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Best Proximity Point Results for Generalized Proximal Z-Contraction Mappings in

Metric Spaces and Some Applications
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abstract: In this paper, we define generalized proximal Z-contraction mappings of first and second kind
in a metric space (X, d). The existence of best proximity point is shown for the defined mappings under some
specific conditions which generalize and extends some existing results of Olgun et al. [23] and Abbas et al. [1].
Suitable examples are given to justify the derived results. Some applications are also shown via fixed point
formulation for such mappings in variational inequality problems and homotopy result.
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1. Introduction

In the study of nonlinear functional analysis, fixed point theory plays an important role with different
important applications. Fixed point of a self mapping T is a solution of the equation Tx = x on the
domain of T . Banach contraction principle, introduced by Banach in 1922, is one of the fundamental
results in the study of metric fixed point theory [6]. Since then many authors have established different
interesting results related to existence of fixed point for different types of mappings with different appli-
cations [5,11,14,15,16,28,29].
On the other hand, the equation Tx = x is not always solvable, in particular, for the non self mappings.
In that case, finding an x for which d(x, Tx) is minimum becomes significant, which subsequently leads
to a new concept namely, best proximity point. The study of the best proximity point theory has been
an interesting area of research since last few decades [7,12,13,23,27].
The aim of this paper is to establish the existence of best proximity point for generalized proximal Z-
contraction mappings. Our results extend and improve some known results of [1] and [23]. Some applica-
tions are also shown in variational inequality problem and homotopy theory using fixed point formulation.

In 2015, Khojasteh et al. [17] introduced simulation function and employed the same to study fixed
point results for Z-contraction mappings. After this, several prominent researchers [1,3,9,15] have worked
to study fixed point and best proximity point results using simulation function.

Definition 1.1. [17] Let ζ : [0,∞) × [0,∞) −→ R be a function satisfying following conditions:
(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(a, b) < b− a, for all a, b > 0;
(ζ3) if {an}, {bn} are sequences in (0,∞) such that lim

n→∞

an = lim
n→∞

bn > 0, then

lim sup
n→∞

ζ(an, bn) < 0,
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ζ is then called a simulation function. The set of all simulation functions is denoted by τ .

Example 1.2. [15] Let φ : [0,∞) −→ [0,∞) be a continuous function such that φ(a) = 0 if and only if
a = 0. Then ζ1 : [0,∞) × [0,∞) −→ R defined by

ζ1(a, b) = b− φ(b) − a,

for all a, b ∈ [0,∞) is a simulation function.

Example 1.3. [15] Let f, g : [0,∞)2 −→ (0,∞) be two continuous functions such that f(a, b) > g(a, b),
for all a, b > 0. Then ζ2 : [0,∞) × [0,∞) −→ R defined by

ζ2(a, b) = b−
f(a, b)

g(a, b)
a,

for all a, b ∈ [0,∞) is a simulation function.

Using the simulation function approach, the notion of Z-contraction was introduced in [17] which is
a generalization of Banach contraction. It also unified various existing types of contraction mappings.

Definition 1.4. [17] Let X be a metric space. A self mapping T on X is called a Z-contraction if for
some simulation function ζ ∈ τ , T satisfies

ζ(d(Tx, T y), d(x, y)) ≥ 0,

for all x, y ∈ X.

Example 1.5. Consider X = R, with the usual metric d(x, y) = |x−y|, for all x, y ∈ X and T : X −→ X

be defined by

Tx =
x

5
, for all x ∈ X.

If ζ(s, t) = 1
5 t− s, for all s, t ∈ [0,∞), then T is a Z-contraction.

It can be noted that every Z-contraction mapping is contractive and so continuous. This continuity
was relaxed by Olgun et al. in [23] where a generalized Z-contraction mapping was defined which is not
necessarily continuous.

Definition 1.6. [23] For a metric space (X, d), a self mapping T on X is called a generalized Z-
contraction if there exists ζ ∈ τ such that

ζ(d(Tx, T y),M(x, y)) ≥ 0, for all x, y ∈ X,

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, T y),
d(x, T y) + d(y, Tx)

2
}.

Combining Z-contraction and Suzuki type contraction, a new type of mapping was defined by Kumam
et al. [19] as described below.

Definition 1.7. [19] For a metric space (X, d), a self mapping T on X is called a Suzuki type Z-
contraction if for some simulation function ζ ∈ τ , T satisfies

1

2
d(x, Tx) < d(x, y) implies ζ(d(Tx, T y), d(x, y)) ≥ 0,

for all x, y ∈ X.
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Example 1.8. Consider X = {2, 6, 10, 14} with the usual metric d(x, y) = |x − y|, for all x, y ∈ X. A
mapping T : X −→ X be defined by

T (2) = T (6) = T (10) = 2 and T (14) = 6.

If ζ(s, t) = 4
5 t− s, for all s, t ∈ [0,∞), then T is a Suzuki type Z-contraction, but not Z-contraction.

Padcharoen et al. [24] introduced generalized Suzuki type Z-contraction as follows.

Definition 1.9. [24] For a metric space (X, d), a self mapping T on X is called generalized Suzuki type
Z-contraction if there exists ζ ∈ τ such that

1

2
d(x, Tx) < d(x, y) implies ζ(d(Tx, T y),M(x, y)) ≥ 0,

for all x, y ∈ X, where

M(x, y) = max{d(x, y), d(x, Tx), d(y, T y),
d(x, T y) + d(y, Tx)

2
}.

Example 1.10. For X = {0, 2, 4, 6, 8} with the usual metric d(x, y) = |x − y|, for all x, y ∈ X and let
T : X −→ X be defined by

T (0) = T (2) = T (4) = 0 and T (6) = T (8) = 2.

If ζ(s, t) = 1
2 t− s for all s, t ∈ [0,∞), then T is a generalized Suzuki type Z-contraction.

Remark 1.11. It is evident that all Suzuki type Z-contraction is generalized Suzuki type Z-contraction
for M(x, y) = d(x, y).

In [1], Abbas et al. introduced the concept of proximal simulative contraction of first kind and second
kind.

Definition 1.12. [1] For two non empty subsets A and B of a metric space (X, d), a mapping T : A −→ B

is said to be proximal simulative contraction of first kind if there exists a simulation function ζ ∈ τ such
that

d(x1, T y1) = d(A,B) = d(x2, T y2) implies

ζ(d(x1, x2), d(y1, y2)) ≥ 0, for all x1, x2, y1, y2 ∈ A.

Definition 1.13. [1] For two non empty subsets A and B of a metric space (X, d), a mapping T : A −→ B

is said to be proximal simulative contraction of second kind if there exists a simulation function ζ ∈ τ

such that
d(x1, T y1) = d(A,B) = d(x2, T y2) implies

ζ(d(Tx1, Tx2), d(Ty1, T y2)) ≥ 0, for all x1, x2, y1, y2 ∈ A.

2. Main results

Following the works of Olgun et al. [23] and Abbas et al. [1], we introduce generalized proximal
Z-contraction of first kind and second kind as follows:

Definition 2.1. For two non empty subsets A and B of a metric space (X, d), a mapping T : A −→ B

is said to be a generalized proximal Z-contraction of first kind if there exists a simulation function ζ ∈ τ

such that d(x1, T y1) = d(x2, T y2) = d(A,B) implies

ζ(d(x1, x2),M(y1, y2, x1, x2)) ≥ 0, for all x1, x2, y1, y2 ∈ A,

where

M(y1, y2, x1, x2) = max{d(y1, y2), d(y1, x1), d(y2, x2),
d(y1, x2) + d(y2, x1)

2
}.

Here τ denotes the set of all simulation functions.
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Remark 2.2. For A = B = X, the above mapping reduces to generalized Z-contraction. Again, for
M(y1, y2, x1, x2) = d(y1, y2), it reduces to proximal simulative contraction of first kind. It can be noted
here that a generalized proximal Z-contraction of first kind is not necessarily continuous.

Example 2.3. Consider two subsets A = {3, 4, 5, 6} and B = {3.5, 8, 9} of the metric space X = R with
the usual metric d(x, y) = |x− y|, for all x, y ∈ X. The mapping T : A −→ B defined by

T (5) = T (6) = 3.5 and T (4) = T (3) = 8

is a generalized proximal Z-contraction of first kind with ζ(s, t) = 3
4 t− s, for all s, t ∈ [0,∞). However,

T is not a proximal simulative contraction of first kind.

Definition 2.4. Let A and B be two non empty subsets in a metric space (X, d). A mapping T : A −→ B

is said to be a generalized proximal Z-contraction of second kind if there exists a simulation function ζ ∈ τ

such that d(x1, T y1) = d(x2, T y2) = d(A,B) implies

ζ(d(Tx1, Tx2),M(Ty1, T y2, Tx1, Tx2)) ≥ 0, for all x1, x2, y1, y2 ∈ A,

where

M(Ty1, T y2, Tx1, Tx2) = max{d(Ty1, T y2), d(Ty1, Tx1), d(Ty2, Tx2),

d(Ty1, Tx2) + d(Ty2, Tx1)

2
}.

Example 2.5. For X = R2 with the usual metric d((x1, x2), (y1, y2)) =
√

(x1 − y1)2 + (x2 − y2)2, for all
(x1, x2), (y1, y2) ∈ X, consider A = A1 ∪A2 ∪A3 and B = B1 ∪B2 where A1 = {(x, y) : 0 ≤ x ≤ 1, y = 1},
A2 = {(x, y) : x ≥ 2, y = 2}, A3 = {(x, y) : x ≤ −1, y = 2}, B1 = {(x, y) : 0 ≤ x ≤ 1

2 , y = 1
2 } and

B2 = {(x, y) : x ≥ 2, y = −1}. Define T : A −→ B by

T (x1, x2) =

{

(1
2 ,

1
2 ) : (x1, x2) ∈ A1 ∪A2

(3,−1) : (x1, x2) ∈ A3.

Then T is a generalized proximal Z-contraction of second kind with ζ as defined in Example 1.2.

In the next discussion, we derive some results on the existence of best proximity point for the above
two types of mappings. By the following two Lemmas, we show that the best proximity point (if exists)
is unique for each type of mappings.

Lemma 2.6. For two non empty subsets A and B of a metric space (X, d), let T : A −→ B be a
generalized proximal Z-contraction of first kind. Then the best proximity point of T is unique, provided
it exists.

Proof. Suppose x ∈ A be a best proximity point of T . If possible, let y(6= x) ∈ A be another best
proximity point of T .

Since, d(x, Tx) = d(A,B) and d(y, T y) = d(A,B), so, by Definition 2.1,

0 ≤ ζ(d(x, y),M(x, y, x, y)). (2.1)

Now, d(x, y) > 0 and M(x, y, x, y) > 0.
From the condition (ζ2) of Definition 1.1, we get,

ζ(d(x, y),M(x, y, x, y)) < M(x, y, x, y) − d(x, y). (2.2)

From (2.1) and (2.2)

M(x, y, x, y) − d(x, y) > 0

i.e.,M(x, y, x, y) > d(x, y)

i.e.,M(x, y, x, y) = d(x, y) < d(x, y),

which is a contradiction. Hence, the best proximity point of T is unique. �
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Lemma 2.7. For two non empty subsets A and B of a metric space (X, d), let T : A −→ B be a
generalized proximal Z-contraction of second kind. Then the best proximity point of T is unique, provided
it exists.

Proof. The result can be obtained in the same way as the previous lemma. �

In [23], Olgun et al. derived fixed point result for generalized Z-contraction mappings.

Theorem 2.8. [23] Let (X, d) be a complete metric space and T : X −→ X be a generalized Z-
contraction. Then T is a Picard operator.

Extending this result for generalized proximal Z-contraction mapping of first kind, we establish an
existence result of the best proximity point. The followings terminologies (refer to [4]) will be used in
the results:.
Let A and B be two non empty subsets of a metric space (X, d). Define

A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},

B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

Theorem 2.9. Let A and B be two non empty subsets of a complete metric space (X, d). Suppose
T : A −→ B be a generalized proximal Z-contraction of first kind with T (A0) ⊆ B0, where A0, B0 are
non empty and A0 is closed. Then T has a unique best proximity point in A0, and for any fixed x0 ∈ A0,
the sequence {xn} with d(xn, Txn−1) = d(A,B), for all n ∈ N, converges to the best proximity point.

Proof. Suppose x0 ∈ A0. Since, T (A0) ⊆ B0, there exists x1 ∈ A0 such that

d(x1, Tx0) = d(A,B).

Again, since, Tx1 ∈ B0, there exists x2 ∈ A0 such that

d(x2, Tx1) = d(A,B).

Repeating this process, we get a sequence {xn} in A0 such that

d(xn, Txn−1) = d(A,B) = d(xn+1, Txn), for all n ∈ N. (2.3)

If for some n ∈ N, xn = xn−1, then

d(xn, Txn−1) = d(xn, Txn) = d(A,B),

and so, xn is a best proximity point of T .

We assume that d(xn, Txn−1) > 0. As T is a generalized proximal Z-contraction of first kind, there
exists some ζ ∈ τ such that

ζ(d(xn, xn+1),M(xn−1, xn, xn, xn+1)) ≥ 0, for all n ∈ N, (2.4)

where

M(xn−1, xn, xn, xn+1) = max{d(xn, xn−1), d(xn, xn−1), d(xn, xn+1),
d(xn−1, xn+1)

2
}

= max{d(xn, xn−1), d(xn, xn+1)}.

If d(xn, xn−1) < d(xn, xn+1) then M(xn−1, xn, xn, xn+1) = d(xn, xn+1).

Now, from (2.4) using condition (ζ2), we get,

0 ≤ ζ(d(xn, xn+1),M(xn−1, xn, xn, xn+1)) < M(xn−1, xn, xn, xn+1) − d(xn, xn+1) = 0,
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which is a contradiction. Therefore,

d(xn, xn+1) ≤ d(xn, xn−1), for all n ∈ N,

i.e., {d(xn, xn+1)} is a decreasing sequence of positive real numbers and so there exists a real number
r ≥ 0 such that

lim
n→∞

d(xn, xn+1) = r

If r > 0, then condition (ζ3) gives

0 ≤ lim sup
n→∞

ζ(d(xn, xn+1),M(xn−1, xn, xn, xn+1)) < 0,

which is a contradiction. Therefore, r = 0, i.e., lim
n→∞

d(xn, xn+1) = 0.

Now we show that {xn} is a Cauchy sequence. If not, then for given ε > 0, there exist subsequences
{xnl

} and {xml
} of {xn} such that for any nl > ml ≥ l

d(xml
, xnl

) > ε.

Without loss of generality, we can choose nl as the smallest positive integer greater than ml such that
the above inequality holds. Then

d(xml
, xnl−1) ≤ ε, for all l ∈ N.

Now,

ε < d(xml
, xnl

) ≤ d(xml
, xnl−1) + d(xnl−1, xnl

)

≤ ε+ d(xnl−1, xnl
). (2.5)

Taking limit as l → ∞ on both sides of (2.5), we get,

lim
l→∞

d(xml
, xnl

) = ε. (2.6)

Again, from (2.3),
d(xml

, Txml−1) = d(A,B) and d(xnl
, Txnl−1) = d(A,B),

and so,

ζ(d(xml
, xnl

),M(xml−1, xnl−1, xml
, xnl

)) ≥ 0, (2.7)

where

M(xml−1, xnl−1, xml
, xnl

) = max{d(xml−1, xnl−1), d(xml−1, xml
), d(xnl−1, xnl

),

d(xml−1, xnl
) + d(xnl−1, xml

)

2
}.

(2.8)

Therefore,
lim

l→∞

M(xml−1, xnl−1, xml
, xnl

) = ε. (2.9)

Using condition (ζ3), we get,

0 ≤ lim sup
l→∞

{ζ(d(xml
, xnl

),M(xml−1, xnl−1, xml
, xnl

)) < 0,

which is a contradiction.

Therefore, {xn} is a Cauchy sequence in A0. Since, A0 is closed, there exists some x ∈ A0 such that

xn → x as n → ∞.
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Since, Tx ∈ B0, there exists z ∈ A0 such that

d(z, Tx) = d(A,B). (2.10)

Now, we show that d(x, z) = 0. If possible, let d(x, z) > 0.

From (2.3), (2.10) and definition of T we get,

ζ(d(xn+1, z),M(xn, x, xn+1, z)) ≥ 0, (2.11)

where

M(xn, x, xn+1, z) = max{d(x, xn), d(x, z), d(xn+1, xn),
d(xn+1, x) + d(xn, z)

2
}.

So,

lim
n→∞

M(xn, x, xn+1, z) = max{d(x, z),
d(x, z)

2
}

= d(x, z) > 0

and
lim

n→∞

d(xn+1, z) = d(x, z) > 0.

Using condition (ζ3), we get,

0 ≤ lim sup
n→∞

ζ(d(xn+1, z),M(xn, x, xn+1, z)) < 0,

a contradiction. Hence, x = z and therefore d(x, Tx) = d(A,B) i.e., x is a best proximity point of T .
The uniqueness of best proximity point is evident from Lemma 2.6. �

Remark 2.10. Taking A = B = X in the above Theorem, we get Theorem 2 of [23] as a particular case.

Remark 2.11. In Theorem 2.9, the mapping T is not necessarily continuous. Moreover, the sets A and
B are not required to be closed. Thus, for M(y1, y2, x1, x2) = d(y1, y2),(when the mapping T reduces to
proximal simulative contraction of first kind) Theorem 2.9 improves Theorem 1 of [1].

The following example exhibits the contents of Theorem 2.9.

Example 2.12. Consider X = ℓ∞ with metric d defined by

d(x, y) = sup
i∈N

|xi − yi|, for all x = {xi}, y = {yi} ∈ X.

Consider two subsets A and B of X such that A = {e2n−1, n ∈ N} ∪ { 1
3e1} and B = {e2n, n ∈

N} ∪ {e0} ∪ { 1
4e2n, n ∈ N}.

It is evident that d(A,B) = 1
3 , A0 = { 1

3e1} and B0 = {e0} ∪ { 1
4e2n}.

Define T : A −→ B by

T (e2n−1) = e0 and T (
1

3
e1) =

1

4
e2.

Then T is a generalized proximal Z-contraction with ζ(s, t) = 1
2 t− s, for all s, t ∈ [0,∞). It is seen that

T (A0) ⊆ B0. Hence, all the conditions of Theorem 2.9 are satisfied and T has a best proximity point.
Clearly, 1

3e1 is the best proximity point of T .

Corollary 2.13. Let A and B be two non-empty subsets of a complete metric space (X, d). Suppose
T : A −→ B be a mapping with T (A0) ⊆ B0 where A0, B0 are non-empty and A0 is closed subset such
that d(x1, T y1) = d(A,B) = d(x2, T y2) implies

ζ(d(x1, x2),max{d(y1, y2),
d(y1, x1) + d(y2, x2)

2
,
d(y1, x2) + d(y2, x1)

2
}) ≥ 0,

for all x1, x2, y1, y2 ∈ A. Then T has a unique best proximity point.
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In the following, it is shown that similar result as in Theorem 2.9 holds for generalized proximal
Z-contraction of second kind.

Theorem 2.14. Let A and B be two non empty subsets of a complete metric space (X, d). Suppose
T : A −→ B be a generalized proximal Z-contraction of second kind with T (A0) ⊆ B0 where A0 and B0

are non empty and B0 is a closed subset of B. Then T has a unique best proximity point in A0.

Proof. Proceeding similar to Theorem 2.9, and using the condition of generalized proximal Z-contraction
of second kind, we can show that {d(Txn, Txn+1)} is a decreasing sequence and

lim
n→∞

d(Txn, Txn+1) = 0.

Following the technique of Theorem 2.9, it can be shown that {Txn} is a Cauchy sequence in B0 and
so it converges to some y = Tu ∈ B0, where u ∈ A0. Since, Tu ∈ B0, there exists z ∈ A0 such that

d(z, Tu) = d(A,B).

Therefore,
ζ(d(Tz, Txn+1),M(Tu, Txn, T z, Txn+1)) ≥ 0,

where

M(Tu, Txn, T z, Txn+1) = max{d(Tu, Txn), d(Tz, Tu), d(Txn+1, Txn),

d(Txn, T z) + d(Tu, Txn+1)

2
}. (2.12)

Taking limit as n → ∞ on both sides of (2.12), we get,

lim
n→∞

M(Tu, Txn, T z, Txn+1) = d(Tz, Tu).

Also,
lim

n→∞

d(Tz, Txn+1) = d(Tz, Tu).

If d(Tz, Tu) > 0 then using condition (ζ3),

0 ≤ lim sup
n→∞

ζ(d(Tz, Txn+1),M(Tu, Txn, T z, Txn+1)) < 0,

a contradiction. Therefore, d(Tz, Tu) = 0 i.e., Tz = Tu. Hence, z is a best proximity point of T . The
uniqueness of best proximity point of T follows from Lemma 2.7. �

Remark 2.15. Assuming M(Ty1, T y2, Tx1, Tx2) = d(Ty1, T y2) in Theorem 2.14, we get an improve-
ment of Theorem 2 of [1].

In 2015, Su et al [25] established a fixed point result for the self mapping T on a metric space (X, d)
satisfying the conditions:

φ(d(Tx, T y)) ≤ ψ(d(x, y)), for all x, y ∈ X,

where the two mappings φ, ψ : [0,∞) −→ [0,∞) are such that

(1) φ(a) ≤ ψ(b) ⇒ a ≤ b,

(2) an → r, bn → r and φ(an) ≤ ψ(bn) ⇒ r = 0.

Using the above mappings φ and ψ, now we obtain the following version of Theorem 2.9. It is worth
mentioning that this result is obtained in a much simpler way without using the condition (ζ3) of the
Definition 1.1.



Best Proximity Point Results 9

Theorem 2.16. For two non-empty subsets A and B of a complete metric space (X, d), let T : A −→ B

be a mapping with T (A0) ⊆ B0, where A0, B0 are non-empty and A0 is closed in A such that d(x, T y) =
d(A,B) = d(x′, T y′) implies

ζ(φ(d(x, x′)), ψ(M(y, y′, x, x′))) ≥ 0, for all x, x′, y, y′ ∈ A,

where M(y, y′, x, x′) = max{d(y, y′), d(x, y), d(x′, y′), d(x,y′)+d(x′,y)
2 } and ζ is a function satisfying the

conditions (ζ1) and (ζ2) of Definition 1.1.
Then T has a unique best proximity point in A.

Proof. For x0 ∈ A0, we get a sequence {xn} in A0 such that

d(xn, Txn−1) = d(A,B) and d(xn+1, Txn) = d(A,B), for all n ∈ N. (2.13)

From the definition of the mapping T , we get,

ζ(φ(d(xn+1, xn)), ψ(M(xn, xn−1, xn+1, xn))) ≥ 0,

where

M(xn, xn−1, xn+1, xn) = d(xn−1, xn).

Using the condition (1) and (ζ2), it is easy to see that {d(xn+1, xn)} is a decreasing sequence. Therefore
there exists an element r ≥ 0 such that

lim
n→∞

d(xn+1, xn) = r = lim
n→∞

M(xn, xn−1, xn+1, xn).

Since, φ(d(xn+1, xn)) < ψ(M(xn, xn−1, xn+1, xn)), so condition (2) implies that r = 0.

As in Theorem 2.9, it can be shown that {xn} is a Cauchy sequence in A0 and so, it converges to
some x ∈ A0. Since, Tx ∈ B0, there exists z ∈ A0 such that

d(z, Tx) = d(A,B),

and so,

ζ(φ(d(xn+1, z)), ψ(M(xn, x, xn+1, z))) ≥ 0,

where lim
n→∞

M(xn, x, xn+1, z) = d(x, z) and lim
n→∞

d(xn+1, z) = d(x, z).

Therefore, condition (2) and (ζ2) imply that d(x, z) = 0. Hence, d(x, Tx) = d(A,B) i.e., x is a best
proximity of T . The uniqueness of the best proximity point can be easily seen. �

Example 2.17. Consider X = R with the usual metric d(x, y) = |x− y|, for all x, y ∈ X. Let A and B
be two subsets of X such that A = {3, 4, 6} and B = {2, 4.5, 6.5}. Define the mappings T : A −→ B and
φ, ψ : [0,∞) −→ [0,∞) by

T (3) = 2, T (4) = T (6) = 6.5

and

φ(m′) = m′, ψ(m′) =
4

5
m′,m′ ∈ [0,∞).

It is clear that d(A,B) = 0.5, A0 = {4, 6}, B0 = {4.5, 6.5}, T (A0) ⊆ B0 and T satisfies the conditions
of Theorem 2.16 with ζ(s, t) = 2

3 t− s, for all s, t ∈ [0,∞) . Hence, T has a unique best proximity point,
which is clearly 6 here.
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3. Application on variational inequality problem

Let H be a real Hilbert space with inner product 〈., .〉 and ‖.‖ be the corresponding norm on H . Let
Y be a closed and convex subset of H and T be an operator on H . A variational inequality problem is
to find x ∈ Y such that

〈Tx, y − x〉 ≥ 0, for all y ∈ Y .

Variational inequalities are in fact, equivalent to the fixed point problems. There is an extensive study
on the variational inequality theory ( [8], [22]) and it is now an important tool in the study of equilibrium
problems. For the origin of variational inequality, one can refer to the works of Stampacchia [26]. Here
we obtain solution of variational inequality problem via fixed point formulation of our established type of
mappings which reduces to generalized Z-contraction in this case. For this, the following two well known
Lemmas will be used.

Lemma 3.1. [10] Let H be a real Hilbert space and Y be a closed and convex subset of H. For z ∈ H,
x ∈ Y the inequality

〈x − z, y − x〉 ≥ 0, for all y ∈ Y

is satisfied if and only if x = PY z, where PY is the projection of H onto Y .

Lemma 3.2. [10] Let T be an operator on a real Hilbert space H and Y be a closed and convex subset
of H. Then x ∈ Y is a solution of 〈Tx, y − x〉 ≥ 0, for all y ∈ Y if and only if x = PY (x − λTx), with
λ > 0.

Theorem 3.3. Let Y be a closed and convex subset of a real Hilbert space H and T : H −→ H be a
mapping such that T (Y ) ⊆ Y and I −λT is a generalized Z-contraction for some λ > 0 (where I denotes
the identity mapping on H). Then the variational inequality problem

〈Tx, y − x〉 ≥ 0, for all y ∈ Y (3.1)

has a solution in Y .

Proof. We define a mapping f : Y −→ Y such that

fy = y − λTy, for all y ∈ Y.

Since, T (Y ) ⊆ Y , so, fy = PY (I − λT )y, for all y ∈ Y , where PY is the projection of H on Y .
From Lemma 3.2, it is evident that x ∈ Y is a solution of 〈Tx, y − x〉 ≥ 0, for all y ∈ Y if and only if
x = PY (x−λTx) i.e., fx = x. Using the hypothesis of the theorem, f is a generalized Z-contraction and
so, it has a fixed point, say x. Hence x is a solution of (3.1). �

4. Application on homotopy result

The invariance of fixed points for contraction mappings in metric spaces under homotopy has been
an important topic of discussion by several prominent researchers (refer to [2], [20] ). In [9], Butt et al.
derived a homotopy result applying fixed point theorem on ordered metric spaces. Motivated by this,
here we establish a homotopy result considering a particular case of Definition 2.1 with

M(y1, y2, x1, x2) = max{d(y1, x1), d(y2, x2)}.

we call the above type of mappings as generalized proximal Z-contraction of first kind with restricted M .

Theorem 4.1. Let V be an open subset of a complete metric space (X, d) and T : V × [0, 1] −→ X be a
generalized proximal Z-contraction of first kind in first variable with restricted M satisfying the following
conditions:

(i) y 6= T (y, s), for all y ∈ ∂V , s ∈ [0, 1], where ∂V and V denote the boundary of V and closure
of V respectively,
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(ii) there exists a constant L > 0 such that

d(T (y, s), T (y, s′)) ≤ L|s− s′|,

for all y ∈ V and s, s′ ∈ [0, 1],

(iii) there exists a constant α ∈ [0, 1) such that d(y, y′)d(y, T (y, t))d(y′, T (y′, t)) 6= 0 implies that

d(y, T (y′, t)) ≤ αd(y, y′),

for all t ∈ [0, 1].

If T (., 0) has a fixed point then T (., 1) also has a fixed point in V .

Proof. Suppose
A = {s ∈ [0, 1] : y = T (y, s) for some y ∈ V }.

Since, T (., 0) has a fixed point in V , so, A is non-empty.

We show that A is a closed set. Let {sn} ⊆ A be such that sn → s ∈ [0, 1] as n → ∞.
Since, sn ∈ A, so, for each n ∈ N, there exists yn ∈ V such that

yn = T (yn, sn).

Now,

d(ym, yn) = d(T (ym, sm), T (yn, sn))

≤ d(T (ym, sm), T (ym, sn)) + d(T (ym, sn), T (yn, sn))

≤ L|sm − sn| + d(T (ym, sn), T (yn, sn)) ( using condition (ii)) (4.1)

Since, T is a generalized proximal Z-contraction of first kind in first variable with restricted M , so, for
some simulation function ζ ∈ τ ,

ζ(d(T (ym, sn), T (yn, sn)),M(ym, yn, T (ym, sn), T (yn, sn))) ≥ 0

⇒ d(T (ym, sn), T (yn, sn)) < M(ym, yn, T (ym, sn), T (yn, sn)),

(using condition (ζ2) of Definition (1.1)) (4.2)

where

M(ym, yn, T (ym, sn), T (yn, sn)) = max{d(ym, T (ym, sn)), d(yn, T (yn, sn))}

= d(ym, T (ym, sn)).

Therefore,

d(T (yn, sn), T (ym, sn)) < d(ym, T (ym, sn))

⇒ d(T (yn, sn), T (ym, sn)) < L|sm − sn| (using condition (ii) of the theorem) . (4.3)

Using (4.3) in the inequality (4.1), we get,

d(ym, yn) < 2L|sm − sn|

So, {yn} is a Cauchy sequence in X , since, {sn} is a Cauchy sequence in [0, 1]. Therefore, there exists
y ∈ X such that
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yn → y as n → ∞.

Next we show that d(y, T (y, s)) = 0. If possible, let d(y, T (y, s)) > 0.

Now,

0 ≤ ζ(d(T (yn, sn), T (y, s)),M(yn, y, T (yn, sn), T (y, s)))

= ζ(d(yn, T (y, s)),M(yn, y, T (yn, sn), T (y, s))),

where

M(yn, y, T (yn, sn), T (y, s)) = max{d(yn, T (yn, sn)), d(y, T (y, s))}

So, lim
n→∞

M(yn, y, T (yn, sn), T (y, s)) = d(y, T (y, s)) > 0.

Also, lim
n→∞

d(yn, T (y, s)) = d(y, T (y, s)) > 0.

So, condition (ζ3) gives

lim sup
n→∞

{ζ(d(yn, T (y, s)),M(yn, y, T (yn, sn), T (y, s)))} < 0,

which is a contradiction.

Therefore, d(y, T (y, s)) = 0 i.e., y = T (y, s). This shows that s ∈ A. Hence A is a closed set.
Finally, we show that A is also an open set in [0, 1]. Suppose s∗ ∈ A. Then there exists y∗ ∈ V such that
y∗ = T (y∗, s∗). As V is an open subset of X , there exists r > 0 such that the open ball B(y∗, r) ⊆ V .
Consider s ∈ (s∗ − r, s∗ + r) and y′ ∈ B(y∗, r) = {y′ ∈ V : d(y′, y∗) ≤ r}.
Using condition (iii) of the theorem, we have,

d(T (y′, s), y∗) ≤ αd(y′, y∗)

≤ αr.

So, T (y′, s) ∈ B(y∗, r). Thus T : B(y∗, r) × [0, 1] → B(y∗, r) and T (., s) satisfies all the conditions of
Theorem 2.8. So, T (., s) has a fixed point in V . Therefore, (s∗ − r, s∗ + r) ⊆ A and hence A is open set
in [0, 1]. Thus A is open as well as closed set in [0, 1] and so by connectedness of [0,1], A = [0, 1]. Hence
T (., 1) has a fixed point in V . �

5. Conclusion

In this paper, we have defined generalized proximal Z-contraction mappings in metric spaces and
established the existence of best proximity point for such mappings. Significantly, our established results
generalize and improve some existing results in the literature [1,23].In addition, we have discussed vari-
ational inequality problem and homotopy result applying our main theorem via fixed point formulation.
The obtained results may also be applicable in solving matrix equations through best proximity point via
fixed point formulation in line with the work done by Zhenhua et al. [21]. To deal with mixed equilibrium
problem applying our results is another scope for future discussion.
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