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multimixed quadratic-cubic mapping can be multi-quadratic, multi-cubic and multiquadratic-cubic. Further,
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1. Introduction

The stability problem for functional equations, which Ulam [30] proposed for group homomorphisms,
has been answered and explored for multiple variable mappings in recent decades. We recall that a
functional equation Γ is said to be stable if any function f satisfying the equation Γ approximately must
be near to an exact solution. Moreover, Γ is called hyperstable if any function f satisfying the equation
Γ approximately (in some senses) is actually a solution for it; for some stability results in one variable
mappings and functional equations see for instance the papers and books [13], [19], [24], [26], [29] and
references therein.

We now state some basic notions and developments about the structure and the stability of several
variables mappings. Let V be a commutative group, W be a linear space, and n ≥ 2 be an integer. A
mapping f : V n −→ W is called

• multi-additive if it is additive (satisfies Cauchy’s functional equation A(x + y) = A(x) + A(y)) in
each variable.

• multi-quadratic if it fulfills the quadratic functional equation

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y) (1.1)

in each variable [11]. A lot of information about the structure of multi-additive mappings and their Ulam
stabilities are available in [10], [12] and [20, Sections 13.4 and 17.2]. C.-G. Park was the first author who
studied the stability of multi-quadratic in the setting of Banach algebras in [22]. After that, Ciepliński
[11] studied the generalized Hyers-Ulam stability of multi-quadratic mappings in Banach spaces. Zhao
et al. [32] described the structure of multi-quadratic mappings and in fact showed that a mapping
f : V n −→ W is multi-quadratic if and only if the equation

∑

s∈{−1,1}n

f(x1 + sx2) = 2n
∑

j1,j2,...,jn∈{1,2}

f(x1j1 , x2j2 , . . . , xnjn
) (1.2)

holds, where xj = (x1j , x2j , . . . , xnj) ∈ V n with j ∈ {1, 2}. Various versions of multi-quadratic mappings
and their stability can be found in [7] and [28]. For the structure of multi-additive-quadratic, we refer
to [1].
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Ghaemi et al. [15] introduced the multi-cubic mappings and then for a special case of such mappings
have been studied in [8]. In fact, a mapping f : V n −→ W is called multi-cubic if it is cubic in each
variable, i.e., satisfies the equation

C(2x+ y) + C(2x− y) = 2C(x+ y) + 2C(x− y) + 12C(x) (1.3)

in each variable [17]. In [8], the authors unified the system of functional equations defining a multi-cubic
mapping to a single equation, namely, the multi-cubic functional equation. Furthermore, the general
system of cubic functional equations which is defined in [15], characterized as a single equation in [14].
Other forms of cubic functional equations for instance are available in [3] and [23]. In [8], it is shown
that every multi-cubic functional equation is stable and moreover such functional equations under some
conditions can be hyperstable; for the miscellaneous versions of multi-cubic mappings and their stabilities
in non-Archimedean normed and modular spaces, we refer to [14] and [21], respectively.

Chang and Jung [9] introduced the following mixed type quadratic and cubic functional equation

6f(x+ y) − 6f(x− y) + 4f(3y) = 3f(x+ 2y) − 3f(x− 2y) + 9f(2y). (1.4)

They established the general solution of the functional equation (1.4) and investigated the Hyers-Ulam
stability of this equation; for a different form of mixed type quadratic-cubic functional equation, one can
see [18].

The following mixed type quadratic-cubic functional was considered in [27] which is somewhat different
from (1.4) as follows:

f(x+ 2y) − f(x− 2y) = 2[f(x+ y) − f(x− y)] + 3f(2y) − 12f(y). (1.5)

It is easily verified that the function f(x) = ax2 + bx3 is a solution of equations (1.4) and (1.5). Recently,
the first author and Mitrović [6] have studied the structure of multimixed quadratic-cubic mappings
and established ε−stability (Hyers’ stability) of such mappings in Banach spaces setting by applying an
alternative fixed point method.

Motivated by equation (1.5), in this paper, we define multimixed quadratic-cubic mappings and
present a characterization of such mappings. In other words, we reduce the system of n equations defining
the multimixed quadratic-cubic mappings to obtain a single functional equation. We also show that
under some mild conditions, every multimixed quadratic-cubic mapping can be multi-quadratic, multi-
cubic and multiquadratic-cubic. We also prove the generalized Hyers-Ulam stability and hyperstabilty
for multimixed quadratic-cubic functional equations in quasi-β-normed spaces.

2. Characterization of the multimixed quadratic-cubic mappings

Throughout this paper, N, Z and Q are the set of all positive integers, integers and rational numbers,
respectively, N0 := N ∪ {0},R+ := [0,∞). For any l ∈ N0, n ∈ N, t = (t1, . . . , tn) ∈ {−1, 1}n and
x = (x1, . . . , xn) ∈ V n we write lx := (lx1, . . . , lxn) and tx := (t1x1, . . . , tnxn), where lx stands, as usual,
for the scaler product of l on x in the commutative group (V,+).

Let V and W be linear spaces, n ∈ N and k ∈ {0, . . . , n}. Put

n := {1, . . . , n}. (2.1)

Each subset of n with m elements is denoted by (m)n. Recall from [5] that a mapping f : V n −→ W

is called k-quadratic and n− k-cubic (briefly, multiquadratic-cubic) if f satisfies the following functional
equations system.







































f(v1, . . . , vi−1, vi + v′
i, vi+1, . . . , vn) + f(v1, . . . , vi−1, vi − v′

i, vi+1, . . . , vn)

= 2f(v1, . . . , vn) + 2f(v1, . . . , v
′
i, . . . , vn), i ∈ (k)n,

f(v1, . . . , vi−1, 2vi + v′
i, vi+1, . . . , vn) + f(v1, . . . , vi−1, 2vi − v′

i, vi+1, . . . , vn)

= 2f(v1, . . . , vi−1, vi + v′
i, vi+1, . . . , vn) + 2f(v1, . . . , vi−1, vi − v′

i, vi+1, . . . , vn)

+12f(v1, . . . , vn), i ∈ (n− k)n.
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Note that we can suppose for simplicity that f is quadratic in each of the first k variables, but one can
obtain analogous results without this assumption. Let us note that for k = n (k = 0), the above definition
leads to the so-called multi-quadratic (multi-cubic) mappings; some basic facts on such mappings can be
found for instance in [8] and [32].

Definition 2.1. Let V and W be vector spaces over Q, n ∈ N. A several variables mapping f : V n −→ W

is called n-mixed quadratic-cubic or briefly multimixed quadratic-cubic if f fulfills (1.5) in each of its n

arguments, that is

f(v1, . . . , vi−1, vi + 2v′
i, vi+1, . . . , vn) − f(v1, . . . , vi−1, vi − 2v′

i, vi+1, . . . , vn)

− 3f(v1, . . . , vi−1, 2v
′
i, vi+1, . . . , vn)

= 2[f(v1, . . . , vi−1, vi + v′
i, vi+1, . . . , vn) − f(v1, . . . , vi−1, vi − v′

i, vi+1, . . . , vn)]

− 12f(v1, . . . , vi−1, v
′
i, vi+1, . . . , vn).

Let n ∈ N with n ≥ 2 and xn
i = (xi1, xi2, . . . , xin) ∈ V n, where i ∈ {1, 2}. We will write xn

i simply xi

when no confusion can arise. For x1, x2 ∈ V n, set

M
n = {Mn = (M1, . . . ,Mn)| Mj ∈ {x1j ± 2x2j , 2x2j}} ,

and
N

n = {Nn = (N1, . . . , Nn)| Nj ∈ {x1j ± x2j , x2j}} ,

for all j ∈ {1, . . . , n}. For pi, qi ∈ N0 with 0 ≤ pi, qi ≤ n, consider the subsets Mn
(q1,q2) and Nn

(p1,p2) of
Mn and Nn, respectively, as follows:

M
n
(q1,q2) := {Mn ∈ M

n| Card{Mj : Mj = x1j − 2x2j} = q1,Card{Mj : Mj = x2j} = q2} ,

N
n
(p1,p2) := {Nn ∈ N

n| Card{Nj : Nj = x1j − x2j} = p1,Card{Nj : Nj = x2j} = p2} .

Hereafter, for a multimixed quadratic-cubic mappings f , we use the following notations:

f
(

M
n
(q1,q2)

)

:=
∑

Mn∈Mn
(q1,q2)

f (Mn) , (2.2)

f
(

M
n
(q1,q2), z

)

:=
∑

Mn∈Mn
(q1 ,q2)

f(Mn, z) (z ∈ V ),

f
(

N
n
(p1,p2)

)

:=
∑

Nn∈Nn
(p1,p2)

f (Nn) , (2.3)

and
f

(

N
n
(p1,p2), z

)

:=
∑

Nn∈Nn
(p1,p2)

f (Nn, z) (z ∈ V ).

For each x1, x2 ∈ V n, we consider the equation

n
∑

q1=0

n−q1
∑

q2=0

(−1)q1(−3)q2f
(

M
n
(q1,q2)

)

=
n

∑

p1=0

n−p1
∑

p2=0

2n−p1−p2 (−2)p1 (−12)p2f
(

N
n
(p1,p2)

)

, (2.4)

where f
(

Mn
(q1,q2)

)

and f
(

Nn
(p1,p2)

)

are defined in (2.2) and (2.3), respectively.

We recall that the binomial coefficient for all n, r ∈ N0 with n ≥ r is defined and denoted by
(

n

r

)

:= n!
r!(n−r)! .
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Definition 2.2. Let r ∈ N. We say the mapping f : V n −→ W

(i) satisfies (has) the r-power condition in the jth variable if

f(z1, . . . , zj−1, 2zj, zj+1, . . . , zn) = 2rf(z1, · · · , zj−1, zj, zj+1, . . . , zn),

for all z1, . . . , zn ∈ V n. In particular, 2-power and 3-power conditions are called quadratic and

cubic condition, respectively.

(ii) has zero condition if f(x) = 0 for any x ∈ V n with at least one component which is equal to zero.

(iii) is odd in the jth variable if

f(z1, . . . , zj−1,−zj, zj+1, . . . , zn) = −f(z1, . . . , zj−1, zj , zj+1, . . . , zn).

(iv) is even in the jth variable if

f(z1, . . . , zj−1,−zj, zj+1, . . . , zn) = f(z1, . . . , zj−1, zj, zj+1, . . . , zn).

Here, we bring an elementary lemma from [4].

Lemma 2.3. Let n, k, pl ∈ N0, such that k +
∑m

l=1 pl ≤ n, where l ∈ {1, . . . ,m}. Then

(

n− k

n− k −
∑m

l=1 pl

) ( ∑m

l=1 pl
∑m−1

l=1 pl

)

· · ·

(

p1 + p2

p1

)

=

(

n− k

p1

) (

n− k − p1

p2

)

· · ·

(

n− k −
∑m−1

l=1 pl

pm

)

.

Consider n as in (2.1). For a subset T = {j1, . . . , ji} of n with 1 ≤ j1 < · · · < ji ≤ n and
x = (x1, . . . , xn) ∈ V n,

Tx := (0, . . . , 0, xj1 , 0, . . . , 0, xji
, 0, . . . , 0) ∈ V n

denotes the vector which coincides with x in exactly those components, which are indexed by the elements
of T and whose other components are set equal zero. Note that 0x = 0, nx = x. We use these notations
in the proof of upcoming lemma.

Next, we reduce the system of n equations defining the multimixed quadratic-cubic mapping in ob-
taining the single functional equation (2.4). For doing this, we need the next lemma.

Lemma 2.4. If a mapping f : V n −→ W satisfies equation (2.4), then it has zero condition.

Proof. We argue by induction on k that f(kx) = 0, when 0 ≤ k ≤ n− 1. Putting x1 = x2 =0x in (2.4),
we have

[

n
∑

q1=0

n−q1
∑

q2=0

(

n

n− q1 − q2

) (

q1 + q2

q2

)

(−1)q1(−3)q2

]

f(0x)

=

[

n
∑

p1=0

n−p1
∑

p2=0

(

n

n− p1 − p2

) (

p1 + p2

p2

)

2n−p1−p2 (−2)p1(−12)p2

]

f(0x). (2.5)

Here we compute the the left side of (2.5). Using Lemma 2.3 for k = 0, we have

n
∑

q1=0

n−q1
∑

q2=0

(

n

n− q1 − q2

) (

q1 + q2

q2

)

(−1)q1(−3)q2

=

n
∑

q1=0

(

n

q1

)

(−1)q1

n−q1
∑

q2=0

(

n− q1

q2

)

1n−q1−q2 (−3)q2

=

n
∑

q1=0

(

n

q1

)

(−1)q1 (−2)n−q1 = (−1 − 2)n = (−3)n. (2.6)
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Similarly, one can show from Lemma 2.3 that

n
∑

p1=0

n−p1
∑

p2=0

(

n

n− p1 − p2

) (

p1 + p2

p2

)

2n−p1−p2 (−2)p1(−12)p2 = (−12)n. (2.7)

It follows from relations (2.5), (2.6) and (2.7) that f(0x) = 0. Assume that f(k−1x) = 0 for any
k ∈ {1, . . . , n − 1}. We show that f(kx) = 0. Without loss of generality, we assume that the first k
variables are non-zero. By our assumption, replacing (x1, x2) by (kx1, 0) in equation (2.4), we have

[

n−k
∑

q1=0

n−k−q1
∑

q2=0

(

n− k

n− k − q1 − q2

) (

q1 + q2

q2

)

(−1)q1 (−3)q2

]

f(kx)

=

[

n−k
∑

p1=0

n−k−p1
∑

p2=0

(

n− k

n− k − p1 − p2

) (

p1 + p2

p2

)

2n−k−p1−p2 (−2)p1 (−12)p2

]

f(kx).

Similar the above and by using lemma 2.3, we can obtain (−3)n−kf(kx) = (−12)n−kf(kx), and this
implies that f(kx) = 0. This finishes the proof. �

In the upcoming results which are our aim in this section, we unify the general system of quadratic-
cubic functional equations defining a multimixed quadratic-cubic mapping to an equation and indeed this
functional equation describe a multimixed quadratic-cubic mapping.

Proposition 2.5. If a mapping f : V n −→ W is multimixed quadratic-cubic, then it satisfies equation

(2.4).

Proof. We proceed the proof by induction on n, and in fact we show that equation (2.4) is valid for f .
Clearly, f satisfies equation (1.5) and this guarantees the assertion for n = 1. If (2.4) holds for some
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positive integer n > 1, then

n+1
∑

q1=0

n+1−q1
∑

q2=0

(−1)q1 (−3)q2f
(

M
n+1
(q1,q2)

)

=

n
∑

q1=0

n−q1
∑

q2=0

(−1)q1 (−3)q2f
(

M
n
(q1,q2), x1,n+1 + 2x2,n+1

)

−

n
∑

q1=0

n−q1
∑

q2=0

(−1)q1 (−3)q2f
(

M
n
(q1,q2), x1,n+1 − 2x2,n+1

)

− 3

n
∑

q1=0

n−q1
∑

q2=0

(−1)q1 (−3)q2f
(

M
n
(q1,q2), 2x2,n+1

)

=

n
∑

p1=0

n−p1
∑

p2=0

2n−p1−p2(−2)p1 (−12)p2f
(

N
n
(p1,p2), x1,n+1 + 2x2,n+1

)

−

n
∑

p1=0

n−p1
∑

p2=0

2n−p1−p2 (−2)p1 (−12)p2f
(

N
n
(p1,p2), x1,n+1 − 2x2,n+1

)

− 3
n

∑

p1=0

n−p1
∑

p2=0

2n−p1−p2(−2)p1 (−12)p2f
(

N
n
(p1,p2), 2x2,n+1

)

= 2

n
∑

p1=0

n−p1
∑

p2=0

2n−p1−p2 (−2)p1(−12)p2f
(

N
n
(p1,p2), x1,n+1 + x2,n+1

)

− 2

n
∑

p1=0

n−p1
∑

p2=0

2n−p1−p2(−2)p1 (−12)p2f
(

N
n
(p1,p2), x1,n+1 − x2,n+1

)

− 12

n
∑

p1=0

n−p1
∑

p2=0

2n−p1−p2 (−2)p1(−12)p2f
(

N
n
(p1,p2), x2,n+1

)

=

n+1
∑

p1=0

n+1−p1
∑

p2=0

2n+1−p1−p2(−2)p1 (−12)p2f
(

N
n+1
(p1,p2)

)

.

This means that (2.4) holds for n+ 1. �

It follows from Proposition 2.5 and by a mathematical computation that the mapping f(z1, . . . , zn) =
∏n

j=1(αjz
2
j +βjz

3
j ) satisfies (2.4) and so this equation is said to be multimixed quadratic-cubic functional

equation.
It is shown in [5, Proposition 2.1] that if a mapping f : V n −→ W is k-quadratic and n − k-cubic

(multiquadratic-cubic) mapping, then f satisfies equation

∑

s∈{−1,1}k

∑

t∈{−1,1}n−k

f
(

xk
1 + sxk

2 , 2x
n−k
1 + txn−k

2

)

= 2k

n−k
∑

m=0

2n−k−m12m
∑

i∈{1,2}

f
(

xk
i ,M

n−k
m

)

, (2.8)

for all xk
i = (xi1, . . . , xik) ∈ V k and xn−k

i = (xi,k+1 . . . , xin) ∈ V n−k where i ∈ {1, 2} in which

f
(

xk
i ,M

n−k
m

)

:=
∑

Nn∈M
n−k
m

f
(

xk
i ,Nn

)

,

whereas
Mn−k = {Nn = (Nk+1, . . . , Nn)| Nj ∈ {x1j ± x2j , x1j}}

and
Mn−k

m :=
{

Nn = (Nk+1, . . . , Nn) ∈ Mn−k| Card{Nj : Nj = x1j} = m
}

.

Note that in the the case k = n and k = 0, equation (2.8) converts to (1.2) and

∑

t∈{−1,1}n

f (2xn
1 + txn

2 ) =

n
∑

m=0

2n−m12mf (Mn
m) , (2.9)
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respectively. In addition, it is proved in [32, Theorem 2] (resp., [8, Proposition 2.2]) that if the mapping
f : V n −→ W is multi-quadratic (resp. multi-cubic), then it satisfies the equation (1.2) (resp., (2.9)).

Proposition 2.6. Suppose that a mapping f : V n −→ W satisfies equation (2.4). Under one of the

following conditions, it is multimixed quadratic-cubic.

(i) f is even in each variable and satisfies the quadratic condition for all variables;

(ii) f is odd in each variable and satisfies the cubic condition for all variables.

Proof. (i) Let j ∈ {1, . . . , n} be arbitrary and fixed. Set

f∗
j (z) : = f (z1, . . . , zj−1, z, zj+1, . . . , zn) .

Putting x1k = 0 for all k ∈ {1, . . . , n}\{j}, x1j = z and x2 = (z1, . . . , zj−1, w, zj+1, . . . , zn) in (2.4), using
Lemma 2.4, we get

(−3)n−1[f(2z1, . . . , 2zj−1, z + 2w, 2zj+1, . . . , 2zn)

− f(2z1, . . . , 2zj−1, z − 2w, 2zj+1, . . . , 2zn) − 3f(2z1, . . . , 2zj−1, 2w, 2zj+1, . . . , 2zn)]

= (−12)n−1[2f∗
j (z + w) − 2f∗

j (z − w) − 12f∗
j (w)]. (2.10)

Our assumption (2.10) converts to

22(n−1)(−3)n−1[f∗
j (z + 2w) − f∗

j (z − 2w) − 3f∗
j (2w)]

= (−12)n−1[2f∗
j (z + w) − 2f∗

j (z − w) − 12f∗
j (w)],

and so

f∗
j (z + 2w) − f∗

j (z − 2w) − 3f∗
j (2w) = 2f∗

j (z + w) − 2f∗
j (z − w) − 12f∗

j (w). (2.11)

This finishes the proof of part (i).
(ii) Similar to the proof of part (i), Putting x1k = 0 for all k ∈ {1, . . . , n}\{j}, x1j = z and x2 =

(z1, . . . , zj−1, w, zj+1, . . . , zn) in (2.4), using our assumptions and Lemma 2.4, we obtain the left side of
(2.4) as follows:

[

n−1
∑

q2=0

(

n− 1
q2

)

23(n−1−q2)(−3)q2 2n−1−q223q2

]

(f∗
j (z + 2w) − f∗

j (z − 2w))

+

[

n
∑

q2=1

(

n− 1
q2 − 1

)

23(n−1)(−3)q2 2n−q2

]

f∗
j (w)

= 23(n−1)(−1)n−1(f∗
j (z + 2w) − f∗

j (z − 2w)) − 3 × 23(n−1)(−1)n−1f∗
j (2w). (2.12)

On the other hand, the right side of (2.4) will be
[

n−1
∑

p2=0

(

n− 1
p2

)

2n−1−p2(−12)p22n−p2

]

(f∗
j (z + w) − f∗

j (z − w))

+

[

n
∑

p2=1

(

n− 1
p2 − 1

)

2n−p2 (−12)p22n−p2

]

f∗
j (w)

= 2

[

n−1
∑

p2=0

(

n− 1
p2

)

4n−1−p2(−12)p2

]

(f∗
j (z + w) − f∗

j (z − w))

− 12

[

n
∑

p2=0

(

n− 1
p2

)

4n−1−p2(−12)p2

]

f∗
j (w)

= 2(−8)n−1[f∗
j (z + w) − f∗

j (z − w)] − 12(−8)n−1f∗
j (w). (2.13)

Comparing (2.12) and (2.13), we achieve (2.11). �
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Corollary 2.7. Suppose that a mapping f : V n −→ W satisfies equation (2.4).

(i) If f is even in each variable and satisfies the quadratic condition in all variables, then it is multi-

quadratic. Moreover, f satisfies equation (1.2);

(ii) If f is odd in each variable and satisfies the cubic condition in all variables, then it is multi-cubic.

In addition, equation (2.9) is valid for f ;

(iii) If f is even in each of some k variables with the quadratic condition and is odd in each of the other

variables with the cubic condition, then it is multiquadratic-cubic. In particular, f satisfies equation

(2.8).

Proof. (i) It is shown in Proposition 2.6 that for each j, f∗
j satisfies (1.5). Putting z = w = 0 in (2.11),

we have f∗
j (0) = 0. Letting z = 0 in (2.11), we get by the evenness of f∗

j that f∗
j (2w) = 4f∗

j (w) for all
w ∈ V . The last equality converts (2.11) to

f∗
j (z + 2w) − f∗

j (z − 2w) = 2[f∗
j (z + w) − f∗

j (z − w)], (2.14)

for all z, w ∈ V . It is seen that (2.14) is the same relation (2.2) from [9]. Repeating the proof of Lemma
2.1 of [9], one can find (1.1) for f∗

j .
(ii) Putting z = 0 in (2.11) and using the oddness of f∗

j , we have f∗
j (2w) = 8f∗

j (w) for all w ∈ V .
Applying the last equality in (2.11), we arrive at

f∗
j (z + 2w) − f∗

j (z − 2w) = 2[f∗
j (z + w) − f∗

j (z − w)] + 12f∗
j (w), (2.15)

for all z, w ∈ V . Replacing (z, w) by (w, z) in (2.15), we obtain

f∗
j (2z + w) + f∗

j (2z − w) = 2[f∗
j (z + w) + f∗

j (z − w)] + 12f∗
j (z),

for all z, w ∈ V . This completes the proof.
(iii) The result follows from the previous parts. �

3. Stability of the multimixed quadratic-cubic functional equations

We first recall some basic facts concerning quasi-β-normed space.

Definition 3.1. Let β be a fixed real number with 0 < β < 1, and K denote either R or C. Let X be a

linear space over K. A quasi-β-norm is a real valued function on X fulfilling the following conditions

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0;

(2) ‖tx‖ = |t|β |‖x‖ for all x ∈ X and t ∈ K;

(3) There is a constant K ≥ 1 such that ‖x+ y‖ ≤ K(‖x‖ + ‖y‖) for all x, y ∈ X.

When β = 1, the norm above is a quasinorm. Recall that K is the modulus of concavity of the norm
‖ · ‖. Moreover, if ‖ · ‖ is a quasi-β-norm on X , the pair (X, ‖ · ‖) is said to be a quasi-β-normed space.
A quasi-β-Banach space is a complete quasi-β-normed space. A quasi-β-norm ‖ · ‖ is called a (β, p)-norm
(0 < p ≤ 1) if ‖x+ y‖p ≤ ‖x‖p + ‖y‖p, for all x, y ∈ X . In this case, a quasi-β-Banach space is called a
(β, p)-Banach space.

Given a p-norm, the formula d(x, y) := ‖x− y‖p gives us a translation invariant metric on X . By the
Aoki-Rolewicz Theorem [25], each quasi-norm is equivalent to some p-norm; see also [2]. Since it is much
easier to work with p-norms, here and subsequently, we restrict our attention mainly to p-norms. In this
section, by using an idea of Găvruţa [16], we prove the stability of (2.4) in quasi-β-normed spaces. Here,
we need the following fundamental lemma which is a main tool to achieve our goal in this section taken
from [31, Lemma 3.1].
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Lemma 3.2. Let j ∈ {−1, 1} be fixed, a, s ∈ N with a ≥ 2. Suppose that X is a linear space, Y is a

(β, p)-Banach space with (β, p)-norm ‖ · ‖Y . If ψ : X −→ [0,∞) is a function such that there exists an

L < 1 with ψ(ajx) < Lajsβψ(x) for all x ∈ X and f : X −→ Y is a mapping satisfying

‖f(ax) − asf(x)‖Y ≤ ψ(x),

for all x ∈ X, then there exists a uniquely determined mapping F : X −→ Y such that F (ax) = asF (x)
and

‖f(x) − F (x)‖Y ≤
1

asβ |1 − Lj|
ψ(x),

for all x ∈ X. Moreover, F (x) = liml→∞
f(ajlx)

ajls for all x ∈ X.

From now on, for a mapping f : V n −→ W , we consider the difference operator Dqcf : V n×V n −→ W

by

Dqcf(x1, x2) :=

n
∑

q1=0

n−q1
∑

q2=0

(−1)q1 (−3)q2f
(

M
n
(q1,q2)

)

−

n
∑

p1=0

n−p1
∑

p2=0

2n−p1−p2(−2)p1 (−12)p2f
(

N
n
(p1,p2)

)

,

where f
(

Mn
(q1,q2)

)

and f
(

Nn
(p1,p2)

)

are defined in (2.2) and (2.3), respectively. In the sequel, we assume

that all mappings f : V n −→ W satisfy (have) zero condition.

Theorem 3.3. Let j ∈ {−1, 1} be fixed, V be a linear space and W be a (β, p)-Banach space with

(β, p)-norm ‖ · ‖W and ϕ : V n × V n −→ R+ be a function such that there exists an 0 < L < 1 with

ϕ(2jx1, 2
jx2) ≤ 2(3n−k)jβLϕ(x1, x2) for all x1, x2 ∈ V n. Suppose that f : V n −→ W is an even mapping

in each of some k variables and is odd in each of the other variables and moreover fulfilling the inequality

‖Dqcf(x1, x2)‖W ≤ ϕ(x1, x2), (3.1)

for all x1, x2 ∈ V n. Then, there exists a unique solution F : V n −→ W of (2.4) such that

‖f(x) − F(x)‖W ≤
1

|1 − Lj|

1

3kβ × 2(3n−k)β
ϕ(0, x), (3.2)

for all x ∈ V n.

Proof. Without loss of generality, we assume that f is even in the k first of variables. Replacing (x1, x2)
by (0, x1) in (3.1) and using the assumptions, we have

∥

∥

∥
(−3)k

Tf(2x) − (−12)k
Sf(x)

∥

∥

∥

W
≤ ϕ(0, x), (3.3)

for all x = x1 ∈ V n, in which

T =

n−k
∑

q2=0

(

n− k

n− k − q2

)

(−3)q2 2n−k−q2 = (−3 + 2)n−k = (−1)n−k

and

S =

n−k
∑

p2=0

(

n− k

n− k − p2

)

2n−k−p2 2n−k−p2(−12)p2 = (4 − 12)n−k = (−8)n−k.

A computational shows that inequality (3.3) is converted to
∥

∥

∥
(−3)k(−1)n−kf(2x) − (−12)

k
(−8)n−kf(x)

∥

∥

∥

W
≤ ϕ(0, x),
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for all x ∈ V n, and so

∥

∥f(2x) − 23n−kf(x)
∥

∥

W
≤

1

3kβ
ϕ(0, x),

for all x ∈ V n. By Lemma 3.2, there exists a unique mapping F : V n −→ W such that F(2x) = 23n−kF(x)
and

‖f(x) − F(x)‖W ≤
1

|1 − Lj|

1

3kβ × 2(3n−k)β
ϕ(0, x),

for all x ∈ V n. It remains to show that F satisfies (2.4). Here, we note from Lemma 3.2 that for all

x ∈ V n, F(x) = liml→∞
f(2jlx)

2(3n−k)jl . Now, by (3.1), we have

∥

∥

∥

∥

Dqcf(2jlx1, 2
jlx2)

2(3n−k)jl

∥

∥

∥

∥

W

≤ 2−(3n−k)jlβϕ(2jlx1, 2
jlx2)

≤ 2−(3n−k)jlβ(2(3n−k)jβL)lϕ(x1, x2) = Llϕ(x1, x2),

for all x1, x2 ∈ V n and l ∈ N. Letting l → ∞ in the above inequality, we observe that DqcF(x1, x2) = 0
for all x1, x2 ∈ V n. This means that F satisfies (2.4). �

We now have the next stability result for functional equation (2.4) in the special case of Theorem 3.3
when f is either an even or odd mapping in each of variable.

Theorem 3.4. Let j ∈ {−1, 1} be fixed, V be a linear space and W be a (β, p)-Banach space with

(β, p)-norm ‖ · ‖W . Suppose that f : V n −→ W is a mapping such that

‖Dqcf(x1, x2)‖W ≤ ϕ(x1, x2),

for all x1, x2 ∈ V n, where ϕ is as in Theorem 3.3.

(i) If f is even in each variable and there exists an 0 < L < 1 with ϕ(2jx1, 2
jx2) ≤ 4njβLϕ(x1, x2) for

all x1, x2 ∈ V n, then there exists a unique solution Q : V n −→ W of (2.4) such that

‖f(x) − Q(x)‖W ≤
1

|1 − Lj|

1

12nβ
ϕ(0, x)

for all x ∈ V n. In particular, if Q is even and has the quadratic condition in each variable, then it

is multi-quadratic;

(ii) If f is odd in each variable and there exists an 0 < L < 1 with ϕ(2jx1, 2
jx2) ≤ 8njβLϕ(x1, x2) for

all x1, x2 ∈ V n, then there exists a unique solution C : V n −→ W of (2.4) such that

‖f(x) − C(x)‖ ≤
1

|1 − Lj |

1

8nβ
ϕ(0, x)

for all x ∈ V n. In particular, if C is odd and has the cubic condition in each variable, then it is

multi-cubic.

Proof. The results follow from Theorem 3.3 and Corollary 2.7. �

The following corollary is a direct consequence of Theorem 3.4 concerning the stability of (2.4) when
the norm of Dqcf(x1, x2) is controlled by sum of variables norms of x1 and x2 with positive powers.

Corollary 3.5. Given the positive numbers θ and λ. Let V be a quasi-α-normed space with quasi-α-norm

‖ · ‖V , and W be a (β, p)-Banach space with (β, p)-norm ‖ · ‖W .
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(i) If λ 6= 2nβ
α

and f : V n −→ W is an even mapping in each variable fulfilling the inequality

‖Dqcf(x1, x2)‖W ≤ θ

2
∑

k=1

n
∑

j=1

‖xkj‖λ
V ,

for all x1, x2 ∈ V n, then there exists a unique solution Q : V n −→ W of (2.4) such that

‖f(x) − Q(x)‖W ≤















θ
3nβ(4nβ−2αλ)

∑n

j=1 ‖x1j‖λ
V λ ∈

(

0, 2nβ

α

)

,

2αλθ
12nβ(2αλ−4nβ)

∑n

j=1 ‖x1j‖λ
V λ ∈

(

2nβ

α
,∞

)

,

for all x = x1 ∈ V n. Moreover, if Q is even and has the quadratic condition in each variable, then

it is multi-quadratic;

(ii) If λ 6= 3nβ

α
and f : V n −→ W is an odd mapping in each variable fulfilling the inequality

‖Dqcf(x1, x2)‖W ≤ θ

2
∑

k=1

n
∑

j=1

‖xkj‖λ
V ,

for all x1, x2 ∈ V n, then there exists a unique solution C : V n −→ W of (2.4) such that such that

‖f(x) − C(x)‖W ≤















θ
(8nβ−2αλ)

∑n

j=1 ‖x1j‖λ
V λ ∈

(

0, 3nβ

α

)

,

2αλθ
8nβ(2αλ−8nβ)

∑n

j=1 ‖x1j‖λ
V λ ∈

(

3nβ

α
,∞

)

,

for all x = x1 ∈ V n. In particular, if C is odd and has the cubic condition in each variable, then it

is multi-cubic.

Under some conditions the functional equation (2.4) can be hyperstable as follows.

Corollary 3.6. Given the positive number θ and pij > 0 for i ∈ {1, 2}, j ∈ {1, . . . , n}. Let V be a

quasi-α-normed space with quasi-α-norm ‖ · ‖V , and W be a (β, p)-Banach space with (β, p)-norm ‖ · ‖W .

(i) If
∑2

i=1

∑n

j=1 pij 6= 2nβ

α
and f : V n −→ W is an even mapping and has the quadratic condition in

each variable fulfilling the inequality

‖Dqcf(x1, x2)‖W ≤ θ

2
∏

i=1

n
∏

j=1

‖xij‖
pij

V ,

for all x1, x2 ∈ V n, then it is multi-quadratic;

(ii) If
∑2

i=1

∑n

j=1 pij 6= 3nβ

α
and f : V n −→ W is an odd mapping and has the cubic condition in each

variable fulfilling the inequality

‖Dqcf(x1, x2)‖W ≤ θ

2
∏

i=1

n
∏

j=1

‖xij‖
pij

V ,

for all x1, x2 ∈ V n, then it is multi-cubic.
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