Results for Self-Inversive Rational Functions

Idrees Qasim

Abstract

In this paper, we find some relations between maximum modulus of a rational function $r(z)$ satisfying $r(z)=B(z) r(1 / z)$ and the maximum modulus of its derivative. We also find analogue of Cohn's Theorem for rational functions.

Key Words: Rational Functions, Poles, self-inversive, self-reciprocal, Polar Derivative.

Contents

1 Introduction 1
2 Main Results 3
3 Lemmas 4
4 Proofs of the Theorems 4

1. Introduction

Let \mathcal{P}_{n} denote the space of complex polynomials $p(z):=\sum_{j=0}^{n} \alpha_{j} z^{j}$ of degree $n \geq 1$. Let $T:=\{z:|z|=1\}$, $D_{-}:=\{z:|z|<1\}$ and $D_{+}:=\{z:|z|>1\}$. For $z_{j} \in \mathbb{C}$ with $j=1,2, \ldots, n$, we write

$$
\begin{equation*}
w(z)=\prod_{j=1}^{n}\left(z-z_{j}\right) \tag{1.1}
\end{equation*}
$$

and

$$
B(z):=\prod_{j=1}^{n}\left(\frac{1-\overline{z_{j}} z}{z-z_{j}}\right) .
$$

$B(z)$ is known as finite Blaschke product.
Let $p(z)$ be a polynomial of degree at most n with complex variable z. We consider the following space of rational functions

$$
\mathcal{R}_{n}:=\mathcal{R}_{n}\left(z_{1}, z_{2}, \ldots, z_{n}\right):=\left\{\frac{p(z)}{w(z)}\right\} .
$$

Throughout this paper, we shall assume that all the poles $z_{1}, z_{2}, \ldots, z_{n}$ are in D_{+}unless otherwise stated. For the case when all the poles are in D_{-}, we can obtain analogous results with suitable modification of our method.

Definition of conjugate transpose

1. For $p(z):=\sum_{j=0}^{n} \alpha_{j} z^{j}$, the conjugate transpose (reciprocal) p^{*} of p is defined by

$$
p^{*}(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)} .
$$

2010 Mathematics Subject Classification: 30A10, 30C15, 30D15.
Submitted November 15, 2022. Published January 17, 2023
2. For $r(z)=\frac{p(z)}{w(z)} \in \mathcal{R}_{n}$, the conjugate transpose r^{*} of r is defined by

$$
r^{*}(z)=B(z) \overline{\left(\frac{1}{\bar{z}}\right)}=\frac{p^{*}(z)}{w(z)}
$$

3. $p \in \mathcal{P}_{n}$ is said to be self-inversive if $p^{*}(z)=\lambda p(z)$ with $|\lambda|=1$. Similarly, $r \in \mathcal{R}_{n}$ is said to be self-inversive if $r^{*}(z)=\lambda r(z)$ with $|\lambda|=1$. Note that $r(z)$ is self-inversive if and only if $p(z)$ is self inversive.
4. $p \in \mathcal{P}_{n}$ is said to be self-reciprocal if $p(z)=z^{n} p(1 / z)$. Also, $r \in \mathcal{R}_{n}$ is said to be self-reciprocal if $r(z)=B(z) r(1 / z)$.

In 1927, Bernstein [3] proved the following result.
If $p \in \mathcal{P}_{n}$, then

$$
\begin{equation*}
\max _{z \in T}\left|p^{\prime}(z)\right| \leq n \max _{z \in T}|p(z)| \tag{1.2}
\end{equation*}
$$

where the equality holds for polynomials having all zeros at the origin.
In 1969, Malik [5] improved inequality (1.2) and proved the following:

$$
\text { If } p \in \mathcal{P}_{n} \text {, then for } z \in T \quad\left|p^{\prime}(z)\right|+\left|Q^{\prime}(z)\right| \leq n \max _{z \in T}|p(z)|
$$

where $Q(z)=\overline{z^{n} p\left(\frac{1}{\bar{z}}\right)}$.
As an easy consequence of inequality (1.3), we have the following result which improves inequality (1.2) for self-inversive polynomials.

Theorem A. If $p \in \mathcal{P}_{n}$ is self-inversive, then for $z \in T$,

$$
\begin{equation*}
\max _{z \in T}\left|p^{\prime}(z)\right| \leq \frac{n}{2} \max _{z \in T}|p(z)| \tag{1.4}
\end{equation*}
$$

For a complex number α and for $p \in \mathcal{P}_{n}$, let

$$
D_{\alpha} p(z):=n p(z)+(\alpha-z) p^{\prime}(z)
$$

$D_{\alpha} p(z)$ is a polynomial of degree at most $n-1$ and is known as polar derivative of p with respect to α. It generalizes the ordinary derivative in the sense that

$$
\lim _{\alpha \rightarrow \infty} \frac{D_{\alpha} p(z)}{\alpha}=p^{\prime}(z)
$$

Aziz and Shah [2] extended inequality (1.2) to the polar derivative of a polynomial and proved the following result.
Theorem B. If $p \in \mathcal{P}_{n}$, then for every α with $\alpha \in T \cup D_{+}$and $z \in T$,

$$
\begin{equation*}
\left|D_{\alpha} p(z)\right| \leq n|\alpha| \max _{z \in T}|p(z)| \tag{1.5}
\end{equation*}
$$

Li, Mohapatra and Rodriguez [6] extended inequality (1.2) and (1.4) to rational functions with prescribed poles and proved the following results.

Theorem C. If $r \in \mathcal{R}_{n}$, then for $z \in T$

$$
\begin{equation*}
\left|r^{\prime}(z)\right| \leq\left|B^{\prime}(z)\right| \max _{z \in T}|r(z)| \tag{1.6}
\end{equation*}
$$

Equality holds for $r(z)=u B(z)$, where $u \in T$.
Theorem D. If $r(z)=\frac{p(z)}{w(z)} \in \mathcal{R}_{n}$ and $r(z)$ is self-inversive, then

$$
\max _{z \in T}\left|r^{\prime}(z)\right| \leq \frac{\left|B^{\prime}(z)\right|}{2} \max _{z \in T}|r(z)|
$$

Regarding the number of zeros of a self-inversive polynomial inside a unit circle, we have the following well-known result [4].
Theorem E(Cohn's Theorem). Let $g(z)$ be a self inversive polynomial, then $g(z)$ has the same number of zeros inside the unit circle as does the polynomial $c\left[g^{\prime}(z)\right]^{*}$.

In this paper, we give improvement of inequality (1.6) for self-reciprocal rational functions. Inequality for polar derivative of a polynomial is deduced which improves inequality (1.5) for the class of polynomials $p(z)$ satisfying $p(z)=z^{n} p(1 / z)$. Moreover, the analogue of Cohn's Theorem for rational functions is also discussed.

2. Main Results

The first result gives the improvement of inequality (1.6) for self-reciprocal rational functions.
Theorem 1. If $r(z)=p(z) / w(z) \in \mathcal{R}_{n}$, where $p(z)=\sum_{j=0}^{n}\left(a_{j}+i b_{j}\right) z^{j}, a_{j} \geq 0, b_{j} \geq 0, z_{j}>1 \forall j$ be a self-reciprocal rational function, then

$$
\begin{equation*}
\max _{z \in T}\left|r^{\prime}(z)\right| \leq \frac{\left|B^{\prime}(z)\right|}{\sqrt{2}} \max _{z \in T}|r(z)| \tag{2.1}
\end{equation*}
$$

where equality holds for $r(z)=B(z)+2 i \sqrt{B(z)}+1$.

For $|\alpha|>1$, applying Theorem 1 to rational functions $p(z) /(z-\alpha)^{n}$ and noting that $\left(p(z)(z-\alpha)^{n}\right)^{\prime}=$ $-D_{\alpha} p(z) /(z-\alpha)^{n+1}$, we get the following improvement of inequality (1.5) for polynomials $p(z)$ satisfying $p(z)=z^{n} p(1 / z)$.

Corollary 1. If $p(z)=\sum_{j=0}^{n}\left(a_{j}+i b_{j}\right) z^{j}, a_{j} \geq 0, b_{j} \geq 0, \forall j$ be a self-reciprocal polynomial, then, for $|\alpha| \geq 1$,

$$
\begin{equation*}
\left|D_{\alpha} p(z)\right| \leq \frac{n(|\alpha|+1)}{\sqrt{2}} \max _{z \in T}|p(z)| \tag{2.2}
\end{equation*}
$$

When we look at the analogous of Cohn's theorem for rational functions of the form $r(z)=p(z) / w(z)$, we see that since $r^{\prime}(z)=\left[w(z) p^{\prime}(z)-w^{\prime}(z) p(z)\right] /(w(z))^{2}$, therefore, the zeros of $w(z)$ also play a role. However, one would expect that analogous of Cohn's Theorem might be true, if we restrict zeros of $w(z)$ in a region. The feasible regions where we can restrict zeros of $w(z)$ are either $|z|<1$ or $|z|>1$. But both the cases does not work as is clear from the following two examples:

$$
r(z)=\frac{z^{2}-3 z+1}{2 z-1}, r(z)=\frac{i z^{2}+2 z-i}{z-2}
$$

The following result gives the indirect analogue of Cohn's Theorem for rational functions

Theorem 2. If $r(z)=p(z) / w(z)$ is a self-inversive rational function of degree n, having s zeros inside $|z|<1$ and n poles in $|z|>1$. If degree of $p(z)=$ degree of $w(z)$ and for $z \in T$

$$
\left|p^{*}(z)\left(w^{\prime}(z)\right)^{*}\right|<\left|w^{*}(z)\left(p^{\prime}(z)\right)^{*}\right|
$$

then $\left[r^{\prime}(z)\right]^{*}$ has exactly $s+n+1$ zeros inside $|z|<1$.

3. Lemmas

For the proofs of these theorems we need the following lemma due to Li , Mahapatra and Rodrigues [6].
Lemma 1. For $z_{j} \in \mathbb{C}$ with $\left|z_{j}\right|>1$,

$$
\frac{z B^{\prime}(z)}{B(z)}=\left|B^{\prime}(z)\right| \text { for } z \in T
$$

4. Proofs of the Theorems

Proof of Theorem 1. Since

$$
r(z)=\frac{\sum_{j=0}^{n}\left(a_{j}+i b_{j}\right) z^{j}}{w(z)}=\frac{\sum_{j=0}^{n} a_{j} z^{j}}{w(z)}+i \frac{\sum_{j=0}^{n} b_{j} z^{j}}{w(z)}
$$

therefore, we can write

$$
r(z)=r_{1}(z)+i r_{2}(z)
$$

where $r_{1}(z)$ and $r_{2}(z)$ are rational functions of degree less than for equal to n. Also, $r(z)=B(z) r(1 / z)$, therefore,

$$
r_{1}(z)=B(z) r_{1}\left(\frac{1}{z}\right)=B(z) \overline{r_{1}\left(\frac{1}{\bar{z}}\right)}
$$

and

$$
r_{2}(z)=B(z) r_{2}\left(\frac{1}{z}\right)=B(z) \overline{r_{2}\left(\frac{1}{\bar{z}}\right)}
$$

We claim that

$$
\begin{equation*}
\max _{z \in T}\left|r_{1}^{\prime}(z)\right| \leq \frac{\left|B^{\prime}(z)\right|}{2}\left|r_{1}(1)\right| \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{z \in T}\left|r_{2}^{\prime}(z)\right| \leq \frac{\left|B^{\prime}(z)\right|}{2}\left|r_{2}(1)\right| \tag{4.2}
\end{equation*}
$$

To prove our claim, let

$$
F(z)=\alpha B(z)+\bar{\alpha}+r_{1}(z)
$$

where α is a complex number with $|\alpha|=1$. Then

$$
\begin{aligned}
B(z) \overline{F\left(\frac{1}{\bar{z}}\right)} & =\bar{\alpha}+\alpha B(z)+B(z) \overline{r_{1}\left(\frac{1}{\bar{z}}\right)} \\
& =\bar{\alpha}+\alpha B(z)+r_{1}(z)=F(z)
\end{aligned}
$$

This shows that $F(z)$ is a self-inversive rational function of degree n and therefore, by Theorem D , we have for $z \in T$

$$
\left|F^{\prime}(z)\right| \leq \frac{\left|B^{\prime}(z)\right|}{2} \max _{z \in T}|F(z)|
$$

Equivalently,

$$
\begin{align*}
\left|\alpha B^{\prime}(z)+r_{1}^{\prime}(z)\right| & \leq \frac{\left|B^{\prime}(z)\right|}{2} \max _{z \in T}\left|\alpha B(z)+\bar{\alpha}+r_{1}(z)\right| \\
& \leq \frac{\left|B^{\prime}(z)\right|}{2}\left[2+\max _{z \in T}\left|r_{1}(z)\right|\right] \tag{4.3}
\end{align*}
$$

Choosing argument of α such that for $z \in T$,

$$
\left|\alpha B^{\prime}(z)+r_{1}^{\prime}(z)\right|=|\alpha|\left|B^{\prime}(z)\right|+\left|r_{1}^{\prime}(z)\right|
$$

Letting $|\alpha| \rightarrow 1$ and using this in inequality (4.3) we have for $z \in T$,

$$
\begin{aligned}
& \left|B^{\prime}(z)\right|+\left|r_{1}^{\prime}(z)\right| \leq\left|B^{\prime}(z)\right|+\frac{\left|B^{\prime}(z)\right|}{2} \max _{z \in T}\left|r_{1}(z)\right| \\
\Rightarrow & \left|r_{1}^{\prime}(z)\right| \leq \frac{\left|B^{\prime}(z)\right|}{2} \max _{z \in T}\left|r_{1}(z)\right| .
\end{aligned}
$$

This proves inequality (4.1). Similarly, inequality (4.2) follows.
Let $\left|r^{\prime}(z)\right|$ becomes maximum at $z=e^{i \xi}, 0 \leq \xi<2 \pi$ on T, then

$$
\begin{align*}
\max _{z \in T}\left|r^{\prime}(z)\right| & =\left|r^{\prime}\left(e^{i \xi}\right)\right| \\
& =\left|r_{1}^{\prime}\left(e^{i \xi}\right)+\iota r_{2}^{\prime}\left(e^{i \xi}\right)\right| \\
& \leq\left|r_{1}^{\prime}\left(e^{i \xi}\right)\right|+\left|r_{2}^{\prime}\left(e^{i \xi}\right)\right| \\
& \leq \frac{\left|B^{\prime}(z)\right|}{2}\left(\left|r_{1}(1)\right|+\left|r_{2}(1)\right|\right) \\
& =\frac{\left|B^{\prime}(z)\right|}{2}\left(\frac{p_{1}(1)+p_{2}(1)}{|w(1)|}\right) \tag{4.4}
\end{align*}
$$

Since $2\left[\left(p_{1}(1)\right)^{2}+\left(p_{2}(1)\right)^{2}\right] \geq\left[p_{1}(1)+p_{2}(1)\right]^{2}$, therefore, from inequality (4.4) we have

$$
\begin{aligned}
\max _{z \in T}\left|r^{\prime}(z)\right| & \leq \frac{\left|B^{\prime}(z)\right|}{2} \frac{\sqrt{2\left[\left(p_{1}(1)\right)^{2}+\left(p_{2}(1)\right)^{2}\right]}}{|w(1)|} \\
& =\frac{\left|B^{\prime}(z)\right|}{\sqrt{2}}|r(1)| \\
& =\frac{\left|B^{\prime}(z)\right|}{\sqrt{2}} \max _{z \in T}|r(z)|,
\end{aligned}
$$

which proves the required result.
Proof of Theorem 2. We have

$$
r^{\prime}(z)=\frac{w(z) p^{\prime}(z)-p(z) w^{\prime}(z)}{[w(z)]^{2}}
$$

Therefore,

$$
\begin{aligned}
{\left[r^{\prime}(z)\right]^{*} } & =\frac{\left[w(z) p^{\prime}(z)-p(z) w^{\prime}(z)\right]^{*}}{[w(z)]^{2}} \\
& =\frac{z^{2 n}\left[\overline{w\left(\frac{1}{\bar{z}}\right) p^{\prime}\left(\frac{1}{\bar{z}}\right)}-\overline{p\left(\frac{1}{\bar{z}}\right) w^{\prime}\left(\frac{1}{\bar{z}}\right)}\right]}{[w(z)]^{2}} \\
& =\frac{z\left[z^{n} \overline{w\left(\frac{1}{\bar{z}}\right)} z^{n-1} \overline{p^{\prime}\left(\frac{1}{\bar{z}}\right)}-z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)} z^{n-1} \overline{w^{\prime}\left(\frac{1}{\bar{z}}\right)}\right]}{[w(z)]^{2}} \\
& =\frac{z\left[w^{*}(z)\left(p^{\prime}(z)\right)^{*}-p^{*}(z)\left(w^{\prime}(z)\right)^{*}\right]}{[w(z)]^{2}} .
\end{aligned}
$$

Now,

$$
\left|z p^{*}(z)\left(w^{\prime}(z)\right)^{*}\right|<\left|z w^{*}(z)\left(p^{\prime}(z)\right)^{*}\right| \text { for } z \in T
$$

and both sides are analytic. As $p(z)$ has s zeros in $|z|<1$ and $p(z)$ is self inversive, therefore, by Cohn's Theorem $\left[p^{\prime}(z)\right]^{*}$ has s zeros inside $|z|<1$. Also, $w(z)$ has n zeros in $|z|>1$, therefore, $w^{*}(z)$ has n zeros inside $|z|<1$. Hence $z w^{*}(z)\left(p^{\prime}(z)\right)^{*}$ has $s+n+1$ zeros inside $|z|<1$. Therefore, by Rouche's Theorem, $z w^{*}(z)\left(p^{\prime}(z)\right)^{*}-z p^{*}(z)\left(w^{\prime}\right)^{*}$ has $s+n+1$ zeros inside $|z|<1$. Thus, $\left[r^{\prime}(z)\right]^{*}$ has $s+n+1$ zeros inside $|z|<1$.

References

1. A. Aziz, Inequalities for the polar derivative of polynomial, J. Approx. Theory, 55 (1988), 183-193.
2. A. Aziz and W. M. Shah, Inequalities for the polar derivative of a polynomial, Indian J. Pure Appl. Math., 29(2) (1998), 163-173.
3. S. N. Bernstein, Sur e'ordre de la meilleure approximation des functions continues par des polynomes de degre' donne', Mem. Acad. R. Belg., 4 (1912), 1-103.
4. A. Cohn, Uber die Anzahl der wurzeln einer algebraischen Gleichung in einem Kreise, Math. Z. 14(1922): 110-148
5. M. A. Malik, On the derivative of a polynomial, J. Lond. Math. Soc. 1 (1969), 57-60.
6. Xin Li, R. N. Mohapatra and R. S. Rodgriguez, Bernstein inequalities for rational functions with prescribed poles, J. London Math. Soc., 51 (1995), 523-531.
7. W. M. Shah and A. Liman, On some Bernstein type inequalities for polynomials, Nonlinear Funct. Anal. Appl,, 2 (2004), 223-232.
8. W.M. Shah, A Generalization of a Theorem of Paul Turàn, Journal of Ramanujan Society, 1(1996), 29-35.

Idrees Qasim,

Department of Mathematics,
National Institute of Technology, Srinagar
India.
E-mail address: idreesf3@nitsri.ac.in

