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Picture Fuzzy Normed Linear Space

Kalyan Sinha and Pinaki Majumdar

abstract: Picture fuzzy set (PFS) is a recent advancement tool to deal with vulnerability. It is an
immediate expansion of intuitionistic fuzzy set that can display vulnerability in such circumstances including
more responses of these kinds: indeed, decline, no. In this manuscript the idea of Picture fuzzy normed linear
space (PFNLS) is discussed for the first time. Naturally PFNLS is an hybrid concept of PFS and normed
linear space. Also Convergence in PFNLS are shown. Later on Completeness property on PFNLS are explored.
Finally boundedness of Cauchy sequence in PFNLS is analysed.
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1. Introduction

In 1965 Prof. Zadeh initiated Fuzzy set (FS) theory in [1]. Basically FS was the first step of general-
izing the ancient conceptualization of classical set theory to combat with the unpredictability. However
there were limitations of FS too. To overcome the limitations Atanassov [2,3,10] further generalised FS
theory and launched the concept of Intuitionstic FS (IFS) theory. Here degree of neutrality was not taken
into consideration. Prof. Cuong and Kreinovich added the concept of neutral membership in IFS theory
and gave us a beautiful concept of new set i.e. Picture Fuzzy Set (PFS) in their paper [19]. Naturally PFS
can be considered as a generalization of IFS. With the advancement of time several researchers had shown
interest on PFS theory and different types of research work were done on PFS theory [9,20,22,23,24,25].

On the other hand Normed linear space is the important pillar of Functional analysis, a major branch
of modern mathematics. In 1992 Prof. Felbin introduced Fuzzy normed linear space (FNLS) [4]. It was
shown in [6,11] that every finite dimensional FNLS holds fuzzy norm uniquely w.r.t. fuzzy equivalence.
In 1993 Prof. Felbin further established that any finite dimensional FNS is necessarily complete. In
2003 Prof. Bag and Samanta [12] decomposed the Fuzzy norm to a usual crisp norm. This paper
opened the way of different approaches of study of FN spaces. As a result different articles on FNLS had
been published and various developments of FNLS i.e. Intuitionistic FNLS, Neutrosophic NLS, n-FNLS
[5,7,8,13,14,15,21,26,28,29] etc are done. In this article we have defined Picture Fuzzy normed linear space
for the first time. Since PFS is a generalization of IFS, thus PFNLS is a much more generalised concept
than the other previous concept. our manuscript is organized as following: In Section 2 the definition of
PFNLS is given and a suitable example is provided for better understanding. In Section 3 Convergence
in PFNLS is shown. In the next section Completeness property of PFNLS is explored. Here we have
proved that that every finite dimensional PFNLS is complete. Finally Section 5 concludes our article.
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2. PFNLS

To realize PFNLS, we request our readers to read the idea of t-norm say ⊙ and t-conorm say ◦ at first.
The details about t-norm and t-conorm can be found in any standard article say [26]. Since PFS is a
continuous development of FS and IFS. The preliminary idea of PFS, a new theory introduced by Cuong
et. al. was first published in 2013 in [19]. This section introduces us the concept of PFNLS based on
PFS theory. Further we have provided an example of PFNLS for smooth understanding in this section.

Definition 2.1. Suppose U be a linear space over R.A picture fuzzy subset

A = {((α, r); P (α, r), Q(α, r), R(α, r)) : (α, r) ∈ U × R
+}

is called a PF norm on U w.r.t. continuous t-norm ⊙ and t-co-norm ◦ respectively if the following holds:

(a) P (α, r) + Q(α, r) + R(α, r) ≤ 1 ∀(α, r) ∈ U × R
+.

(b) P (α, r) > 0.

(c) P (α, r) = 1 iff α = 0.

(d) P (kα, r) = P (α, r
|k| ) , k ∈ R \ {0}.

(e) P (α, r) ⊙ P (β, s) ≤ P (α + β, r + s).

(f) P (α, .) is non-decreasing mapping of R+ and lim
r→∞

P (α, r) = 1.

(g) Q(α, r) > 0.

(h) Q(α, r) = 0 if and only if α = 0.

(i) Q(kα, r) = Q(α, r
|k| ) , k ∈ R \ {0}.

(j) Q(α, r) ◦ Q(β, s) ≥ Q(α + β, r + s).

(k) Q(α, .) is non-increasing function of R+ and lim
r→∞

Q(α, r) = 0.

(l) R(α, r) > 0.

(m) R(α, r) = 0 iff x = 0.

(n) R(kα, r) = R(α, r
|k| ) , k ∈ R \ {0}.

(o) R(α, r) ◦ R(β, s) ≥ R(α + β, r + s).

(p) R(α, .) is non-increasing mapping of R+ and lim
r→∞

R(α, r) = 0.

Here (U, A, ⊙, ◦) is called a PFNLS. We will denote (U, A, ⊙, ◦) as (U, A) throughout this article.

Example 2.2. Suppose U = (R, ‖.‖) be NLS with ‖.‖ = |x| ∀ x ∈ R. Considering a1 ⊙ a2 = min{a1, a2}

and a1◦a2 = max{a1, a2} ∀ a1, a2 ∈ [0, 1] we take P (α, r) = r
r+c|α| , Q(α, r) = c|α|

r+c|α| , R(α, r) = |α|
r

, c > 0.

We take A = {(α, r); P (α, r), Q(α, r), R(α, r)}. Clearly (U, A, ⊙, ◦) is an PFNLS.
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3. Convergence in PFNLS

Definition 3.1. A sequence {sn} in a PFNLS (U, A) is said to be convergent and converges to s ∈ U if
for any ǫ0 > 0, r > 0, ∃ n0 ∈ N such P (sn − s, r) > 1 − ǫ0, Q(sn − s, r) < ǫ0, R(sn − s, r) < ǫ0, ∀n ≥ n0

and ǫ0 ∈ (0, 1).

Theorem 3.2. A sequence {sn} converges to s ∈ V in a PFNLS (U, A) iff lim
n→∞

P (sn − s, r) =

1, lim
n→∞

Q(sn − s, r) = 0, lim
n→∞

R(sn − s, r) = 0.

We omit this proof as the proof is very straight forward.

Theorem 3.3. Every convergent sequence {sn} in a PFNLS (U, A) has distinctive limit.

Proof. Suppose the limit of {sn} is not unique i.e. lim
n→∞

sn = l1 and lim
n→∞

sn = l2. Then for s, t ∈ R
+

and s, t → ∞ we have,

lim
n→∞

P (sn − l1, s) = 1, lim
n→∞

Q(sn − l1, s) = 0, lim
n→∞

R(sn − l1, s) = 0,

lim
n→∞

P (sn − l2, t) = 1, lim
n→∞

Q(sn − l2, t) = 0, lim
n→∞

R(sn − l2, t) = 0,

Then P (l1 − l2, s + t) ≥ P (sn − l1, s) ⊙ P (sn − l2, t). Considering limit as s, t, n → ∞ we have

P (l1 − l2, s + t) = 1

In a similar way we have Q(l1 − l2, s + t) = 0 = R(l1 − l2, s + t). Thus l1 = l2 and we are done. �

Theorem 3.4. If {sn} and {tn} are two convergent sequence in a PFNLS (U, A) such that lim
n→∞

sn = s,

lim
n→∞

tn = t respectively. Then the followings hold:

(a) lim
n→∞

(sn + tn) = (s + t) in an PFNLS (U, A, ⊙, ◦).

(b) lim
n→∞

(sn − tn) = (s + t) in an PFNLS (U, A, ⊙, ◦).

(c) if c ∈ R then lim
n→∞

csn = cs in an PFNLS (U, A, ⊙, ◦).

Proof. (a) Suppose m1, m2 ∈ R
+. Then

lim
n→∞

P (sn − s, m1) = 1, lim
n→∞

Q(sn − s, m1) = 0, lim
n→∞

R(sn − s, m1) = 0,

lim
n→∞

P (tn − t, m2) = 1, lim
n→∞

Q(tn − t, m2) = 0, lim
n→∞

R(tn − t, m2) = 0,

Again

lim
n→∞

P [(sn + tn) − (s + t), m1 + m2] ≥ lim
n→∞

P (sn − s, m1) ⊙ lim
n→∞

P (tn − t, m2)

= 1 as m1, m2 → ∞.

Thus lim
n→∞

P [(sn + tn) − (s + t), m1 + m2] = 1. In a parallel way one can easily see that, lim
n→∞

Q[(sn +

tn) − (s + t), m1 + m2] = 0 = lim
n→∞

R[(sn + tn) − (s + t), m1 + m2].

We omit the proof of the part (b) and part (c) due to the similarity with part (a). �
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4. Completeness on PFNLS

In this section we will study the completeness property on PFNLS. For this reason we have to introduce
the concept of Cauchy sequence in PFNLS. After introducing the concept of Cauchy sequence in PFNLS
we will study the several characteristics of complete PFNLS.

Definition 4.1. A sequence {sn} in PFNLS (U, A, ⊙, ◦) is said to be bounded if for any ǫ ∈ (0, 1) and
r > 0, P (sn, r) > 1 − ǫ, Q(sn, r) < ǫ, R(sn, r) < ǫ ∀ n ∈ N hold.

Definition 4.2. Consider a sequence {sn} in PFNLS (U, A, ⊙, ◦). Then {sn} becomes a Cauchy sequence
if given ǫ0 ∈ (0, 1), r > 0, ∃ k ∈ N s.t. P (sn − sm, r) > 1 − ǫ0, Q(sn − sm, r) < ǫ0, R(sn − sm, r) <

ǫ0 ∀ m, n ≥ k.
Alternatively {sn} is supposed to be Cauchy if lim

n,m→∞
P (sn − sm, r) = 1, lim

n,m→∞
Q(sn − sm, r) =

0, lim
n,m→∞

R(sn − sm, r) = 0 as r → ∞.

Theorem 4.3. In PFNLS (U, A, ⊙, ◦) a sequence which is convergent must be a Cauchy sequence.

Proof. Consider {sn} in (U, A, ⊙, ◦) s.t. lim
n→∞

sn = s. Then for l1 ∈ R
+, ∃k ∈ N s.t. for m, n ≥ k

lim
n,m→∞

P (sn − sm, l1) ≥ lim
n→∞

P (sn − s,
l1

2
) ⊙ lim

m→∞
P (sm − s,

l1

2
) ≥ 1

Thus lim
n,m→∞

P (sn − sm, l1) = 1. �

Similarly we can show that lim
n,m→∞

Q(sn − sm, l1) = 0, lim
n,m→∞

R(sn − sm, l1) = 0. Hence {sn} is

Cauchy in (U, A, ⊙, ◦). However our next example exemplifies that the converse of Theorem 4.3 is not
true.

Example 4.4. Recall the PFNLS (U, A, ⊙, ◦) (as in Example 2.2) where U = (R, ‖.‖), ‖x‖ = |x| ∀ x ∈
R, a1 ⊙ a2 = min{a1, a2}, a1 ◦ a2 = max{a1, a2} for all a1, a2 ∈ [0, 1]. We consider P (x, t) =

t
t+k|x| , Q(x, t) = k|x|

t+k|x| , R(x, t) = |x|
t

t > 0. Further we suppose {sn} is Cauchy. Then lim
n,m→∞

t
t+|sn−sm| =

1, lim
n,m→∞

|sn−sm|
t+|sn−sm| = 0, lim

n,m→∞

|sn−sm|
t

= 0. Hence lim
n,m→∞

P (sn − sm, t) = 1, lim
n,m→∞

Q(sn − sm, t) =

0, lim
n,m→∞

R(sn − sm, t) = 0. We consider U1 = { 1
k

|k ∈ N}. It is clear that (U1, A, ⊙, ◦) is a PFNLS and

{sn} is also a Cauchy sequence in (U1, A, ⊙, ◦). However {sn} is not convergent.

Theorem 4.5. Consider two Cauchy sequence {sn}, {tn} of vectors and a Cauchy sequence {µn} of
scalars in a PFNLS (U, A, ⊙, ◦). Then {sn + tn}, {µnsn} are also Cauchy in (U, A, ⊙, ◦).

Proof. As the proof is very straight-forward so we have omitted it. �

Theorem 4.6. Suppose (U, A, ⊙, ◦) be a PFNLS. If ∃ a convergent sub-sequence of any Cauchy sequence
in (U, A, ⊙, ◦), then (U, A, ⊙, ◦) be a complete PFNLS.

Proof. Consider a Cauchy sequence {sn} in (U, A, ⊙, ◦). Suppose {snr
} be a convergent sub-sequence of

{sn} converging to an element s. Being a Cauchy sequence {sn} we have for t > 0 and t → ∞,

lim
n,r→∞

P (sn − snr
,

t

2
) = 1,

lim
n,r→∞

Q(sn − snr
,

t

2
) = 0,

lim
n,r→∞

R(sn − snr
,

t

2
) = 0,
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Also we have,

lim
n,r→∞

P (snr
− s,

t

2
) = 1,

lim
n,r→∞

Q(snr
− s,

t

2
) = 0,

lim
n,r→∞

R(snr
− s,

t

2
) = 0,

Then

P (sn − s, t) = P (sn − snr
+ snr

− s, t) ≥ P (sn − snr
) ⊙ P (snr

− s, t)

which implies that lim
n→∞

P (sn − s, t) = 1. In a parallel way we can see that

lim
n→∞

Q(sn − s, t) = 0, lim
n,r→∞

R(sn − s, t) = 0

Hence we are done. �

Theorem 4.7. Suppose (U, A, ⊙, ◦) be a PFNLS and

(q) ν ◦ ν = ν, ν ⊙ ν = ν ∀ ν ∈ [0, 1].

(u) ∀ t > 0 P (x, t) > 0, Q(x, t) > 0, R(x, t) > 0 implies that x = 0.

We define ‖x‖1
γ =

∧
{t : P (x, t) ≥ γ}, ‖x‖2

γ =
∨

{t : Q(x, t) ≤ γ}, ‖x‖3
γ =

∨
{t : R(x, t) ≤ γ} where

γ ∈ (0, 1). Then {|x‖1
γ}, {|x‖2

γ}, {|x‖3
γ} are ascending family of norms on U . Above three norms are

combined as γ-norms i.e. |x‖γ on (U, A, ⊙, ◦).

Proof. We know that for x ∈ U , P (x, t) = 0 for t < 0 implies
∧

{t : P (x, t) ≥ γ} ≥ 0, γ ∈ (0, 1) =⇒
|x‖1

γ ≥ 0.
Now if |x‖1

γ = 0 =⇒
∧

{t : P (x, t) ≥ γ} = 0 implies that x = 0. Conversely x = 0 =⇒ P (x, t) =
1 ∀t > 0 =⇒ ∀γ ∈ (0, 1)

∧
{t : P (x, t) ≥ γ} = 0 =⇒ |x‖1

γ = 0.
Again if c = 0 we are done. If c 6= 0, then

|cx‖1
γ =

∧
{r : P (cx, r) ≥ γ} =

∧
{r : P (x,

r

|c|
)γ =

∧
|c|{t : P (x, t) ≥ γ}

.
Finally,

|x‖1
γ + |y‖1

γ

=
∧

{t : P (x, t) ≥ γ} +
∧

{r : P (y, r) ≥ γ}

=
∧

{t + r : P (x, t) ≥ γ, P (y, r) ≥ γ}

=
∧

{t + r : P (x, t) ⊙ P (y, r) ≥ γ ⊙ γ}

≥
∧

{t + r : P (x + y, t + r) ≥ γ}

= ‖x + y‖1
γ .

.
Suppose γ1 < γ2 and γ1, γ2 ∈ (0, 1).Then {t : P (x, t) ≥ γ2} ⊂ {t : P (x, t) ≥ γ1} which clearly implies

that ‖x‖1
γ

2

≥ ‖x‖1
γ

1

.Thus {‖x‖1
γ : γ ∈ (0, 1)} is an ascending on U .

Similarly we can validate that {|x‖2
γ ≥ 0, γ ∈ (0, 1)}.



6 K. Sinha and P. Majumdar

Now if |x‖2
γ = 0 =⇒

∨
{t : Q(x, t) ≤ γ = 0 =⇒ x = 0. Conversely

x = 0 =⇒ Q(x, t) = 0 ∀t > 0 =⇒ ∀γ ∈ (0, 1),
∨

{t : Q(x, t) ≤ γ} = 0 =⇒ |x‖2
γ = 0

.
Also if c = 0 we are again done.If c 6= 0, then |cx‖2

γ =
∨

{r : Q(cx, r) ≤ γ} =
∨

{r : Q(x, r
|c|)γ =∨

|c|{t : P (x, t) ≤ γ}.
Lastly

|x‖2
γ + |y‖2

γ

=
∨

{t : Q(x, t) ≤ γ} +
∨

{r : Q(y, r) ≤ γ}

=
∨

{t + r : Q(x, t) ≤ γ, Q(y, r) ≤ γ}

=
∨

{t + r : Q(x, t) ⊙ Q(y, r) ≤ γ ⊙ γ}

≤
∨

{t + r : Q(x + y, t + r) ≤ γ

= ‖x + y‖2
γ .

Let γ1 < γ2 and γ1, γ2 ∈ (0, 1). Clearly {t : Q(x, t) ≤ γ1} ⊂ {t : Q(x, t) ≤ γ2}. Thus ‖x‖2
γ

2

≤

‖x‖2
γ

1

.Hence {‖x‖2
γ : γ ∈ (0, 1)} is an ascending norm on U . In a parallel method one can demonstrate

that {‖x‖3
γ : γ ∈ (0, 1)} is also an ascending norm on U . �

Lemma 4.8. Suppose (U, A, ⊙, ◦) be a PFNLS which satisfies the Theorem 4.7. Suppose {u1, u2, . . . , un}
be a set of l.i. vectors of U . Then for each γ ∈ (0, 1), ∃ K > 0 s.t. for any scalars γ1, γ2, . . . , γn,

‖γ1u1 + γ2u2 + . . . γnun‖γ ≥ K

n∑

i=1

|γi|,

where K is a constant.

Proof. Here (U, A, ⊙, ◦) is a PFNLS and ‖x‖γ , where x ∈ U, γ ∈ (0, 1) is an induced norm on U . Hence
(U, ‖x‖γ) is a NLS. Therefore for each γ ∈ (0, 1), ∃ K > 0 s.t. for any scalars γ1, γ2, . . . , γn,

‖γ1u1 + γ2u2 + . . . γnun‖1
γ ≥ K

n∑

i=1

|γi|,

where K is a constant holds in (U, ‖x‖γ). �

Theorem 4.9. Every finite dimensional PFNLS which satisfies Theorem 4.7 is complete.

Proof. Suppose (U, A, ⊙, ◦) is a r-dimensional PFNLS. Consider a Cauchy Sequence {sn} in (U, A, ⊙, ◦).
Then ∃ a basis of U say {u1, u2, . . . , ur} and scalars cn

1 , cn
2 , . . . , cn

r such that sn = cn
1 u1 + . . . + cn

r ur holds.
Again we know that

lim
n→∞

P (sn+p − sn, t) = 1 ∀ t > 0, p = 1, 2, . . .

=⇒ lim
n→∞

P (

n+p∑

i=1

c
n+p
i ui −

n∑

i=1

cn
i ui, t) = 1

=⇒ lim
n→∞

P ((

n+p∑

i=1

c
n+p
i −

n∑

i=1

cn
i )ui, t) = 1.
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Now for γ ∈ (0, 1), ∃ an integer N(t, γ) such that

P ((

n+p∑

i=1

c
n+p
i −

n∑

i=1

cn
i )ui, t) > γ ∀n > N

=⇒ |((

n+p∑

i=1

c
n+p
i −

n∑

i=1

cn
i )ui| ≤ t ∀n > N.

Since t > 0 is arbitrary, hence ((
n+p∑
i=1

c
n+p
i −

n∑
i=1

cn
i )ui| → 0 as n → ∞ which obviously implies that {sn}

is a Cauchy sequence which converges in s =
∑

ciui for some s ∈ U . Now

P (sn − s, t) = P (

n∑

i=1

cn
i ui −

n∑

i=1

ciui, t)

= P (

n∑

i=1

(cn
i − ci)ui, t)

≥ P (u1,
t

n|cn
1 − c1|

) ◦ . . . ◦ P (un,
t

n|cn
n − c1|

)

=⇒ lim
n→∞

P (sn − s, t) ≥ 1 ◦ 1 . . . ◦ 1 = 1 ∀ t > 0

lim
n→∞

P (sn − s, t) = 1 ∀ t > 0.

Again we have ∀ t > 0,

Q(sn − s, t) = Q(

n∑

i=1

cn
i ui −

n∑

i=1

ciui, t)

= Q(
n∑

i=1

(cn
i − ci)ui, t)

≤ Q(u1,
t

n|cn
1 − c1|

) ⊙ . . . ⊙ Q(un,
t

n|cn
n − c1|

)

=⇒ lim
n→∞

Q(sn − s, t) ≤ 1 ⊙ 1 . . . ⊙ 1 = 1 ∀ t > 0

lim
n→∞

Q(sn − s, t) = 0 ∀ t > 0.

Similarly one can demonstrate that lim
n→∞

R(sn −s, t) = 0 ∀ t > 0. Hence {sn} in (U, A, ◦, ⊙) converges

to s ∈ U .Thus (U, A, ◦, ⊙) is complete. �

Definition 4.10. Suppose (U, A, ◦, ⊙) be an PFNLS. A subset W ⊆ U is said to be

(i) closed if for any sequence {sn} in W converges to s ∈ W . Mathematically

lim
n→∞

P (sn − s, t) = 1, lim
n→∞

Q(sn − s, t) = 0, lim
n→∞

R(sn − s, t) = 0 =⇒ s ∈ W.

(ii) bounded iff ∃ t > 0, 0 < r < 1 s.t.

P (s, t) > 1 − r, Q(s, t) < r and R(s, t) < r ∀s ∈ W.

(iii) closure of W1 if for any s ∈ W, ∃ a sequence {sn} in W1 s.t.

lim
n→∞

P (sn − s, t) = 1, lim
n→∞

Q(sn − s, t) = 0, lim
n→∞

R(sn − s, t) = 0 ∀ t ∈ R
+.

In that case W1 = W .
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Theorem 4.11. Suppose (U, A, ◦, ⊙) be an PFNLS. Every Cauchy sequence in (U, A, ◦, ⊙) is bounded.

Proof. Suppose {sn} be a Cauchy sequence in PFNLS (U, A, ◦, ⊙). We consider a fixed l0 such that
l0 ∈ (0, 1). Then lim

n→∞
P (sn − sn+p, t) = 1 > l0 ∀ t > 0, p = 1, 2. For another t̃ > 0 ∃ ñ such that

P (sn − sn+p, t̃) > l0, p = 1, 2, . . .. Since lim
n→∞

P (s, t) = 1 we have ∀ si, ti > 0 such that P (si, t) > l0 ∀t >

ti, i = 1, 2, . . .. Suppose t0 = t̃ + max{ti}, i = 1, . . . , ñ.Then

P (sn, t0) ≥ P (sn, t̃ + tñ)

= P (sn − sñ + sñ, t̃ + tñ)

> l0 ◦ l0 = l0 ∀ n > ñ.

So ∀ n = 1, . . . , ñ, P (sn, t0) ≥ P (sn, tn) > l0. Hence P (sn, t0) > l0 ∀ n = 1, 2, . . .. Again we have
Q(sn − sn+p, t) = 0 < (1 − l0) ∀ t > 0, p = 1, 2, . . . . Now again for all t̃ > 0 ∃ ñ we have Q(sn −
sn+p, t̃) < 1 − l0 ∀ n ≥ ñ p = 1, 2, . . .. Since lim

t→∞
Q(s, t) = 0, we have we have ∀ si, t̃i > 0 such that

Q(si, t) < 1 − l0 ∀t > t̃i, i = 1, 2, . . .. Suppose t̃0 = t̃ + max{t̃i}, i = 1, . . . , ñ.Then

Q(sn, t̃0) ≤ Q(sn, t̃ + t̃n)

= Q(sn − sñ + sñ, t̃ + t̃ñ)

< (1 − l0) ⊙ (1 − l0) = 1 − l0 ∀ n > ñ.

So ∀ n = 1, . . . , ñ, Q(sn, t̃0) ≥ Q(sn, tn) < 1−l0. Hence Q(sn, t̃) < 1−l0 ∀ n = 1, 2, . . .. Now for the same

procedure and for t̃0 = t̃ + max{t̃i}, i = 1, . . . , ñ we can again show that R(sn, t̃) < 1 − l0 ∀ n = 1, 2, . . ..

Let t = max{t0, t̃0}, t̃0. Finally we have

P (sn, t) > l0, Q(sn, t) < 1 − l0, R(sn, t) < 1 − l0 ∀ n = 1, 2, . . . .

Thus {sn} is bounded in (U, A, ◦, ⊙) and we are done. �

5. Conclusion

In this manuscript we have discussed the concept of PFNLS for the first time. The concept of PF
norm is also discussed. Later convergence of a sequence as well as Cauchy sequence in PFNLS have
been examined. All these concepts are illustrated with examples. Finally associated properties and
characteristics of PFNLS have been shown here. In future we will study the concept of PF n-NLS and
PF Metric space.
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