Bol. Soc. Paran. Mat. (3s.) v. 2024 (42) : 1-11.
©SPM ~ISSN-2175-1188 ON LINE ISSN-0037-8712 IN PRESS
SPM: www.spm.uem.br/bspm d0i:10.5269/bspm.65621

Wavelet Frames in Sobolev Space Over Locally compact Abelian Group

M. M. Dixit, C. P. Pandey*, Pratima Devi

ABSTRACT: In this paper we construct wavelet frames for continuous and discrete wavelets on Sobolev
space over abelian group. A necessary condition and sufficient conditions for wavelet frames in Sobolev space
over Locally Compact Abelian Group are given. Moreover some important properties of continuous wavelet
transform and corresponding wavelet Frames have been discussed.
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1. Introduction

Most of the space that we are interested in end up bring topological groups. In this section we define
the terms topology and group so that we can work with them. We introduce the Haar measure, which is
a translation-invariant measure.

A set S becomes a Group [4] if an operator, say +, can be defined such that

e x+(y+2)=(+y)+2V xyz€eSs

e There exist an element 0, such that t +0=04+z=xVx € S

o For each x € S there 3 an inverse element 2! = 2 such that z + (—2) = (—z) + 2 = 0.

In addition, S is a commutative group if it is also true that
r+y=y+zVayec S Given a set S, a Topology T is a set of subsets on S that

e contains S and the empty set ¢
o Is closed under finite intersections and infinite unions of subsets. x

S ia a topological group if it has a group operation and a topology such that the maps a: G x G — G
are continuous, where a(x,y) = z +y and 8(z) =z~ L.

If S is locally compact, that is, every point in S is contained in a compact neighborhood, and its
group operation is commutative, then we call it a Locally Compact Abelian (LCA) Group.
Given a topological space X, we define the Borel set as a set of subset of X such that:

o contains all subsets of the topology on X
e Is closed under complements, countable unions, and countable intersections of subsets

o Is the smallest set of subsets that meets these condition.
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A measure p an X is a function on the Borel sets where
WE)=> u(E;) it EC X and E = U;c1 E; where E; is a countable pairwise disjoint set.
e u(E) is finite for all E C X where the closure of E is compact.

A measure p is regular if for all Borel sets E, we have

w(E) =infg>p p(K) = suprcp p(K).
o is invariant if p(x + E) = p(E) Vo € .

Let M (X)) be the space of all complex-valued regular measures on X where || u ||=| ©(S) | is finite.

A haar measure [15] is a measure which is non-negative,regular and invariant. In fact, Haar mea-
sure are unique up to a scalar, so we can call it the Haar measure. That is if m — 1 and msy are both
non-negative, regular, translation invariant measures on S, then there exists A > 0 such that m; = ms.
The corresponding integral is called the Haar Integral, which is translation invariant. That is, integrals
over a set F and = 4+ E are equivalent.

Given a LCA group [20] G, we define an LP(G) space to be the space of all complex valued func-
tions f on G such that the integral [ | f [P du exists with respect to the Haar measure.
L?(G) becomes an algebra under convolution, which is an important characteristic later on.

Definition 1.1. A complex function [21] v on a LCA group G is called a character of G if | v(z) |= 1
for all x € G and if the functional equation v(x + y) = v(x)y(y) for all (x,y) € G is satisfied. The set
of all continuous characters of G form a group T, the dual group of G. Now it is customary to write
(x,v) = v(z) satisfy the following properties:

0,7) = (2,0) =

€, ) (33, _7): (xvr)/)_ :W

z+y,7) = (2,7)(Y,7)

(
(-
(
(@71 +72) = (@, 71) (2, 72)

Definition 1.2. The Fourier Transform of f € L'(G) is denoted by f(7) defined by [4]

_ / (@) (~x,7)dz, (1.1)
G

and the Inverse Fourier Transform is defined by

r) = /Gf('y)(wm)d%w €q (1.2)
Some important properties of the fourier trasform can be proved easily:
| Fllz=@<l f @)
o If f € LY(G), then fis uniformly continuous.
o Parseval formula: If f € L*(G) N L?(G), then || f||L2(G):|| [l

o If the convolution of f and g is defined as

(f * 9)a /fx— (1.3)



WAVELET FRAMES IN SOBOLEV SPACE OVER LOCALLY COMPACT ABELIAN GROUP 3

Definition 1.3. Fork, 0<k<gq,k=ao+ap+...+ae_1p® 1, 0<a;<p, i=0,1,2,3,...,c—1, we
define
v(k) = (a0 + a1e1 + ... + ac,lec,l)pfl(o <k<gq)

Fork=0by+biq+ ...+ a.-1¢°, 0< b; < q, k>0, we set
v(k) = v(bo) +p~ 'w(b1) + ... + pv(bs)

Note that for k,1 > 0, v(k + 1) # v(k) + v(l). However, it is true that for all 7,s > 0, v(rq®) = p~'o(r),
and for r,s > 0,0 <t < ¢,

v(rg® +t) = v(rg®) +v(t) = p~to(r) + v(t).

We denote Xo(n) by x,, (n > 0) and use the notation Ny =0,1,2,3,... and N = 1,2, 3, ... throughout this
paper.

Distributions over LCA Group:

We denote .(G) the space of all finite linear combinations of characteristics functions of ball of G.
The Fourier transform is homeomorphism of .(G) onto .(G). The distribution space of .7 (G) is de-
noted by .7 (G).

o~

The Fourier transform of g € .7 (G) is denoted by f(w) and defined by

flw) = [ f@)(-zw)dsw €6
G
and the Inverse Fourier Transform defined by
f(z) :/ Fw)(@,w)dw,z € G
G

The Fourier Transform and inverse Fourier Transforms of a distributions f € .%'(G) is defined by

(Fo0) = (£,8),(f7,0) = (£,6"), for all o € #(G)
Definition 1.4. Sobolev space over LCA groups

Let s € G, Sobolev space over LCA group [8] denote by H5(G), defined by the space of all f € 7 (G)
such that

ey 1 7@ ds i finite
where f € L*(G),¢ € . We denote I' by the set
D={y:G" = [0,00): 3. Va, 5 € G*y(af) < ¢y [y() +7(8)]}

Moreover, for f € H3(G); its norm || f |us(q) is defined as follows:

11 = [ 7€ | Tl P e

2. A Necessary condition of wavelet frame for H3(G)

Let 1 € H3(G), ¢, ,.(€) = @2p(p~7€ —v(k)) j € Z, k € Ny, where ¢ and p are integers. The function
system %,k(f)(j KyezxNo 2 wavelet frame for H3(G), if there are two constants C, D > 0 such that

Clf WS Do X 1< fidbiu >P< DI f e (2.1)

JEZ keNg

satisfies for all f € H3(G).
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Theorem 2.1. If1;, : j € Z,k € Ng is a wavelet frame for H3(G) with bounds C' and D then
C < (1+~v(&)%* ZjeZ | Y(plw) P< D aew. €G.
Proof: For f € (G) and ¢ € H3(G), we have

Z < f, Yk >H§(G)|2

k=0

=3 [ 10 n(ePr T e~ ek
=Z [ @@ e T e
—Zq / (1 4+ (€2 T (pIE) (w, 7€)

<4 / (1+ 7€) T e)Tw, e}

—Zq / (1+ 25992 Flp )D€ (w, )

=~

< { / (141962 T €)d(E)w E)d
—Zq /{Z/ 1 (7€ + 0(@)2)* T (€ +0())))

x (2, (€ + o(D))D(E +v(1)de} x {(1+7(p79€)%)* FpIE)D(E) x (x,€)}de

Since f € (G) so the Y ;2 contains only finite non-zero terms and (z,v(l)) = 1 for all k,! € Ny, then
we get

S OI< Fn >aso=> ¢ / ( / {Z (1477 (€ +v1))) Fio (€ +v(1))(w,€) X P(€ + v(1)) }dE)
k=0 k=0 G JG

=0

< (147762 Tp1€)(€) (w, €) e

By the convergence theorem of Fourier Series on ©, we get

=

SI< fn >H§<c>|2=/c(1+v<f) ) F(€)D(p7€) {Z (L+7(E+pT0(k)?)* F(E+p T v(k))
k=0
X P(p7€ +v(k)) Hde.

Let A; is the set of regular point of (14 v(€)?)* | @(&Bj{) |2, so for all £ € A;.
ql/ (L4797 [ D7) 7 dE = (1+ (&) | d(p7&o) 17, as 1 = +oc.
E—&o€p!

If A= UJEZ ¢, then [ A [=0.
Suppose that {, € F — A. So for each fixed positive integer M, set

fle) = % for all 1> M,
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where 1), is the characteristic function of &, + .

Then for I € N and j > —M, f(f)f(f +p~Ju(l)) = 0. Since £ and (£ + p~Iv(l)) can not be in &, + P
simultaneously. Now, we have

DN < B >P= )] /5 - 0% (€) | h(p7€) [? dg < D. (2.3)

§>—M k=0 J>—M

Let | = 400 and M — +o00, we have

> 7°(&) | $(7) I°< D. (24)
JEZL
To prove the left hand inequality,
Z Z |< f?z/}j,k >|2: T1+T2a (25)
JEZ keNg

where

T1: Z Z |<f7wjyk >|2andT2: Z Z |<f7wj’k >|2.

§>—M keNg j<—M keN,

By condition of frame, 77 > C' —T5. Since we have already show that Th = >, /(1 + (&) |

b(p~I€y) 2. So, we only need to show that T, — 0 as M — co. Now, using the fact .#' (G) is dence in
H3(G) in (2.2) and Schwaz’s inequality, we have

s 3 [ 4202159 P P dey
j>-Mk=0 YG
X {/G(l + (& +pu(R)D) | GE+pTu(k)) [P D(p7€ + v(k)) |* dE}? .
where = ((147(6)2)~33) and § € .#(G).

Since g € .¥(G), so there exists a characteristic function ¢, _¢ ) of the set {; +P" where r is some
integers. Now g can be written as §(£) = q%,. (£ — &o).If € +p~Iv(k) € & +P7, then | p7v(k) |< ¢,

hence | v(k) |< ¢~"77. Then summation index k is bounded by ¢~"~7. So using this, we get
To<qm [ AT RO P e
PPt

Suppose that £, # 0. For any €> 0, choose J < 0 enough small satisfies the following two inequalities:
e ¢’ <| &, |=q” such that J + p < 0.

o Jypmam (L0772 | D(E) Pde <e.

‘We have
p I +PITT CPIP forall j < J. (2.6)

Since | p~7€, |= ¢/¢” < ¢”¢” and P+ C BT e,
Hence, Ty — 0 as j — —oo. Therefore there exists j such that

T <€

Hence we obtain required result. ]
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3. Sufficient conditions of wavelet frame for [3(G)

To find the sufficient conditions of wavelet frame for H3(G).
We need the following Lemma.

Lemma 3.1. Let f be in &/ (G) and ¢ € H3(G). If
sup{(1 +7(§)%)° Xjez | ¥(p7€) 71 £ € P~H\D} < +oo, then

SN ft S /G L4792 | T P 1+ S 1 B(p¢) 2 de + T,

JEZ k=0 JEZ
where,

7= 3 [ 2@ FOUPD 1+ (6 + 8 0)) TlE +70(D) x Dlp'e + i)l
=1

JEZ
Then iterated series in (3.2) is absolutely convergent.

Proof: Let f € .7(G) so the ;2 in (3.2) contains only finite non-zero terms. Hence,

Z/ (1472 PO TEOLD (L +A(E+p70()) FE+p I 0(1) D€ + v(1))]dE
1=0

JEZ

=>.> / L+ 72 FODEEN L +7(E+pv(0)>) F(E) +p 0P E +v(1))de

JEZ leEN
We claim that,

S S I< St @ l= 3 [ 1T F 0@ |BEO P 0+ + T,

JEZ leN JEL

holds for all f € .#(G),We have

ZZ|<f,wj,k>H§<G>|2—/<1+w<>) s(©) | F©) P D(v7€) 2 de + T,
JEZ IEN
where
=3 > / (1+ 7€) FEOD@ L+ +p0(1)?)* FE+pI0(1) x DEIE +v(D))dE.
JEZ lEN

By using the condition sup{(1 + v(£)?)? ez | Z(p"f) 2: £ e P \D} < +o0
and Levi’s Lemma for integral, we get

=SS 1< £t @l [ 42O 1FO P 12 S 15076 P ds + T
JEZ leN JEZL
Now, we show that series (3.6) is absolutely convergent.

[ T2 | < ZZ/ (1492 FODEE A +7(E+p~7v(0)2)* F€ + 902 D€ +v(1) | d

JEZ leN

(3.2)

SIS [AAONE I FO1 (42 +p0v@))E | Fie+put) | 510+ | @) P

JEZ leN

+ (L + (€ +pT0(1)?)*] | 7€ +v(D)) [P]de.
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|T2|<IZZ/ (L7 [ 7O | A+ (e +p70(1))* [ +p 7o) |

JEZ leN

X (L+y(p7€)%)% | $(€) | de.

(3.8)
Since 'g € (@), there exist a constant J > 0 such that for all |j| > J
F™6)f (e +p7v() =0 (3.9)
On the other hand, for each | j |> J, there exist a constant L such that for all I > L.
f™e+p70(1) =0. (3.10)
Therefore only finite number of terms of the iterated series in (3.8) are non-zero.
| T2 1< ClI(+ () FOll 2 (6) - (3.11)
Hence the T5 is absolutely convergent. The proof is complete. O
Now using above lemma, we establish sufficient condition of frame for H3(G).
Let
Ay = ess sup{(1+7(6))° D | 0(pE) [*: £ e B~ \D}, (3.12)
JEZ
and o
Dy =ess inf{(1+(6%)° D | ¥(p6) [*: £ € B~1\D}. (3.13)
JEZ
We set
By(v(D) = Sup{D_ | hy(v(1),p’) |: € € B~\D}, (3.14)
JEZ
where P
hy(u(D),€) = Y (1+7(€)*) D7 (p=I¢ +v(1)). (3.15)
IS\

Suppose that @ = {1,2,3,4,...¢ — 1} and ¢Ng = {¢k : £ =0,1,2,3,...}.
Theorem 3.2. Suppose 1 € H5(G) such that

pr() = Do — Y [By(v(m)By(—v(m))]E >0,

meqNo+Q

pa() = D1+ Y [By(v(m))By(—v(m))]

meqNo+Q

Then {1\, : j € Z,k € No} is wavelet frame for H5(G) with bounds p, (1) and py()).

=

< +00.

Proposition 3.3. For a given | € N, there exists k € N and unique m € qNg + Q such that | = ¢*m.
Thus we have {v(1) hien = {p*0(m)} (fm)eno x {gNo+Q} - Since the last series in equation (3.2) is absolutely
convergent. Therfore equation (3.2) become

=3 / 1422 FOBEED (1 + 1€+ 002 T(E + 9 I0()

JEZL leN
X P(pT€ + v(l))]de
=Z/(1+7 Y Y DO +AE + 5 um)R) T E +pI u(m)
jer’G kENg megNo+Q

X (pIE + p~tu(m)))de
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/(1+7(£)2)5A(£)[Z ST ST (1 (€ + I um)) (€ + p I u(m)
G keNg megNo+Q jEZ
X p(p? R 4+ p~Fu(m))]de
- /G A+1©OMFFOD S (1 (€ +p 7 0(m)?)EF(E +p(m))

JEZ megNo+Q

S (1A +p0(m))) DR (L + A2 ED(pF(BE + v(m)))]de

keNg

- /G A+ FO S (1€ +p0(m)?) Ehy(v(m), pie)

JEZ meqNo+Q
x (€ + p~Iv(m))]de
DY / (14 9©DFFE) A +7(E +pIv(m)2)EF(E +pv(m))

JEZ megNo+Q
X hy(v(m), p?€§)dE.
We derive further that

|T2|</(1+’y( ©OF S (e +pium))E | FE+pivim) |

JEZ meqNo+Q

% | ho(u(m), p€) [|dé
YD [/ (L4 7€)% | F©) 1 h(v(m), p€) 1

JEZ meqNo+Q

x [/G(l + &+ pu(m)*)E | FE€+pTv(m)) [P] hy(o(m), pI€) | dg]?

< X% [0 17O Plhotem). ) | del
megNo+Q jEZ
< (X [ € 1 F€) Pl ho(—vlm). ) | ]
JEZ

< S / (L +9()?)* | F(&) [ By(v(m))de] | / (1 +7()?)* | F() [P| By(—v(m))de)?

meqNo+Q * ¢ G

=/G(1+7(£)2)S|f(5) Pde Y0 [Bylo(m)By(—v(m))2.

meqNg+Q

Now it follows from equation (3.1) in Lemma 3.1 that

[ a2 1 FO P LA+ 13O P = 3 Bu(etm)dy(—o(m)]¥ g
“ jet meNo+Q (3.16)
<Y > U< b ca ol
JEZ keNg
and
SN < i oS [ A€ 1FO P S0+ 1567 P +
JEZ keNo ¢ Jjez (3.17)

7 [Byw(m))By(—v(m))]? }de.

meqNo+Q
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Taking infimum and suprimum in above two inequality respectively, we get

p2 (D) fllms < Z Z 1< 9,%;k >[2< pl(w)Hg”Hf,(G)- (3.18)

JEZ keN,
The proof of the theorem 3.1 is complete.

Theorem 3.4. Suppose 1 € H5(G) such that

N3(y) = ess infeep-no{(1+7(€)%)° ) | b(p€) |

JEL

— (170 Y 1 D D(pe + 0(1)} > 0,

JEZ leN

(3.19)

Aa(w) = ess supeess no{(1+7(©)* 3 S [ BEIODWE+v(k) [} < +o0.  (3.20)

JEZ keNg

Then {%; s :j € Z,k € No} is a wavelet frame for H3(G) with bounds A3(1) and A4(y)).

Proof: We use Lemma 3.1 to calculate T» in (3.2) for f € .(G) with another way. We first deduce
that

~

EXEDD)Y / 14 9(©2) TEODWE L+ (€ +p 02 F(E +pIu(l))

JEZ leN

X Y(pi€ + v(1))dE |

<33 / 17O P (11102 | D) d e + o(1) | de}?

JEZ lEN

x { / | FE+p770() 2 (L +~(E+pT0(1)2) | (7€) (pI€ +v(1)) | dE}?

Y / 7O P (1412 | S dwie + o)) | de}

JEZ leN
x {/ F©) 1 (+1©D™ | BeIeD (e —v(D) | de}.
Since {v(k) : k € N} = {—v(k) : k € Ny}, we have
| T2 [< ZZ/ | 7€) P L+ 7)) | ¢ v (pi€ —v(D)) | de. (3.21)
JEZ leEN

By Levi Lemma we obtain,

T |</|f 21+ (S | D D€ — (1)) [}de. (3.22)

JEZ lEN

Using equation 3.1, we get
/G(1+7(5)2)3|f()|{1+7 S D00 P-4+ SN | 0 )d (e + oD) [

JEZ JEZ leN
<D IS L >

JEZIeNy
(3.23)
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and
SN I< fvgn < / (L7  F©) PAO+7(9* YD 197 eI +v(1) [yde (3.24)
JEZ1ENy G jez 1eN

Taking infimum in equation (3.23) and supremum in equation (3.24), we obtain that

D) sy € 30 1< oy >P< Bal) e (3.25)
JEZIeNy
hold for all g € #(G). The proof of theorem 3.2 is complete. O
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