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abstract: In this paper, boundedness results for the continuous quaternion wavelet transform on Besov,
BMO and Hardy Hp spaces are established. Furthermore, the continuous quaternion wavelet transform is
also studied on the weighted Besov, BMOk and H

p

k
spaces associated with a tempered weighted function.
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1. Introduction

In 1843, Irish mathematician Sir W. R. Hamilton introduced the quaternions as a generalisation of
the complex numbers in which the scalar (real) axis is left unchanged whereas the vector (imaginary)
axis is supplemented by adding two more vectors axes. The set of quaternions is denoted by H, and each
element q ∈ H is written as a linear combination of three imaginary units with real coefficients and real
scalars [3,4,5,18,22,24]

q = a0 + ia1 + ja2 + ka3 ; a0, a1, a2, a3 ∈ R. (1.1)

The three imaginary units i, j, k are square roots of −1 and are related through the following multipli-
cation relations:

ij = −ji = k; jk = −kj = i; ki = −ik = j; i2 = j2 = k2 = ijk = −1.

The following properties hold in the quaternion algebra:

(i) The conjugate q of q is defined as

q = a0 − ia1 − ja2 − ka3; a0, a1, a2, a3 ∈ R.

(ii) The modulus of q ∈ H is defined as

|q| =
√

q q =
√

a2
0 + a2

1 + a2
2 + a2

3.
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(iii)
|q| = |q|, p+ q = p+ q, p q = q p and |q p| = |q||p|, for all p, q ∈ H. (1.2)

According to (1.1), a quaternion-valued function f : R2 → H can be expressed as

f(x) = f0(x) + if1(x) + jf2(x) + kf3(x) ; f0, f1, f2, f3 ∈ R. (1.3)

Definition 1.1 (The Lp(R2;H) space). Let Lp(R2;H), 1 ≤ p < ∞, denotes the space of all measurable
quaternion-valued functions f on R

2 such that

∫

R2

|f(x)|p d2x < ∞, where d2x = dx1dx2.

The space Lp(R2;H) is a normed linear space under the norm defined by

‖f‖Lp(R2;H) =

(
∫

R2

|f(x)|pd2x

)1/p

.

Definition 1.2. [3]. The right sided quaternion Fourier transform (right-sided QFT) of a function
f ∈ L1(R2;H) is denoted by Fq {f} and defined as

Fq {f} (ξ) := f̂(ξ) =

∫

R2

f(x) e−2πiξ1x1e−2πjξ2x2 d2x,

where x = x1e1 + x2e2, ξ = ξ1e1 + ξ2e2, e1 = (1, 0) and e2 = (0, 1), and e−2πiξ1x1e−2πjξ2x2 is called the
quaternion Fourier kernel.

Theorem 1.3 ( [3]). Suppose that f ∈ L2
(

R
2;H

)

and f̂ ∈ L1
(

R
2;H

)

. Then the inverse right-sided QFT

of f̂ is defined as

F
−1
q {f̂}(x) = f(x) =

∫

R2

f̂(ξ) e2πjξ2x2e2πiξ1x1d2ξ.

For two functions f, g ∈ L2
(

R
2;H

)

, we obtain Plancherel’s formula, specific to the right-sided QFT

〈f, g〉L2(R2;H) = 〈Fq {f} ,Fq {g}〉L2(R2;H) .

In particular, if f = g then we get Parseval’s formula,

||f ||2L2(R2;H) = ||Fq {f} ||2L2(R2;H).

Definition 1.4. The convolution of f ∈ L2(R2;H) and g ∈ L2(R2;H), denoted by f ∗ g, is defined as

(f ∗ g) (x) =

∫

R2

f(y)g(x-y) d2y,

and also satisfy distributive law:
f ∗ (g + h) = f ∗ g + f ∗ h.

For the basic properties of the quaternion Fourier transformation, we may refer to [3,4,5,11,13,14].

2. The Continuous quaternion wavelet transform

The continuous quaternion wavelet transform (CQWT) is the generalisation of continuous wavelet
transform. Its application is applied in image denoising. The basic properties and applications of the
CQWT may be found in [1,2,4,12,14]. First, we recall the following elementary operations

(1) (Translation) Tb : f(x) → f(x - b), b ∈ R
2
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(2) (Dilation) Da : f(x) → a−2f(x/a), a > 0

(3) (Rotation) rθ : f(x) → f(rθx), rθ ∈ SO(2),

where a > 0 is called the dilation parameter, b ∈ R
2 the translation parameter, θ the rotation angle, and

the rotation rθ ∈ SO(2) is a 2 × 2 rotation orthogonal matrix acts on x ∈ R
2 as :

rθ(x) = (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ) , 0 ≤ θ < 2π.

These three operations generate the two-dimensional Euclidean group known as the similitude group
SIM(2) denoted by G on R

2, and defined as [2]

G = R+ × SO(2) × R
2 =

{

(a, rθ,b) |a ∈ R+, rθ ∈ SO(2), b ∈ R
2
}

,

where SO(2) is the certain orthogonal group of R2 defined as

SO(2) =

{[

cos θ − sin θ
sin θ cos θ

]

: θ ∈ [0, 2π)

}

.

Definition 2.1. Combining the above three operators Tb, Da and rθ we define the unitary linear operator
Ua,θ,b which acts on a given single function ψ ∈ L2

(

R
2;H

)

as

Ua,θ,b(ψ) = ψa,θ,b(x) = a−2 ψ

(

r−θ

(

x − b

a

))

.

Note that the linear span of the family
{

ψa,θ,b; (a, rθ, b) ∈ G
}

is dense subspace of L2
(

R
2;H

)

.

Definition 2.2 (Admissible Quaternion wavelet). A function ψ ∈ L2
(

R
2;H

)

satisfies the admissibility
condition

0 < Cψ =

∫

SO(2)

∫

R+

∣

∣

∣
ψ̂ (ar−θ(ξ))

∣

∣

∣

2 dadθ

a
< ∞, (2.1)

is called admissible quaternion wavelet and AQW denotes the class of such admissible quaternion wavelets.

Using (1.3) we may express the function ψ ∈ AQW into the following form

ψ(x) = ψ0(x) + iψ1(x) + jψ2(x) + kψ3(x),

where ψs ∈ L2
(

R
2;R

)

for s = 0, 1, 2, 3. The right-sided QFT of ψ may be defined as

Fq {ψ} (ξ) = Fq {ψ0} (ξ) + iFq {ψ1} (ξ) + jFq {ψ2} (ξ) + kFq {ψ3} (ξ),

where Fq {ψs} ∈ L2
(

R
2;R

)

for s = 0, 1, 2, 3. Similar to the classical wavelets [8,10,19], for any ψ ∈
AQW, we have

∫

R2

ψ(x)d2x = 0.

Which implies that the integral of each component ψs of the quaternion mother wavelet is vanished, i.e.,

∫

R2

ψs(x)d2x = 0 ; s = 0, 1, 2, 3.

Definition 2.3. [4] The CQWT of a quaternion-valued function f ∈ L2(R2;H) with respect to ψ ∈ AQW
in 2-dimension is defined as

(Wψf)(a, θ, b) =
〈

f, ψa,θ,b
〉

L2(R2;H)
=

∫

R2

f(x)
1

a2
ψ

(

r−θ

(

x − b

a

))

d2x. (2.2)
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3. The Continuous quaternion wavelet transform on Besov spaces

Besov spaces have been intensively studied and they naturally appear in many branches of analysis
including harmonic analysis, PDEs and approximation theory. Let us recall definitions of Besov space.
For an arbitrary f ∈ Lp(R2,H), 1 ≤ p ≤ ∞, the modulus of continuity is defined by wp(f,h) = ||f(· +
h) − f(·)||Lp , where 0 < h ∈ R

2.

Definition 3.1. For 1 ≤ p, q ≤ ∞, Besov space Bα,qp (R2,H), 0 < α < 1, is defined as

Bα,qp (R2,H) =

{

f ∈ Lp(R2,H) :

∫

R2

[wp(f,h)]
q d2h

|h|2+αq
< ∞

}

, for 1 ≤ q < ∞,

and
Bα,∞p (R2,H) =

{

f ∈ Lp(R2,H) : |h|−αwp(f,h) ∈ L∞
(

R
2,H

)}

, for q = ∞,

where |h| is an Euclidean norm of h ∈ R
2. It is easy to see that Bα,qp (R2,H) is a Banach space associated

with the following norms

||f ||Bα,q
p

= ||f ||Lp +

(
∫

R2

[wp(f,h)]q
d2h

|h|2+αq

)
1
q

for q < ∞,

and
||f ||Bα,∞

p
= ||f ||Lp +

∥

∥|h|−αwp(f,h)
∥

∥

∞
for q = ∞.

Theorem 3.2. The operator Wψ : Bα,qp (R2,H) → Bα,qp (R2,H), f 7→ (Wψf) (a, θ, ·), is bounded. More-
over, the following estimate holds

‖(Wψf) (a, θ, ·)‖Bα,q
p

≤ ‖ψ‖L1 ‖f‖Bα,q
p

. (3.1)

Proof. We claim that (Wψf) (a, θ, ·) ∈ Bα,qp (R2,H). By change of variable as x = ay + b, the equation
(2.2) can be rewritten as

(Wψf) (a, θ,b) =

∫

R2

f(ay + b)ψ(r−θy) d2y,

and we get

‖(Wψf)(a, θ, ·)‖Lp =

∥

∥

∥

∥

∫

R2

f(ay + b)ψ(r−θy) d2y

∥

∥

∥

∥

Lp

=

(
∫

R2

∣

∣

∣

∣

∫

R2

f(ay + b)ψ(r−θy) d2y

∣

∣

∣

∣

p

d2b

)

1
p

≤

∫

R2

|ψ(r−θy)|

(
∫

R2

|f(ay + b)|
p
d2b

)
1
p

d2y

≤ ||ψ||L1 ||f ||Lp .

(3.2)

For 0 < α < 1, 1 ≤ p < ∞, by the Minkowski’s inequality, we obtain

wp ( (Wψf) (a, θ, ·),h ) = ‖(Wψf) (a, θ, · + h) − (Wψf) (a, θ, ·)‖Lp

=

∥

∥

∥

∥

∫

R2

[f(ay + b + h) − f(ay + b)]ψ(r−θy) d2y

∥

∥

∥

∥

Lp

=

(
∫

R2

∣

∣

∣

∣

∫

R2

[f(ay + b + h) − f(ay + b)]ψ(r−θy) d2y

∣

∣

∣

∣

p

d2b

)

1
p

≤

∫

R2

(
∫

R2

∣

∣(f(ay + b + h) − f(ay + b))ψ(r−θy)
∣

∣

p
d2b

)
1
p

d2y

=

∫

R2

|ψ(r−θy)|

(
∫

R2

|f(ay + b + h) − f(ay + b)|p d2b

)
1
p

d2y

≤ ‖ψ‖L1 wp(f,h).



The CQWT on Function Spaces 5

Therefore, for q < ∞,

(
∫

R2

[wp ( (Wψf) (a, θ, ·),h )]
q d2h

|h|2+αq

)
1
q

≤ ‖ψ‖L1

(
∫

R2

[wp(f,h)]
q d2h

|h|2+αq

)
1
q

. (3.3)

From (3.2) and (3.3), we get

‖(Wψf) (a, θ, ·)‖Bα,q
p

≤ ‖ψ‖L1 ‖f‖Bα,q
p

.

�

Corollary 3.3. If ψ, φ are two basic wavelets and f, g ∈ Bα,qp (R2,H) then

‖(Wψf) (a, θ, ·) − (Wφg) (a, θ, ·)‖Bα,q
p

≤ ‖ψ − φ‖L1 ‖f‖Bα,q
p

+ ‖φ‖L1 ‖f − g‖Bα,q
p

.

Now, we shall define the weighted Besov space by means of the weighted Lebesgue space associated
with the tempered weight function.

Definition 3.4. A positive function k defined on R
2 is called a tempered weight function if there exists

positive constants C and N such that [15]

k(x + y) ≤ (1 + C|x|)Nk(y), for all x,y ∈ R
2. (3.4)

Definition 3.5. For 1 ≤ p < ∞, the weighted Lebesgue space Lpk(R
2,H) is defined as the space of all

measurable quaternion-valued functions f on R
2 such that

||f ||Lp

k
=

(
∫

R2

|f(x)|pk(x) d2x

)
1
p

< ∞,

where k(x) is a tempered weight function.

For f ∈ Lpk(R2,H), k > 0 and h > 0, we define the modulus of smoothness as wp,k(f,h) =
‖f(· + h) − f(·)‖Lp

k

.

Definition 3.6. For 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, the weighted Besov space Bα,qp,k (R2,H), 0 < α < 1, is
defined as

Bα,qp,k (R2,H) =

{

f ∈ Lpk(R2,H) :

∫

R2

(wp,k(f,h))
q d2h

|h|2+αq
< ∞

}

for all 1 ≤ q < ∞,

and
Bα,∞p,k =

{

f ∈ Lpk(R2,H) : |h|−αwp,k ∈ L∞
(

R
2,H

)}

for q = ∞.

It is easy to see that the space Bα,qp,k , 1 ≤ q < ∞, is a Banach space associated with the norm defined by

||f ||Bα,q

p,k
= ||f ||Lp

k
+

(
∫

R2

(wp,k(f,h))
q d2h

|h|2+αq

)

1
q

and if q = ∞,
||f ||Bα,∞

p,k
= ||f ||Lp

k
+
∥

∥|h|−αwp,k(f,h)
∥

∥

∞
.

Theorem 3.7. Let ψ be a compactly supported basic wavelet whose support is contained in a disk centred
at the origin and of radius r. Then, the operator Wψ : Bα,qp,k → Bα,qp,k , f 7→ (Wψf) (a, θ, ·), for any a > 0,
is bounded and

‖(Wψf) (a, θ, ·)‖Bα,q

p,k

≤ (1 + Cra)
N
p ‖ψ‖L1 ‖f‖Bα,q

p,k

.
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Proof. Let us give a proof of Theorem 3.7 in the case 1 ≤ p ≤ q < ∞. By the Minkowski’s inequality, it
can be easily seen that

‖ (Wψf) (a, θ, ·) ‖Lp

k

=

∥

∥

∥

∥

∫

R2

f(b + y)ψa,θ(y) d2y

∥

∥

∥

∥

Lp

k

=

(
∫

R2

∣

∣

∣

∣

∫

R2

f(b + y)ψa,θ(y) d2y

∣

∣

∣

∣

p

k(b) d2b

)

1
p

≤

∫

R2

(
∫

R2

∣

∣f(b + y)ψa,θ(y)
∣

∣

p
k(b) d2b

)
1
p

d2y

=

∫

R2

|ψa,θ(y)|

(
∫

R2

|f(b + y)|p k(- y + b + y) d2b

)
1
p

d2y

≤

∫

R2

(1 + C|y|)
N
p |ψa,θ(y)|

(
∫

R2

|f(b + y)|
p
k(b + y) d2b

)
1
p

d2y

≤

∫

|y|≤r

(1 + C|y|)
N
p |ψa,θ(y)|

(
∫

R2

|f(z)|
p
k(z) d2z

)
1
p

d2y

≤ (1 + Car)
N
p ‖ψ‖L1 ‖f‖Lp

k

.

(3.5)

Hence,

wp,k ((Wψf) (a, ·),h)

= ‖ (Wψf) (a, θ, · + h) − (Wψf) (a, θ, ·) ‖Lp

k

=

(
∫

R2

∣

∣

∣

∣

∫

R2

[ f(ay + b + h) − f(ay + b) ] ψ(r−θy) d2y

∣

∣

∣

∣

p

k(b) d2b

)

1
p

≤

∫

R2

|ψ(r−θy) |

(
∫

R2

|f(ay + b + h) − f(ay + b)|p k(b) d2b

)
1
p

d2y

≤

∫

R2

(1 + C|ay|)
N
p |ψ(r−θy) |

(
∫

R2

|f(ay + b + h) − f(ay + b)|
p
k(ay + b)d2b

)
1
p

d2y

≤

∫

|y|≤r

(1 + Ca|y|)
N
p |ψ(r−θy) |

(
∫

R2

|f(ay + b + h) − f(ay + b)|
p
k(ay + b)d2b

)
1
p

d2y

≤ (1 + Car)
N
p ‖ψ‖L1 wp,k(f,h).

Therefore,

(
∫

R2

(wp,k ((Wψf) (a, θ, ·),h))
q d2h

|h|2+αq

)
1
q

≤ (1 + Car)
N
p ‖ψ‖L1

(
∫

R2

(wp,k(f,h))q
d2h

|h|2+αq

)
1
q

.

(3.6)

From (3.5) and (3.6), we obtain the final result. �

Corollary 3.8. Let ψ and φ be two compactly supported basic wavelets whose supports are contained in
a disk centred at the origin and of radius r. If f, g ∈ Bα,qp,k (R2,H), then

‖ (Wψf) (a, θ, ·) − (Wφg) (a, θ, ·) ‖Bα,q

p,k

≤ (1 + Cra)
N
p

(

‖ψ − φ‖L1 ‖f‖Bα,q

p,k

+ ‖φ‖L1 ‖f − g‖Bα,q

p,k

)

.
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4. The Continuous quaternion wavelet transform on Hardy Hp spaces

Hardy spaces play an important role in various areas of pure and applied mathematics including
harmonic analysis and PDEs. In this section, the continuous quaternion wavelet transform is studied on
Hardy spaces.

Definition 4.1 (Schwartz space). The Schwartz space S(R2,H) be the space of all infinitely differentiable
functions φ on R

2 such that supx∈R2 |xβDγφ(x)| < ∞ for all multi-indices β and γ.

Definition 4.2. Hardy space Hp(R2,H) is defined as the space of all functions f ∈ Lp(R2,H) such that

‖f‖Hp(R2,H) =

(
∫

R2

sup
t>0

|(f ∗ ϕt)(x)|pd2x

)
1
p

,

where ϕt = t−2ϕ(x
t ), t > 0, x ∈ R

2, and ϕ be a function in the Schwartz space such that
∫

R2 ϕ(x)dx 6= 0.

Theorem 4.3. The operator Wψ : Hp(R2,H) → Hp(R2,H), f → (Wψf) (a, θ, ·) is bounded. Moreover,
the following estimate holds

‖(Wψf) (a, θ, ·)‖Hp ≤ ‖ψ‖L1 ‖f‖Hp .

Proof. By the change of variable as x = ay + b, we have

(Wψf) (a, θ,b) =

∫

R2

f(ay + b)ψ(r−θy) d2y

=

∫

R2

ψ(r−θy) f(ay + b) d2y

and hence,

(

(Wψf) (a, θ, ·) ∗ ϕt

)

(b) =

∫

R2

ψ(r−θy)

(
∫

R2

f(ay + b − x)ϕt(x) d2x

)

d2y

=

∫

R2

ψ(r−θy)
(

f ∗ ϕt
)

(ay + b) d2y.

(4.1)

Using the Minkowski’s inequality, we get

‖(Wψf) (a, θ, ·)‖Hp =

(
∫

R2

sup
t>0

∣

∣

∣

(

(Wψf) (a, θ, ·) ∗ ϕt

)

(b)
∣

∣

∣

p

d2b

)
1
p

=

(
∫

R2

sup
t>0

∣

∣

∣

∣

∫

R2

ψ(r−θy)
(

f ∗ ϕt
)

(ay + b) d2y

∣

∣

∣

∣

p

d2b

)

1
p

≤

∫

R2

(
∫

R2

sup
t>0

∣

∣ψ(r−θy)
(

f ∗ ϕt
)

(ay + b)
∣

∣

p
d2b

)
1
p

d2y

=

∫

R2

|ψ(r−θy)|

(
∫

R2

sup
t>0

∣

∣

(

f ∗ ϕt
)

(ay + b)
∣

∣

p
d2b

)
1
p

d2y

≤ ‖ψ‖L1 ‖f‖Hp .

�

Corollary 4.4. If ψ, φ are two basic wavelets and f, g ∈ Hp(R2,H), then

‖(Wψf) (a, θ, ·) − (Wφg) (a, θ, ·)‖Hp ≤ ‖ψ − φ‖L1 ‖f‖Hp + ‖φ‖L1 ‖f − g‖Hp .
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Definition 4.5. Weighted Hardy space Hp
k (R2,H) is defined as the space of all functions f ∈ Lpk(R2,H)

such that

||f ||Hp

k
=

(
∫

R2

sup
t>0

∣

∣(f ∗ ϕt)(x)
∣

∣

p
k(x) d2x

)
1
p

,

where k(x) is a tempered weight function and ϕt = t−2ϕ(x
t ), t > 0, x ∈ R

2, and ϕ be a function in the
Schwartz space such that

∫

R2 ϕ(x)dx 6= 0.

Theorem 4.6. Let ψ be a compactly supported basic wavelet whose support is contained in a disk centred
at the origin and of radius r. Then, the operator Wψ : Hp

k (R2,H) → Hp
k (R2,H) is bounded. Moreover

‖(Wψf) (a, θ, ·)‖Hp

k

≤ (1 + Car)
N
p ‖ψ‖L1 ‖f‖Hp

k

.

Proof. Using (4.1) and the Minkowski’s inequality, we get

‖(Wψf) (a, θ, ·)‖Hp

k

=

(
∫

R2

sup
t>0

∣

∣

∣

(

(Wψf) (a, θ, ·) ∗ ϕt

)

(b)
∣

∣

∣

p

k(b) d2b

)
1
p

=

(
∫

R2

sup
t>0

∣

∣

∣

∣

∫

R2

ψ(r−θy)
(

f ∗ ϕt
)

(ay + b) d2y

∣

∣

∣

∣

p

k(b) d2b

)

1
p

≤

∫

R2

|ψ(r−θy)|

(
∫

R2

sup
t>0

∣

∣

(

f ∗ ϕt
)

(ay + b)
∣

∣

p
k(b) d2b

)
1
p

d2y.

≤

∫

R2

(1 + C|ay|)
N
p |ψ(r−θy)|

(
∫

R2

sup
t>0

∣

∣(f ∗ ϕt)(ay + b)
∣

∣

p
k(ay + b) d2b

)
1
p

d2y

≤

∫

|y|≤r

(1 + Ca|y|)
N
p |ψ(r−θy)|

(
∫

R2

sup
t>0

∣

∣(f ∗ ϕt)(x)
∣

∣

p
k(x) d2x

)
1
p

d2y

≤ (1 + Car)
N
p ‖ψ‖L1 ‖f‖Hp

k

.

�

Corollary 4.7. Let ψ and φ be two compactly supported basic wavelets whose supports are contained in
a disk centred at the origin and of radius r. If f, g ∈ Hp

k (R2,H), then

‖ (Wψf) (a, θ, ·) − (Wφg) (a, θ, ·) ‖Hp

k

≤ (1 + Cra)
N
p

(

‖ψ − φ‖L1 ‖f‖Hp

k

+ ‖φ‖L1 ‖f − g‖Hp

k

)

.

5. The Continuous quaternion wavelet transform on BMO spaces

In 1961, F. John and L. Nirenberg [17] introduced the bounded mean oscillation (BMO) space as the
dual space of the real Hardy space H1. Nowadays, the BMO space is very useful in harmonic analysis,
PDEs and theory of functions.

Definition 5.1. The space BMO(R2,H) is defined as the space of all functions f ∈ L1
loc(R

2,H) such that

‖f‖BMO(R2,H) = sup
B⊂R2

1

|B|

∫

B

|f − fB| d2x < ∞,

where the supremum is taken over all the disks B in R
2, and fB is the mean value of the function f on

B defined by fB = 1
|B|

∫

B f(y)dy for each disk B ⊂ R
2.
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Theorem 5.2. Let ψ be a compactly supported basic wavelet. For any a > 0, the operator Wψ :
BMO(R2,H) → BMO(R2,H), f 7→ (Wψf) (a, θ, ·), is bounded. Furthermore, the following estimate
holds

‖(Wψf) (a, θ, ·)‖BMO(R2,H) ≤ ‖ψ‖L1 ‖f‖BMO(R2,H) .

Proof. Let B be an arbitrary disk ⊂ R
2. Then, we have

∫

B

| (Wψf) (a, θ,b)|d2b ≤

∫

R2

|ψ(r−θx)|

(
∫

B

|f(ax + b)|d2b

)

d2x

=

∫

R2

|ψ(r−θx)|

(
∫

Q

|f(y)|d2y

)

d2x,

where Q = ax +B. Since Q ⊂ a supp ψ +B is a compact set in R
2 and f ∈ L1

loc(R
2,H), it follows that

∫

B

| (Wψf) (a, θ,b)|d2b ≤ K

∫

R2

|ψ(r−θx)|d2x = K ‖ψ‖L1 < ∞,

and hence (Wψf) (a, θ, ·) ∈ L1
loc(R

2,H). By the Fubini’s theorem, we have

(Wψf)B (a, θ,b) =

∫

R2

(

1

|B|

∫

B

f(ax + b)ψ(r−θx) d2b

)

d2x =

∫

R2

fQ ψ(r−θx) d2x.

Using the Minkowski’s inequality, we get

‖(Wψf) (a, θ, ·)‖BMO(R2,H)

= sup
B⊂R2

1

|B|

∫

B

∣

∣(Wψf) (a, θ,b) − (Wψf)B (a, θ,b)
∣

∣ d2b.

≤ sup
B⊂R2

1

|B|

∫

B

(
∫

R2

|f(ax + b) − fQ | |ψ(r−θx)| d2x

)

d2b

=

∫

R2

|ψ(r−θx)|

(

sup
Q⊂R2

1

|Q|

∫

Q

|f(y) − fQ | d2y

)

d2x

= ‖ψ‖L1 ‖f‖BMO(R2,H) .

�

Corollary 5.3. Let ψ and φ be two compactly supported basic wavelets and f, g ∈ BMO(R2,H). Then

‖(Wψf) (a, θ, ·) − (Wφg) (a, θ, ·)‖BMO(R2,H)

≤ ‖ψ − φ‖L1 ‖f‖BMO(R2,H) + ‖φ‖L1 ‖f − g‖BMO(R2,H) .

Definition 5.4. The weighted bounded mean oscillation space BMOk(R2,H) is defined as the space of
all weighted Lebesgue integrable (locally) functions defined on R

2 such that

‖ f ‖BMOk
= sup

B⊂R2

1

|B|k

∫

B

|f(x) − fB|k(x)d2x < ∞,

where the supremum is taken over all the disks B in R
2 and |B|k =

∫

B
k(x)d2x, and k(x) is a tempered

weight function.

Theorem 5.5. Let ψ be a compactly supported basic wavelet. For any a > 0, the operator Wψ :
BMOk(R

2,H) → BMOk(R2,H), f 7→ (Wψf) (a, θ, ·), is bounded. Furthermore, the following estimate
holds

‖(Wψf) (a, θ, ·)‖BMOk(R2,H) ≤ (1 + Car)2N ‖ψ‖L1 ‖f‖BMOk(R2,H) .
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