

log π(d+1)2

log π(d+1) (d+ 1)δ2−δ1

}

, 0 ≤ δ2 < δ1 < 1

O
{

log π(d+1)2

(d+1) log π(d+1)

}

, δ2 = 0, δ1 = 1.

Proof. Putting λ1(l) = lδ1 and λ2(l) = lδ2 in Theorems 2.2, the result follows. �

Corollary 5.5. If amn = 1
m−n+1 log(m + 1) in Theorem 2.2, then error estimates of the function g

(2π-periodic) in generalized Zygmund class Z
(λ1)
r , r ≥ 1, using ∧

(

H, 1
m+1

)

or ∧ H means of conjugate

Fourier Series is given by

inf
M̃∧H

d

‖M̃∧H
d (x) − g̃(x)‖(λ2)

r = O

[

log π(d+ 1)2

log π(d+ 1)

∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]

,

where λ1(l) and λ2(l) are moduli of continuity of order two such that λ1(l)
λ2(l) is positive and non-decreasing.
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Remark 5.6. Other corollaries for obtaining error estimates of the function g̃ in the classes Z
(λ1)
r , r ≥ 1,

and Zα,r, r ≥ 1, can be deduced for the particular cases of ∧T defined in Remark 1.2 ((ii) to (ix)), Remark
1.3 ((i) to (ix)) and Remark 1.5.

Remark 5.7. (i) In our Theorems 2.1 and 2.2, if r → ∞ in Z
(λ1)
r class then Z

(λ1)
r class reduces to

Z(λ1) class. Also putting λ1(l) = lα and λ2(l) = lβ in our Theorem 2.1, Z(λ1) class reduces to Zα

class then by putting β = 0 in Zα class, Zα class reduces to Lip α class.

6. Particular Cases

(i) Using Remark 5.3(i) and cm,d = 1
(m+1) then in view of Remark 1.2 (case (ix)) for q = 1, Theorem

1 of [12] becomes a particular case of our main Theorem 2.1.

(ii) Using Remark 5.3(i) and cm,d = 1
(m+1) then in view of Remark 1.3 (case (viii)) for q = 1, the result

of [18] becomes a particular case of our main Theorem 2.1.

(iii) ) Using Remark 5.3(i) and in view of Remark 1.2 (case (viii)) for m = 1, the result of [13] becomes
a particular case of our main Theorem 2.1.

(iv) Using Remark 5.3(i) and in view of Remark 1.2 (case (vii)) for m = 1, Theorem 1 of [21] becomes
a particular case of our main Theorem 2.1.

(v) Using Remark 5.3(i) and cm,d = 1
(q+1)m q

(m−d) then in view of Remark 1.2 (case (vii)) for m = 2,

the result of [1] becomes a particular case of our main Theorem 2.1.

(vi) Using Remark 5.3(i) and cm,d = pm−d/Pm , where Pm =
∑m

d=0 pm then in view of Remark 1.2
(case (vii)) for m = 1, Theorem 1 of [8] becomes a particular case of our main Theorem 2.1.

(vii) ) Using Remark 5.3(i) and in view of Remark 1.2 (case (viii)) for m = 1, the result of [14] becomes
a particular case of our main Theorem 2.2.

(viii) ) Using Remark 5.3(i) and in view of Remark 1.2 (case (viii)) for m = 1 and q = 1, the result of
[15] becomes a particular case of our main Theorem 2.2.
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