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abstract: We obtain new results in combining stable sampling sets (respectively, stable interpolation sets)
for a given quasinormed space in order to construct other new ones. We apply these results to Paley-Wiener
spaces. In addition, we study the problem of obtaining a generator system of a given quasinormed space, and
obtain conditions for a finite product of subsets of a given quasinormed space to be a generator system, using
the interpolation and sampling theory for quasinormed spaces of functions.
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1. Introduction

There are many contributions on the problems of existence and construction of exponential Riesz bases
in the Hilbert spaces L2(D), with D ⊆ Rn bounded, Lebesgue measurable and disconnected. G. Kozma
and S. Nitzan have proved the existence of exponential bases on the finite union of disjoint intervals of R
and disjoint rectangles in Rn (see [10] and [11], respectively). Besides, G. Kozma and N. Lev constructed
in [9] an exponential Riesz basis for the space L2(D) where D ⊆ R is the union of finitely many disjoint
intervals whose lengths belong to Z + αZ, where α is a given irrational number. For this construction
they used the theory of quasicrystals by Yves Meyer (see [15] and [16]). See [7] for a construction of an
exponential Riesz basis for L2(J), with J = [0, β) ∪ [β + r, L + r), 0 < β < r, r > 0 (problem of the
broken interval).

On the existence of exponential bases on finite union of disjoint cubes see, for example, [14]; and on
the finite union of two disjoint dimensional trapezoids see [6].

On the other hand, several authors have used the idea of combining exponential Riesz bases on
individual disjoint two by two rectangles in order to construct a basis for their union (for example, see
[5], [10], [11] and [13]).

Our contribution is aimed at obtaining new results in combining stable sampling sets (respectively,
stable interpolation sets) of a given quasinormed space in order to obtain new ones. We also apply these
results to Paley-Wiener spaces.
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Namely, given a quasinormed functional space E, and several vector subspaces whose topological
direct sum is E, and also given a stable sampling set (respectively, stable interpolation set) chosen for
each of these subspaces in such a way that those sampling (respectively, interpolation) sets are disjoint
two by two, we want combine them in order to form a new stable sampling set (respectively, stable
interpolation set). That is, we will directly study sampling and interpolation sets in a general context.

A motivation is the following result, which is well known in sampling and interpolation in the Hilbert
spaces E2

S , classical Paley-Wiener spaces, being S ⊆ Rn a bounded and Lebesgue measurable set. See
[18], Proposition 2.8, p. 16; and Proposition 4.6, p. 36. Also see [23], chapter 4.

Theorem 1.1 (See Definition 1.7 and Definition 4.1). Let S ⊆ Rn be a bounded and Lebesgue measurable
set, and Λ ⊆ Rn be uniformly discrete. For each λ ∈ Λ consider the function φλ : Rn → C defined by

x 7→ φλ(x) :=

{
0, if x /∈ S

eiλx, if x ∈ S
.

We also define the set E (Λ) := {φλ}λ∈Λ ⊆ L2(S). Then:

1. Λ is a 2-SS for E2
S if and only if E (Λ) is a frame for L2(S).

2. Λ is a 2-SIS for E2
S if and only if E (Λ) is a Riesz sequence for L2(S).

3. Λ is a 2-SCIS for E2
S if and only if E (Λ) is a Riesz basis for L2(S).

Hence the results on 2-SCIS (respectively, 2-SS, 2-SIS) for the classical Paley-Wiener space E2
S can be

translated into results on exponential Riesz bases (respectively, frames, Riesz sequences) in L2(S), and
viceversa.

Furthermore, the research in frame theory, Riesz sequences and bases theory in Lp spaces has allowed
to obtain advances in stable sampling and interpolation theory. For example, in 1964 M. I. Kadec proved
his celebrated theorem:

Theorem 1.2 (Kadec-1/4 Theorem). Let (λn)n∈Z
be a sequence of real numbers. Suppose that

|λn − n| ≤ L <
1

4
for every n ∈ Z.

Then the set of exponential functions
{

ei λn t
}

n∈Z
is a Riesz basis in L2 ((−π, π)).

This result says, in terms of sampling and interpolation theory, that Z is a complete interpolation
set (this is, both sampling and interpolation set) for the Paley-Wiener space E2

(−π, π), and that every

L-perturbation of Z also verifies it whenever L < 1
4 .

The bound 1/4 is sharp, and Theorem 1.2 improves a previous very important result by R. Paley and
N. Wiener, where the bound is 1

π2 ( [19], page 113). In 1974 S. A. Avdonin obtained a generalization of
Theorem 1.2 using a certain type of mean of the values λn’s ( [3]).

Kadec-1/4 Theorem has been generalized in several ways to Lp spaces and to sequences (λn)n∈Z

of complex numbers, obtaining
{

ei λn t
}

n∈Z
, as a result, the property of completeness (see for example

[12], [20], [22] and [21]). In addition, the Riesz basis problem in the Paley-Wiener space E2
(−π, π) has

been proposed for non-exponential basis. In this sense several important results analogous to Kadec-1/4
Theorem have been obtained for sets of sinc functions, involving the Lamb-Oseen constant (see [1] and
[2]).

Finally, we investigate the generator systems of quasi-Banach spaces, being these generator systems
the result of multiplying a finite number of subsets of a given quasi-Banach space, and we apply the
sampling and interpolation theory in order to obtain such generator systems.



Recombination of SS and IS 3

1.1. Definitions

Remind that, given Ω ⊆ Rn, the vector space F (Ω, C) of the complex functions defined in Ω is a
commutative C-algebra with the usual product of functions. Given Ω ⊆ Rn, A, B ⊆ F (Ω, C), we denote
by A · B the set

A · B := {f · g | f ∈ A, g ∈ B} ,

as usual.

Definition 1.3 (Uniformly discrete set). Let Λ ⊆ Rn be infinite countable. We say that Λ is uniformly
discrete (briefly u.d.) if

δ(Λ) := inf
λ, λ′∈Λ, λ6=λ′

‖λ − λ′‖ > 0.

The constant δ(Λ) is called the separation constant of Λ.

Definition 1.4 (Uniqueness set). Let K ∈ {R, C}, and let E be a K-vector subspace of F (Rn, C). Let
Λ ⊆ Rn be uniformly discrete. We say that Λ is a uniqueness or complete set (briefly, US) for E if for
every f ∈ E we have that

(∀λ ∈ Λ f(λ) = 0) ⇒ f = 0.

Definition 1.5 (Sequence space lp(Λ)). Let Λ ⊆ Rn be u.d.

1. Let p ∈ (0, +∞). We define the set

lp(Λ) :=

{
(aλ)λ∈Λ ∈ C

Λ |
∑

λ∈Λ

|aλ|p < ∞

}
.

The mapping ‖ ‖p : lp(Λ) → R given by
∥∥(aλ)λ∈Λ

∥∥
p

:=
(∑

λ∈Λ |aλ|p
) 1

p , is a quasinorm for lp(Λ),

which is a norm if p ≥ 1. With this quasinorm lp(Λ) is a complete space.

2.

l∞(Λ) :=

{
(aλ)λ∈Λ ∈ C

Λ | sup
λ∈Λ

|aλ| < ∞

}
.

The mapping ‖ ‖∞ : l∞(Λ) → R defined by
∥∥(aλ)λ∈Λ

∥∥
∞

:= supλ∈Λ |aλ| is a norm for l∞(Λ) which
make this space a Banach space.

Definition 1.6. Let Λ ⊆ Rn be u.d.

1. We define the product operation in l∞(Λ) in the following way: Let a = (aλ)λ∈Λ , b = (bλ)λ∈Λ ∈
l∞(Λ). We define the object a · b as the element of l∞(Λ) given by

a · b := (cλ := aλ · bλ)λ∈Λ ∈ l∞(Λ).

2. This product operation in l∞(Λ) is an associative binary operation which makes the vector space
l∞(Λ) a complex commutative algebra with unity. The unity is, obviously, the element of l∞(Λ)
whose all components are equal to 1.

3. Let A, B ⊆ l∞(Λ) be non empty sets. We define

A · B := {a · b | a ∈ A, b ∈ B} .

Definition 1.7. Let (E, ‖ ‖) be a quasinormed space, verifying E ⊆ F (Rn, C). Let p ∈ (0, +∞] and
Λ ⊆ Rn be a uniformly discrete set. Assume that

(f(λ))λ∈Λ ∈ lp(Λ) for all f ∈ E.
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• The C-linear mapping S : (E, ‖ ‖) → (lp(Λ), ‖ ‖p) given by f → (f(λ))λ∈Λ is called the p-sampling
operator of (E, ‖ ‖) with respect to Λ.

• We say that Λ verifies the p-Plancherel-Polya condition (briefly, p-P.P.C.) for (E, ‖ ‖) if S is
continuous, this is, if there exists a constant C > 0 such that

‖(f(λ))λ∈Λ‖p ≤ C ‖f‖ for all f ∈ E.

• Λ is said to be a p-interpolation set (in short, p-IS) for E if S is surjective. Given c = (cλ)λ∈Λ ∈
lp (Λ) and f ∈ E, we say that f interpolates c (over Λ) if f(λ) = cλ for all λ ∈ Λ.

• We say that Λ a p-stable interpolation set (briefly, p-SIS) for (E, ‖ ‖) if S is continuous, surjective
and has a continuous inverse by right.

• Λ is said to be a p-stable sampling set (briefly, p-SS) for (E, ‖ ‖) if S is a topological isomorphism
over its image, this is, if there exist constants c, C > 0, c ≤ C, such that

c ‖(f(λ))λ∈Λ‖p ≤ ‖f‖ ≤ C ‖(f(λ))λ∈Λ‖p

for every f ∈ E. That is, if S is continuous, injective and has a continuous inverse by left.

• We say that Λ a p-complete interpolation set (briefly, p-CIS) for E if S is bijective.

• Λ is called a p-stable complete interpolation set (briefly, p-SCIS) for (E, ‖ ‖) if S is a topological
isomorphism.

Observe that Λ is a uniqueness set for E if and only if S is injective. In addition notice that every
p-SS for (E, ‖ ‖) is also a US for E.

Remark 1.8. Λ is a p-SS for (E, ‖ ‖) if and only if there exists a vector subspace of (lp(Λ), ‖ ‖p)
topologically isomorphic to (E, ‖‖) through the sampling mapping, and this is a representation of (E, ‖‖)
as a subspace of (lp(Λ), ‖ ‖p).

Indeed, Λ is a p-SS for (E, ‖ ‖) if and only if the function

‖ ‖Λ, p : E → R

defined by ‖f‖Λ, p := ‖(f(λ))λ∈Λ‖p for all f ∈ E, is a quasinorm in E equivalent to ‖ ‖.

Remark 1.9. Observe that the following statements are equivalent between themselves:

1. Λ is a p-SCIS for (E, ‖ ‖).

2. Λ is both a p-SS and a p-IS for (E, ‖ ‖).

3. Λ is both a p-SIS and a uniqueness set for (E, ‖ ‖).

As consequence of the Banach open mapping theorem, we have the following observation.

Remark 1.10. Let (E, ‖ ‖) be a quasi-Banach space, verifying E ⊆ F (Rn, C). Let p ∈ (0, +∞] and
Λ ⊆ Rn be a uniformly discrete set. Assume that the sampling operator S : (E, ‖ ‖) → (lp(Λ), ‖ ‖p) is
continuous. Then

1. Λ is a p-IS for E if and only if Λ is a p-SIS for (E, ‖ ‖).

2. Λ is a p-CIS for E if and only if Λ is a p-SCIS for (E, ‖ ‖).

In the rest of this article we will omit the quasinorm of E, except if necessary, and will refer to the
quasinormed space (E, ‖ ‖) simply as E.
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1.2. Main results

Our main results are the following ones.

Theorem 1.11. Let Ω ⊆ Rn, Int(Ω) 6= ∅, and let (X, ‖ ‖) be a quasinormed space with X ⊆ F (Ω, C).
Let E, F ⊆ X be vector subspaces. Let m ∈ Z+, and E1, ..., Em ⊆ E be vector subspaces. Let p ∈ (0, +∞],
and Λ1, ..., Λm ⊆ Ω be uniformly discrete sets and disjoint two by two. Define Λ :=

⋃m
j=1 Λj, and assume

that

i) Λj is a p-IS for Ej for every j ∈ {1, ..., m}.

ii) Λ is an ∞-IS for F .

iii) Ej · F ⊆ E for each j ∈ {1, ..., m}.

Then Λ is a p-IS for E.

Theorem 1.12. Let Ω ⊆ Rn, Int(Ω) 6= ∅, and let (E, ‖ ‖) be a quasi-Banach space with E ⊆ F (Ω, C).
Let m ∈ Z+, and let E1, ..., Em ⊆ E be closed vector subspaces of E such that

E = ⊕m
j=1Ej

is an algebraic direct sum. Let p ∈ (0, +∞], and Λ1, ..., Λm ⊆ Ω be u.d. and disjoint two by two. Define
Λ :=

⋃m
j=1 Λj. Suppose that

1. Λj is a p-SS for Ej for every j ∈ {1, ..., m}.

2. Λ is a uniqueness set for E.

Then Λ is a p-SS for E.

As we will see in the proof of Theorem 1.12, if Λ verifies the p-P.P.C. for E, then Theorem 1.12 is
also true for any countable set of Λj ’s and any countable set of vector subspaces E′

js that split E into a
topological direct sum.

The structure of this paper is as follows. Section 1 contains the introduction with the main results,
Theorem 1.11 and Theorem 1.12. In section 2 we prove Theorem 1.11 and apply it to Paley-Wiener
spaces and to Lebesgue spaces L2 (S). Section 3 is devoted to the proof of Theorem 1.12. In section 4
we apply Theorem 1.12 to Paley-Wiener spaces, obtaining Corollary 4.3. Finally, in section 4 we apply
the sampling and interpolation theory in order to obtain several results which allow us in certain cases
to construct some generator systems of quasi-Banach spaces, where these generator systems are product
of a finite number of subsets of the given quasi-Banach space.

2. Proof of Theorem 1.11

Proof of Theorem 1.11. It is obvious that Λ is u.d. We will prove that Λ is a p-IS for E.
Let a := (aλ)λ∈Λ ∈ lp (Λ). Let us see that there exists fa ∈ E such that fa (λ) = aλ for every λ ∈ Λ.
Define

aj := (aλ)λ∈Λj
∈ lp (Λj) for every j ∈ {1, ..., m} .

Let j ∈ {1, ..., m}. By the assumption i) we have that there exists faj ∈ Ej such that

faj (λ) = aλ for each λ ∈ Λj.

Now we consider bj :=
(

bj
λ

)
λ∈Λ

defined by

bj
λ :=

{
1, if λ ∈ Λj

0, if λ /∈ Λj ,
, for all λ ∈ Λ.
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It is clear that bj ∈ l∞
(⋃m

j=1 Λj

)
= l∞ (Λ). By the hypothesis ii) we have that there exists gj ∈ F such

that

gj (λ) = bj
λ =

{
1, if λ ∈ Λj

0, if λ /∈ Λj

, for every λ ∈ Λ.

Notice that for each j ∈ {1, ..., m} the function gj does not depend on a. Consider now the function

fa :=
m∑

j=1

faj · gj.

By the assumption iii) and since E is closed by sums, then fa ∈ E.
Let λ ∈ Λ. Let us see that fa (λ) = aλ ∈ C.
Since there exists a unique jλ ∈ {1, ..., m} such that λ ∈ Λjλ

, then

fa (λ) =
m∑

j=1

faj (λ) · gj (λ) = fajλ (λ) = aλ.

Conclusion: Λ is a p-IS for E. �

Now we will apply Theorem 1.11 to Paley-Wiener spaces and to Lebesgue spaces L2 (S).

Corollary 2.1. Let S, K ⊆ Rn be compact sets with positive measure, and let L ⊆ Rn be bounded and
Lebesgue measurable such that S ⊆ L. Let m ∈ Z+, and S1, ..., Sm ⊆ Int (S) be compact sets with positive
measure. Let p ∈ (0, +∞], and Λ1, ..., Λm ⊆ Rn be uniformly discrete and disjoint two by two. We define
Λ :=

⋃m
j=1 Λj, and suppose that

i) Λj is a p-IS for Ep
Sj

for every j ∈ {1, ..., m}.

ii) Λ is an ∞-IS for E∞
K .

iii) Sj + K ⊆ S for each j ∈ {1, ..., m}.

Then Λ is a p-IS for Ep
S.

Proof. This result is an immediate consequence of Theorem 1.11 taking

X := Ep
L, E := Ep

S , F := Ep
K , and

Ej := Ep
Sj

for every j ∈ {1, ..., m} .

�

In order to obtain a consequence for Riesz sequences in the Lebesgue spaces we will use the following
theorem by A. Olevskii and A. Ulanovskii; see [17, Theorem 2.1].

Theorem 2.2 (Olevskii-Ulanovskii Transitivity theorem). Let Λ ⊆ Rn be u.d., S ⊆ Rn be a compact set
and ε > 0.

1. If Λ is an IS for E2
S, then Λ is an IS for E∞

S+[−ε, ε]n .

2. If Λ is an IS for E∞
S , then Λ is an IS for E2

S+[−ε, ε]n .

3. If Λ is a SS for E∞
S+[−ε, ε]n, then Λ is a SS for E2

S .

4. If Λ is a SS for E2
S+[−ε, ε]n, then Λ is a SS for E∞

S .
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Corollary 2.3. Let S, T ⊆ Rn be compact sets with positive measure and let L ⊆ Rn be bounded and
Lebesgue measurable such that S ⊆ L. Let m ∈ Z+, and S1, ..., Sm ⊆ Int (S) be compact sets with positive
measure. Let p ∈ (0, +∞], and Λ1, ..., Λm ⊆ Rn be uniformly discrete and disjoint two by two. We define
Λ :=

⋃m
j=1 Λj, and suppose that

i) Λj is a 2-IS for E2
Sj

for every j ∈ {1, ..., m}.

ii) Λ is a 2-IS for E2
T .

iii) Sj + T ⊆ Int (S) for each j ∈ {1, ..., m}.

Then Λ is a 2-IS for E2
S.

Proof. It is an immediate consequence of both Corollary 2.1 and Theorem 2.2. �

Finally we obtain the version of Corollary 2.3 for Riesz sequences in the Lebesgue spaces L2 (S).

Corollary 2.4. Let S, T ⊆ Rn be compact sets with positive measure and let L ⊆ Rn be bounded and
Lebesgue measurable such that S ⊆ L. Let m ∈ Z+, and S1, ..., Sm ⊆ Int (S) be compact sets with positive
measure. Let p ∈ (0, +∞], and Λ1, ..., Λm ⊆ Rn be uniformly discrete and disjoint two by two. We define
Λ :=

⋃m
j=1 Λj.

For every λ ∈ Λ consider the function φλ : Rn → C defined by

x 7→ φλ(x) :=

{
0, if x /∈ S

eiλx, if x ∈ S
.

Define the set E (Λ) := {φλ}λ∈Λ ⊆ L2 (S). Then:

1. E (Λj) :=
{

φλ|Sj

}
λ∈Λj

⊆ L2 (Sj) is a Riesz sequence in L2 (Sj) for every j ∈ {1, ..., m}.

2. E (Λ) |T := {φλ|T }λ∈Λ ⊆ L2 (T ) is a Riesz sequence in L2 (T ).

3. Sj + T ⊆ Int (S) for each j ∈ {1, ..., m}.

Then E (Λ) is a Riesz sequence in L2 (S).

3. Proof of Theorem 1.12

Proof of Theorem 1.12. We have to prove that the sampling operator S : (E, ‖ ‖) → (lp (Λ) , ‖ ‖p) is a
topological isomorphism over its image. By the assumption 2) we have that S is injective.

In one hand, observe that
lp (Λ) = ⊕m

j=1lp (Λj)

is a topological direct sum. In particular lp (Λj) is a closed vector subspace of lp (Λ) for each j ∈ {1, ..., m}.
On the other hand, since E is a quasi-Banach space and E1, ..., Em ⊆ E are closed vector subspaces

of E, then the algebraic direct sum E = ⊕m
j=1Ej is, in fact, a topological direct sum.

The result is an immediate consequence of both Banach Homorphism Theorem and the fact consisting
that the finite topological direct sum of complete vector subspaces, these are, the images of the sampling
operators

Sj := S|Ej
: (Ej , ‖ ‖) → (lp (Λj) , ‖ ‖p) →֒ (lp (Λ) , ‖ ‖p) , j ∈ {1, ..., m} ,

is complete.
Indeed, S is continuous because both E = ⊕m

j=1Ej is a topological direct sum and by assumption 1)
the sampling operators Sj , j ∈ {1, ..., m}, are continuous. By Banach Homorphism Theorem we have
only to prove that S(E) is closed in lp (Λ).

Let j ∈ {1, ..., m}. Again, by assumption 1) and since Ej is complete we obtain that Sj (Ej) is
complete in lp (Λj), and consequently Sj (Ej) is closed in lp (Λj). As lp (Λj) is closed in lp (Λ), then
S (Ej) = Sj (Ej) is closed in lp (Λ), and hence S (Ej) ⊆ lp (Λ) is complete.

So that S(E) = S
(
⊕m

j=1Ej

)
= ⊕m

j=1S (Ej) ⊆ lp (Λ) is a direct topological sum of complete subspaces
of lp (Λ), and therefore S(E) is complete. By Banach Homorphism Theorem we finally conclude that Λ
is a p-SS for E. �
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4. Application to Paley-Wiener spaces

We establish some notation. Given a Lebesgue measurable set K ⊆ Rn, we denote by mn(K) its
Lebesgue measure and by K its closure. Given a function f ∈ L1 (Rn), we define the Fourier transform
of f by

f̂(ξ) =

∫

Rn

f(x)e−ix·ξ dx for all ξ ∈ R
n.

Definition 4.1 (Paley-Wiener spaces). Let A ⊆ Rn be a Lebesgue measurable and bounded set and
p ∈ (0, +∞]. We define

Ep
A := {f ∈ S

′(Rn) : supp(f̂) ⊆ A and ‖f‖p < ∞}.

It is a closed vector subspace of (Lp (Rn) , ‖ ‖p), and it is called (p, A)-Paley-Wiener space.
When p = 2, the Hilbert space E2

A is called classical Paley-Wiener space of spectrum contained in A.
The Fourier transform F :

(
E2

A, ‖ ‖2

)
→

(
L2(A), ‖ ‖2

)
, is an isometrical and topological isomorphism.

When p = ∞ we define BA := (E∞
A , ‖ ‖∞), which is called (classical) Bernstein space of spectrum

contained in A.

It is well known that, if Λ ⊆ Rn is u.d., then Λ verifies the P.P.C. for Ep
S for all p ∈ (0, +∞] and all

compact S ⊆ Rn (see Plancherel-Polya theorem, [4], p. 101).

Lemma 4.2. Let n ∈ Z+, p ∈ (0, +∞], and S ⊆ Rn be a compact set with positive measure. Let m ∈ Z+,
m ≥ 2, and S1, ..., Sm ⊆ S be compact sets with positive measure such that {S1, ..., Sm} is a partition of
S. Suppose that the characteristic function of S, χS : Rn → R, is a Fourier multiplier for FLp. Also
assume that χSj

is a Fourier multiplier for FLp for every j ∈ {1, ..., m − 1}.
Then χSm

is a Fourier multiplier for FLp, and the algebraic direct sum

Ep
S = ⊕m

j=1Ep
Sj

is topological.

Proof. As

χS =

m∑

j=1

χSj
,

then χSm
= χS −

∑m−1
j=1 χSj

, and consequently χSm
is a Fourier multiplier for FLp. Now we will prove

that the algebraic direct sum Ep
S = ⊕m

j=1Ep
Sj

is topological.
Consider the projection in the i-th component

Pi : Ep
S = ⊕m

j=1Ep
Sj

→ Ep
Si

,

for every i ∈ {1, ..., m}. We will show that all these projections are continuous, finishing the proof.
Indeed, let F ∈ Ep

S . Define f := F̂ . Then supp (f) ⊆ S, what is equivalent to

f = f · χS .

Since {S1, ..., Sm} is a partition of S, then χS =
∑m

j=1 χSj
. Therefore

f = f · χS =

m∑

j=1

f · χSj
.

Let j ∈ {1, ..., m − 1}. Obviously supp
(

f · χSj

)
⊆ Sj . As by one of our hypotheses χSj

is a Fourier

multiplier for FLp, then there exists Gj ∈ Lp (Rn) such that fj := Ĝj = f · χSj
. Thus Gj ∈ Ep

Sj
.
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In addition, since χSj
is a Fourier multiplier for FLp, then there exists a constant Cj, p = C (p, Sj) > 0

independent of f (and of F ) verifying that

‖Gj‖p ≤ Cj, p ‖F‖p.

On the other hand

F̂ = f =

m∑

i=1

f · χSi
=

m∑

i=1

Ĝi =

m̂∑

i=1

Gi = Ĝ,

where we have defined G :=
∑m

i=1 Gi ∈ Lp (Rn).
As Gi ∈ Ep

Si
⊆ Ep

S for each i ∈ {1, ..., m}, then we obtain that G ∈ Ep
S .

Hence, F, G ∈ Ep
S and F̂ = Ĝ. This implies that

F = G =
m∑

i=1

Gi,

and we know that Gi ∈ Ep
Si

⊆ Ep
S for each i ∈ {1, ..., m}.

Conclusion: The projection in the j-th component,

Pj : Ep
S = ⊕m

i=1Ep
Si

→ Ep
Sj

,

is continuous. �

The following result is a immediate consequence of both Theorem 1.12 and Lemma 4.2 for Paley-
Wiener spaces.

Corollary 4.3. Let n ∈ Z+, p ∈ (0, +∞], and S ⊆ Rn be a compact set with positive measure. Let
m ∈ Z+, m ≥ 2, and S1, ..., Sm ⊆ S be compact sets with positive measure such that {S1, ..., Sm} is a
partition of S. Suppose that the characteristic function of S, χS : Rn → R, is a Fourier multiplier for FLp.
Also assume that χSj

is a Fourier multiplier for FLp for every j ∈ {1, ..., m − 1}. Let Λ1, ..., Λm ⊆ Rn

be u.d. and disjoint two by two. Define Λ :=
⋃m

j=1 Λj. Assume that

1. Λj is a p-SS for Ep
Sj

for every j ∈ {1, ..., m}.

2. Λ is a uniqueness set for Ep
S.

Then Λ is a p-SS for Ep
S.

Notice that since Λ is u.d., then, by the Plancherel-Polya theorem, Λ verifies the p-P.P.C., and
consequently the version of Corollary 4.3 for every countable set of disjoint two by two u.d. sets Λj ’s and
every countable partition Sj ’s of a given bounded and Lebesgue measurable set S with positive measure,
whose indicator functions are Fourier multipliers for FLp, is true.

In order to apply Corollary 4.3 to the Hilbert spaces L2 (S), we need the next well known result.

Lemma 4.4. Let S ⊆ Rn be a bounded and Lebesgue measurable set, and Λ ⊆ Rn be uniformly discrete.
For each λ ∈ Λ consider the function φλ : Rn → C defined by

x 7→ φλ(x) :=

{
0, if x /∈ S

eiλx, if x ∈ S
.

We also define the set E (Λ) := {φλ}λ∈Λ ⊆ L2(S). Then:

1. (F (λ) = 0 for all λ ∈ Λ) ⇔ F̂ ∈ E (−Λ)⊥ .

2. E (Λ) is total in L2(S) if and only if E (−Λ) is total in L2(S) (see Definition 5.1 and Remark 5.2).

3. Λ is a US for E2
S if and only if E (Λ) is total in L2 (S).
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The key step in Lemma 4.4 (namely in the second and third items) is that the space L2 (S) is closed
by conjugation.

As particular case of Corollary 4.3, also using Theorem 1.1 and the third item of Lemma 4.4, we have
the following result for frames in spaces L2(S).

Corollary 4.5. Let n ∈ Z+, and S ⊆ Rn be a compact set with positive measure. Let m ∈ Z+, m ≥ 2,
and S1, ..., Sm ⊆ S be compact subsets with positive measure such that {S1, ..., Sm} is a partition of S.
Let Λ1, ..., Λm ⊆ Rn be u.d. and disjoint two by two. We define Λ :=

⋃m
j=1 Λj.

For every λ ∈ Λ consider the function φλ : Rn → C defined by

x 7→ φλ(x) :=

{
0, if x /∈ S

eiλx, if x ∈ S
.

We also define the set E (Λ) := {φλ}λ∈Λ ⊆ L2(S), and also analogously the set of restrictions

E (Λj) :=
{

φλ|Sj

}
λ∈Λj

⊆ L2 (Sj) for each j ∈ {1, ..., m} .

Suppose that

1. E (Λj) is a frame for L2 (Sj) for every j ∈ {1, ..., m}.

2. E (Λ) is a total set for L2 (S), that is,

Span (E (Λ)) = L2 (S) .

Then E (Λ) is a frame for L2 (S).

5. Application of Sampling and Interpolation Theory in order to obtain product

generator systems

Definition 5.1. Let (E, ‖ ‖) be a quasinormed space, and let S ⊆ E. We say that S is a total set in
(E, ‖ ‖), or also that S is a generator system of (E, ‖ ‖), if Span (S) = E.

Remark 5.2. Remind that given a Hilbert space E and a subset S ⊆ E, the following statements are
equivalent:

1. S is a total set in E.

2. S⊥ = {0}.

Lemma 5.3. Let f : (E, ‖ ‖E) → (F, ‖ ‖F ) be a topological isomorphism of quasinormed spaces. Let
C ⊆ F , S ⊆ E be, and suppose that f(S) ⊇ C. If C is a total set in (F, ‖ ‖F ), then S is a total set in
(E, ‖ ‖E).

Proof. Assume that C is total in (F, ‖ ‖F ). Let us prove that S is total in (E, ‖ ‖E).
As C is total in F , then, by definition, we have:

Span (C)
‖ ‖F

= F.

On the other hand, as f is a topological isomorphism, then f is a homeomorphism. Hence

F ⊇ f
(

Span (S)
‖ ‖E

)
= f (Span (C))

‖ ‖F

=

= Span (f (S))
‖ ‖F

⊇ Span (C)
‖ ‖F

= F.

Thus

f
(

Span (S)
‖ ‖E

)
= F.
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That is, the restriction f |
Span(S)

‖ ‖E : Span (S)
‖ ‖E

→ F is surjective, and consequently it is bijective.

Since f is bijective, then

Span (S)
‖ ‖E

= E.

Conclusion: S is total in (E, ‖ ‖E). �

Corollary 5.4. Let (E, ‖ ‖) be a quasi-Banach space, and let S ⊆ E, p ∈ (0, +∞), and Λ ⊆ Rn be u.d.
For every λ ∈ Λ we define

eλ := (δλ µ)
µ∈Λ ∈ lp (Λ) ,

where δ is the Kronecker’s delta. Suppose that there exists a topological isomorphism f : (E, ‖ ‖) →
(lp(Λ), ‖ ‖p) such that

eλ ∈ f(S) for each λ ∈ Λ.

Then S is total in E.

Proof. This result is an immediate consequence of Lemma 5.3 because both C := {eλ : λ ∈ Λ} is a total
set in (lp(Λ), ‖ ‖p), and f(S) ⊇ C by hypothesis. �

Theorem 5.5. Let Ω ⊆ Rn, Int(Ω) 6= ∅, and let (E, ‖ ‖) be a quasi-Banach space with E ⊆ F (Ω, C).
Let Λ, Γ ⊆ Ω be u.d. such that Λ ⊆ Γ. Let p ∈ [1, +∞), and let q ∈ (1, +∞] be the conjugate exponent
of p (this is, 1

p
+ 1

q
= 1). Let r ∈ (0, +∞]. Consider

lr (Λ) :=
{

(aγ)
γ∈Γ ∈ lr (Γ) | aγ = 0 for all γ ∈ Γ \ Λ

}
⊆ lr (Γ)

is a closed vector subspace of the quasi-Banach space (lr(Γ), ‖ ‖r). Suppose that Γ is an 1-SCIS for E.
Let E1, E2 ⊆ E be non empty sets such that E1 · E2 ⊆ E. Suppose that S (E1) ⊆ lp (Λ), S (E2) ⊆ lq (Λ),
and that Λ is both a p-IS for E1 and a q-IS for E2. Then Λ is an 1-SIS for F := Span (E1 · E2) ⊆ E.

Proof. Let r ∈ (0, +∞]. For every γ ∈ Γ we define

eγ := (δλ µ)
µ∈Γ ∈ lr (Γ) ,

where δ is the Kronecker’s delta. It is obvious that

eλ = (δλ µ)
µ∈Γ ∈ lr (Λ) for all λ ∈ Λ.

Now consider the set C := {eλ : λ ∈ Λ} ⊆ l1 (Λ), which is a total set in l1(Λ); that is:

Span (C)
‖ ‖1

= l1 (Λ) .

Since Γ is an 1-SCIS for E, then the sampling operator

S : (E, ‖ ‖) →
(
l1(Γ), ‖ ‖1

)
,

given by f → S(f) := (f(γ))γ∈Γ, is a topological isomorphism. In one hand we have that

S (E1 · E2) ⊆ S (E1) · S (E2) = lp (Λ) · lq (Λ) ⊆ l1 (Λ) ,

where the last equality is due to Λ is both a p-IS for E1 and a q-IS for E2, and the inclusion is consequence
of Hölder inequality.

On the other hand we have that

eλ = eλ · eλ ∈ lp (Λ) · lq (Λ) ⊆ l1 (Λ) for each λ ∈ Λ.

This is:
C ⊆ lp (Λ) · lq (Λ) ⊆ l1 (Λ) .



12 José Alfonso López Nicolás

Therefore
Span (C) ⊆ Span (lp (Λ) · lq (Λ)) ⊆ l1 (Λ) ,

and consequently

l1 (Λ) = Span (C)
‖ ‖1

⊆ Span (lp (Λ) · lq (Λ))
‖ ‖1

⊆ l1 (Λ) .

So that

Span (lp (Λ) · lq (Λ))
‖ ‖1

= l1 (Λ) .

Since the sampling operator S is an homeomorphism, we obtain:

S(F ) = S
(

Span (E1 · E2)
‖ ‖1

)
= S (Span (E1 · E2))

‖ ‖1

= Span (S (E1 · E2))
‖ ‖1

=

= Span (lp (Λ) · lq (Λ))
‖ ‖1

= l1 (Λ) .

So that the restriction S|F : (F, ‖‖) →
(
l1(Λ), ‖ ‖1

)
, defined by f → (f(λ))λ∈Λ, is well defined, continuous

and surjective.
As (F, ‖ ‖) and

(
l1(Λ), ‖ ‖1

)
are complete, then Λ is an 1-SIS for

F = Span (E1 · E2),

by the Banach open mapping theorem. �

Remark 5.6. Notice that in the proof of Theorem 5.5 we have proved that

Span (lp (Λ) · lq (Λ))
‖ ‖1

= l1 (Λ) ,

this is, lp (Λ) · lq (Λ) is total in
(
l1(Λ), ‖ ‖1

)
.

Corollary 5.7. Let Ω ⊆ Rn, Int(Ω) 6= ∅, and let (E, ‖ ‖) be a quasi-Banach space with E ⊆ F (Ω, C).
Let Λ ⊆ Ω be u.d. Let p ∈ [1, +∞), and let q ∈ (1, +∞] be the conjugate exponent of p. Assume that Λ is
a p-SCIS for E. Let E1, E2 ⊆ E be non empty sets such that E1 · E2 ⊆ E. Suppose that S (E1) ⊆ lp (Λ),
S (E2) ⊆ lq (Λ), and that Λ is both a p-IS for E1 and a q-IS for E2. Then

E = Span (E1 · E2).

Proof. This result is an immediate consequence of Theorem 5.5 taking Γ := Λ. Indeed, the mappings
S : E → l1 (Λ) and S|F : F → l1 (Λ) are bijective, where F := Span (E1 · E2). Thus E = F , this is,
E1 · E2 is total in E. �

Theorem 5.8. Let Ω ⊆ Rn, Int(Ω) 6= ∅, and let (E, ‖ ‖) be a quasi-Banach space with E ⊆ F (Ω, C).
Let Λ, Γ ⊆ Ω be u.d. such that Λ ⊆ Γ. Let m ∈ Z+, r1, ..., rm ∈ (0, +∞], with r1 finite. Let s ∈ (0, +∞].
Consider

ls (Λ) :=
{

(aγ)
γ∈Γ ∈ ls (Γ) | aγ = 0 for all γ ∈ Γ \ Λ

}
⊆ ls (Γ) ,

which is a closed vector subspace of the quasi-Banach space (ls(Γ), ‖ ‖s). Assume that Γ is a r1-SCIS for
E. Let E1, ..., Em ⊆ E be non empty sets such that A := E1 · ... · Em ⊆ E. Suppose that Λ is a rj-IS for

Ej for every j ∈ {1, ..., m}. Then Λ is a r1-SIS for F := Span (A) ⊆ E.

Proof. As Γ is a r1-SCIS for E, then the sampling operator

S : (E, ‖ ‖) → (lr1(Γ), ‖ ‖r1
) ,

given by f → S(f) := (f(γ))γ∈Γ, is a topological isomorphism.
It is clear that lrj (Λ) ⊆ l∞(Λ) for every j ∈ {1, ..., m}. Thus

S(A) = S (E1 · ... · Em) = S (E1) · ... · S (Em) =

= lr1(Λ) · ... · lrm(Λ) ⊆ lr1(Λ),
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where we have used that Λ is a rj-IS for Ej for every j ∈ {1, ..., m}.
For each γ ∈ Γ we define

eγ := (δγ µ)
µ∈Γ ∈

⋂

s∈(0, +∞]

ls (Γ) .

It is clear that
eλ := (δλ µ)

µ∈Γ ∈
⋂

s∈(0, +∞]

ls (Λ) for all λ ∈ Λ.

In fact we know that the set C := {eλ}λ∈Λ ⊆ lr1(Λ) is total in (lr1(Λ), ‖ ‖r1
), as r1 is finite. That is

Span (A)
‖ ‖

r1 = lr1(Λ).
On the other hand we have that

eλ =

m∏

j=1

eλ ∈
m∏

j=1

lrj (Λ) = S(A) for each λ ∈ Λ.

That is, C ⊆ S(A). Therefore Span (C) ⊆ Span (S (A)) , and consequently

lr1(Λ) = Span (C)
‖ ‖r1 ⊆ Span (S (A))

‖ ‖r1 ⊆ lr1(Λ).

So that

Span (S (A))
‖ ‖

r1 = lr1(Λ).

So that, as S is a homeomorphism, we obtain

S(F ) = S
(

Span (A)
)

= S (Span (A))
‖ ‖

r1 =

= Span (S (A))
‖ ‖

r1 = lr1(Λ).

Hence S(F ) = lr1(Λ), that is, the restriction S|F : (F, ‖ ‖) → (lr1(Λ), ‖ ‖r1
), defined by f → (f(λ))λ∈Λ,

is well defined, continuous and surjective.
As the quasinormed spaces (F, ‖‖) and (lr1(Λ), ‖ ‖r1

) are complete, then Λ is a r1-SIS for F = Span (A),
by the Banach open mapping theorem. �

Corollary 5.9. Let Ω ⊆ Rn, Int(Ω) 6= ∅, and let (E, ‖ ‖) be a quasi-Banach space with E ⊆ F (Ω, C).
Let Λ ⊆ Ω be u.d. Let m ∈ Z+, r1, ..., rm ∈ (0, +∞], with r1 finite. Assume that Λ is a r1-SCIS for E.
Let E1, ..., Em ⊆ E be non empty sets such that A := E1 · ... · Em ⊆ E. Suppose that Λ is a rj-IS for Ej

for every j ∈ {1, ..., m}. Then E = Span (A).

Proof. It is an immediate consequence of Theorem 5.8 taking Γ := Λ. Indeed, the mappings S : E →
lr1 (Λ) and S|F : F → lr1 (Λ) are bijective, where

F := Span (A).

Thus E = F , this is, A is total in E. �

Finally, we conclude with the following easy but useful result.

Lemma 5.10. Let Ω ⊆ Rn, Int(Ω) 6= ∅, and let (E, ‖ ‖) be a quasinormed space with E ⊆ F (Ω, C). Let
E1, E2 ⊆ E be non empty subsets such that F := E1 · E2 ⊆ E. Let p ∈ (0, +∞], and Λ ⊆ Ω be uniformly
discrete. Suppose that Λ is an ∞-IS for E1 and a p-IS for E2. Then Λ is a p-IS for F .

Proof. Define a := (aλ)λ∈Λ, with aλ := 1 for each λ ∈ Λ. Since a ∈ l∞ (Λ), then

l∞ (Λ) · lp (Λ) = lp (Λ) ,

whereby we obtain the result. �
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