

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 2024 (42)** : 1–9. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.64370

Orbits of Random Dynamical Systems

Ahmed Zaou, Otmane Benchiheb and Mohamed Amouch

ABSTRACT: In this paper, we introduce and study the notions of hypercyclicity and transitivity for random dynamical systems and we establish the relation between them in a topological space. We also introduce the notions of mixing and weakly mixing for random dynamical systems and give some of their properties.

Key Words: Hypercyclicity, topological transitivity, Orbit, random dynamical system.

Contents

1 Introduction

2

 Hypercyclic and Topologically Transitive Random Dynamical Systems
 2

3 Topological mixing and Weakly Topological Mixing Random Dynamical Systems 6

1. Introduction

Throughout the paper, $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$ will denote the set of positive integers while $\mathbb{N} = \{1, 2, 3, ...\}$ will be the set of nonzero positive integers.

Let X be an F-space that is a complete and metrizable topological vector space over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Let T be a continuous linear operator (operator for short) acting on X. If x is vector of X, then the orbit of x under T is the set denoted by $\operatorname{Orb}(T, x)$ and defined by

$$Orb(T, x) := \{T^n x : n \in \mathbb{N}_0\}.$$

We say that T is hypercyclic if there exists a vector $x \in X$ whose orbit under T is dense in X. In this case, the vector x is called a hypercyclic vector for T. We denote by HC(T) the set of all hypercylic vectors for T. The first example of a hypercyclic operator in the Banach space setting was given by Rolewicz [20], who proved that if $\lambda \in \mathbb{C}$; $|\lambda| > 1$, then λB is hypercyclic, where B is the unilateral backward shift with weights constantly equal to 1. Rolewicz also proved that there are no hypercyclic operators on finite-dimensional space. Thus hypercyclicity is an infinite-dimensional phenomenon. If the space X is a separable space, then the hypercyclicity is equivalent to the notion of topological transitivity, that is; for any pair (U, V) of nonempty and open sets of X, there exists a positive integer n such that

$$T^n(U) \cap V \neq \emptyset.$$

In this case, the set HC(T) is a dense G_{δ} subset of X, see [12].

A useful general criterion for hypercyclicity was isolated by C. Kitai in a restricted form [14] and then by R. Gethner and J. H. Shapiro in a form close to that given below [16]. The version used here appeared in the Ph.D. thesis of J. Bes [10]: we say that T satisfies the hypercyclicity criterion if there exist an increasing sequence of integers (n_k) , two dense sets $X_0, Y_0 \subset X$ and a sequence of maps S_{n_k} : $Y_0 \longrightarrow X$ such that:

- (1) $T^{n_k}x \longrightarrow 0$ for any $x \in X_0$;
- (2) $S_{n_k} y \longrightarrow 0$ for any $y \in Y_0$;
- (3) $T^{n_k}S_{n_k}y \longrightarrow y$ for any $y \in Y_0$.

²⁰¹⁰ Mathematics Subject Classification: Primary: 47A16, 37A25 Secondary: 37A50, 60J10. . Submitted July 15, 2022. Published July 28, 2022

Such an operator satisfying the hypercyclicity criterion is hypercyclic, see [10].

It is known that if $T \oplus S$ is hypercyclic on $X \oplus Y$, then T is hypercyclic on X and S is hypercyclic on Y. The converse is not true even in the case T = S see [13]. From [17] if $T \oplus T$ is topologically transitive, then the operator T is called weakly mixing, i.e. $T \oplus T$ is hypercyclic. Clearly a weakly mixing operator is hypercyclic. Moreover, the following are equivalent:

- (1) T satisfies the hypercyclicity criterion;
- (2) T is hereditarily hypercyclic with respect to an increasing sequence of positive integers (n_k) , that is, for any subsequence (m_k) of (n_k) , the sequence $(T^{m_k})_{k \in \mathbb{N}_0}$ is hypercyclic;
- (3) T is weakly mixing,

see [11]. The notions of hypercyclicity and supercyclicity are well studied in the last few years, see for example K.G. Grosse-Erdmann and A. Peris's book [17] and F. Bayart and E. Matheron's book [9], and the survey article [18] by K.G. Grosse-Erdmann, and the book [15] by Kostić. In [1,2,3,4,5,6,7,8] the authors have studied the dynamics of a set of operators instead of a single operator. In this paper, we introduce the notions of hyperciclycity, topological transitivity, and topological mixing of random dynamical systems and we study some of their properties.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and $\mathcal{T} = \{T_{\omega} : X \longrightarrow X, \omega \in \Omega\}$ is a collection of measurable maps on a Polish space X. We will refer to $(\Omega, \mathcal{F}, \mathcal{T})$ as random dynamical system and we denote it in the following by \mathcal{T} .

By taking, $T_{\underline{\omega}}^n = T_{\omega_n} \circ \cdots \circ T_{\omega_1}$ for any $\underline{\omega} = (\omega_1, \omega_2, \dots) \in \Omega^{\mathbb{N}_0}$, we can relate this random dynamical system to a deterministic dynamical system obtained by defining the following skew-product transformation:

$$\begin{array}{rcccc} S &:& \Omega^{\mathbb{N}_0} \oplus X & \longrightarrow & \Omega^{\mathbb{N}_0} \oplus X \\ & & (\underline{\omega}, x) & \longmapsto & (\sigma \underline{\omega}, T_{\omega_1} x), \end{array}$$

where $\sigma : \Omega^{\mathbb{N}_0} \to \Omega^{\mathbb{N}_0}$ is the unilateral shift. It is clear that $S^n(\underline{\omega}, x) = (\sigma^n \underline{\omega}, T_{\underline{\omega}}^n x)$, for any $n \in \mathbb{N}_0$. A probability measure μ on X is stationary if and only if the measure $\mathbb{P}^{\oplus \mathbb{N}_0} \oplus \mu$ is invariant under S that is $S^*(\mathbb{P}^{\oplus \mathbb{N}_0} \oplus \mu) = \mathbb{P}^{\oplus \mathbb{N}_0} \oplus \mu$, see [19].

Hereinafter, X will be a topological space and $\mathcal{T} = \{T_{\omega}\}_{\omega \in \Omega}$ be a collection of continuous functions that map X into itself. In this case, the orbit of a point $x \in X$ at some $\underline{\omega} \in \Omega_0^{\mathbb{N}}$ of this random dynamical system is defined by

$$Orb(x, \mathcal{T}) = \{T_{\omega}^n x : n \in \mathbb{N}_0\},\$$

where $T^0_{\underline{\omega}}x = x$.

2. Hypercyclic and Topologically Transitive Random Dynamical Systems

In the following, we define the notion of hypercyclicity for a random dynamical system.

Definition 2.1. Let X be a toplogical space. We say that a random dynamical system \mathfrak{T} is hypercyclic on X if there exists $x \in X$ and $\underline{\omega} \in \Omega^{\mathbb{N}_0}$ such that

$$\overline{\operatorname{Orb}(x,\mathfrak{T})} = X.$$

In such a case, x is called a hypercyclic point for T, and the set of hypercyclic points for T is denoted by HC(T).

Remark 2.2. Let X be a topological space, and $T : X \to X$ be a continuous map on X. If we take $T_{\omega} = T$ for any $\omega \in \Omega$, then $\mathfrak{T} = \{T_{\omega}\}_{\omega \in \Omega}$ is hypercyclic if only if T is hypercyclic.

Example 2.3. We pose X = [0, 1] and $\Omega = \{1, 2\}$, and we consider the maps:

,

and

where $\alpha \in [0, 1[$. There exists $x \in X$ such that $\{\overline{T_1^n x, n \in \mathbb{N}_0}\} = X$. Let $\underline{\omega} = (1, 1, 1, \dots)$, then

$$\overline{\{T^n_{\underline{\omega}}x, n \in \mathbb{N}_0\}} = X.$$

Hence, $\mathcal{T} = \{T_1, T_2\}$ is hypercyclic on X.

In the following definition, we introduce the notion of quasi-conjugate for a random dynamical system.

Definition 2.4. Let X and Y be topological spaces, $\mathcal{T} = \{T_{\omega}\}_{\omega \in \Omega}$ and $\mathcal{S} = \{S_{\omega}\}_{\omega \in \Omega}$ be random dynamical systems on X and Y respectively. \mathcal{T} is called quasiconjugate to \mathcal{S} if there exists a continuous map $\phi : Y \to X$ with dense range such that for all $\omega \in \Omega$, $T_{\omega} \circ \phi = \phi \circ S_{\omega}$. If ϕ can be chosen to be a homeomorphism then \mathcal{S} and \mathcal{T} are called conjugate.

The property of hypercylicity of a dynamical system is preserved under quasiconjugacy, see [10, Proposition 1.19]. The following proposition proves that the same result holds for a random dynamical system.

Proposition 2.5. Let X and Y be topological spaces, $\mathcal{T} = \{T_{\omega}\}_{\omega \in \Omega}$ and $\mathcal{S} = \{S_{\omega}\}_{\omega \in \Omega}$ be random dynamical systems on X and Y respectively, such that \mathcal{T} is quasiconjugate to S with respect to ϕ . If \mathcal{S} is hypercyclic on Y, then \mathcal{T} is hypercyclic on X. Furthermore,

$$\phi(HC(\mathbb{S})) \subset HC(\mathfrak{T}).$$

Proof. Suppose that S is hypercyclic, then there exists some $x \in Y$ and $\underline{\omega} \in \Omega^{\mathbb{N}_0}$ such that $\{S_{\underline{\omega}}^n x, n \in \mathbb{N}_0\}$ visits every nonempty open subset of Y. Let U be a nonempty open subset of X, then $\phi^{-1}(U)$ is a nonempty open subset of Y, implies that there exists some $n \in \mathbb{N}_0$ such that $S_{\underline{\omega}}^n x \in \phi^{-1}(U)$. This implies that $T_{\underline{\omega}}^n(\phi(x)) \in U$. Thus,

$$\overline{\{T^n_{\underline{\omega}}\phi(x):\,n\in\mathbb{N}_0\}}=X$$

Hence, \mathcal{T} is hypercyclic and $\phi(x) \in HC(\mathcal{T})$.

Corollary 2.6. Let X and Y be topological spaces, $\mathfrak{T} = \{T_{\omega}\}_{\omega \in \Omega}$ and $\mathfrak{S} = \{S_{\omega}\}_{\omega \in \Omega}$ be random dynamical systems on X and Y respectively, such that \mathfrak{T} is conjugate to S with respect to ϕ . Then \mathfrak{T} is hypercyclic on X if only if \mathfrak{S} is hypercyclic on Y. Furthermore,

$$\phi(HC(\mathbb{S})) = HC(\mathcal{T})$$

Let $\{X\}_{i=1}^p$ be a family of topological spaces and let $\mathcal{T}_i = \{T_{i,\omega} : \omega \in \Omega\}$ be a random dynamical system on X_i , for all $i = 1, 2, \ldots, p$. Let

$$\bigoplus_{i=1}^{p} X_i = X_1 \oplus X_2 \oplus \dots \oplus X_p = \{ (x_1, x_2, \dots, x_p) : x_i \in X_i, i = 1, 2, \dots, p \}$$

and define the random dynamical system $\bigoplus_{i=1}^{p} \mathcal{T}_{i} = \{(\bigoplus_{i=1}^{p} T_{i})_{\omega}, \omega \in \Omega\}$ on $\bigoplus_{i=1}^{p} X_{i}$ by,

$$(\oplus_{i=1}^{p}T_{i})_{\omega}:\oplus_{i=1}^{p}X_{i}\to\oplus_{i=1}^{p}X_{i}, (x_{1},x_{2},\ldots,x_{p})\mapsto(T_{1,\omega}x_{1},T_{2,\omega}x_{2},\ldots,T_{p,\omega}x_{p}). \ (\forall \omega\in\Omega)$$

Remark 2.7. For all $\underline{\omega} \in \Omega^{\mathbb{N}_0}$, for all $n \in \mathbb{N}_0$, and for all (x_1, x_2, \ldots, x_p) ,

$$(\oplus_{i=1}^n T_i)^n_{\underline{\omega}}(x_1, x_2, \dots, x_p) = (T_{1,\underline{\omega}}^n x_1, T_{2,\underline{\omega}}^n x_2, \dots, T_{p,\underline{\omega}}^n x_p).$$

Proposition 2.8. Let $\{X\}_{i=1}^p$ be a family of topological spaces and let $\mathfrak{T}_i = \{T_{i,\omega} : \omega \in \Omega\}$ be a random dynamical system on X_i for all i = 1, 2, ..., p. If $\bigoplus_{i=1}^p \mathfrak{T}_i$ is hypercyclic on $\bigoplus_{i=1}^p X_i$, then \mathfrak{T}_i is hypercyclic in X_i for all i = 1, 2, ..., p. Moreover if $(x_1, x_2, ..., x_p) \in HC(\bigoplus_{i=1}^p \mathfrak{T}_i)$, then $x_i \in HC(\mathfrak{T}_i)$ for all i = 1, 2, ..., p.

Proof. Suppose that $\bigoplus_{i=1}^{p} \mathcal{T}_{i}$ is hypercyclic on $\bigoplus_{i=1}^{p} X_{i}$. Let $(x_{1}, x_{2}, \ldots, x_{p}) \in HC(\bigoplus_{i=1}^{p} \mathcal{T}_{i})$, then there exists $\underline{\omega} \in \Omega^{\mathbb{N}_{0}}$ such that

$$\overline{\{(\bigoplus_{i=1}^{p}T_{i})_{\underline{\omega}}^{n}(x_{1},x_{2},\ldots,x_{p}), n\in\mathbb{N}_{0}\}}=\oplus_{i=1}^{p}X_{i},$$

For all i = 1, 2, ..., n, let U_i be a nonempty open subset of X_i , then $U_1 \oplus U_2 \oplus \cdots \oplus U_p$ is a nonempty open subset of $\bigoplus_{i=1}^p X_i$, implies that there exists some $p \in \mathbb{N}_0$ such that

$$(\oplus_{i=1}^{p}T_{i})_{\underline{\omega}}^{n}(x_{1},x_{2},\ldots,x_{p}) = (T_{1,\underline{\omega}}^{n}x_{1},T_{2,\underline{\omega}}^{n}x_{2},\ldots,T_{p,\underline{\omega}}^{n}x_{p}) \in U_{1}\oplus U_{2}\oplus\cdots\oplus U_{p},$$

that is $T_{i,\omega}^p x_i \in U_i$ for all $i = 1, 2, \ldots, p$, it follows that

$$\overline{\{T_{i,\underline{\omega}}^n x_i, n \in \mathbb{N}_0\}} = X_i,$$

Hence \mathfrak{T}_i is hypercyclic in X_i and $x_i \in HC(\mathfrak{T}_i)$, for all $i = 1, 2, \ldots, p$.

Remark 2.9. The converse of Proposition 2.8 is not true in general. Indeed, let $X = \{z \in \mathbb{C} : |z|=1\}$ and $\Omega = \{0,1\}$. We consider the maps $T_0 : X \to X, z \mapsto e^{i\alpha}z$, where α is irrational in $[0, 2\pi[$, and $T_1 = Id_X$. There exists $x \in X$, such that $\{\overline{T_0^n}x, n \in \mathbb{N}_0\} = X$, see [17]. Take $\underline{\omega} = (0, 0, 0, \ldots)$, then $\{\overline{T_{\underline{\omega}}^n}x, n \in \mathbb{N}_0\} = X$, implies that, the random dynamical system $\mathfrak{T} = \{T_{\omega}\}_{\omega \in \Omega}$ is hypercyclic. But $\mathfrak{T} \oplus \mathfrak{T}$ is not hypercyclic.

In the following definition, we introduce the notion of topological transitivity for a random dynamical system.

Definition 2.10. Let X be a topological space, and $\mathcal{T} = \{T_{\omega}\}_{\omega \in \Omega}$ be a random dynamical system on X. We say that \mathcal{T} is topologically transitive on X if: for any U and V nonempty open subsets of X, there exists $\underline{\omega} \in \Omega^{\mathbb{N}_0}$ and $n \in \mathbb{N}_0$, such that

$$T^n_{\omega}(U) \cap V \neq \emptyset.$$

Remark 2.11. Let X be a topological space, and $T: X \to X$ be a continuous map on X. Take $T_{\omega} = T$ for any $\omega \in \Omega$. Then $\{T_{\omega}\}_{\omega \in \Omega}$ is topologically transitive on X if only if T is a topologically transitive operator on X.

Example 2.12. Let $X = \{x \in \mathbb{C} : |x|=1\}$ and $\Omega = \{0,1\}$. Consider the maps: $T_0 : X \to X$, $x \mapsto e^{i\alpha}x$, where $\alpha \in \mathbb{R} - \mathbb{Q}$ and $T_1 : X \to X$, $x \mapsto T_1(x) = x^2$. For any U and V nonempty open subsets of X, there exists some $n \in \mathbb{N}_0$ such that $T_1^n(U) \cap V \neq \emptyset$. Take $\underline{\omega} = (1, 1, 1, ...)$, then for any pair (U, V) of nonempty open subsets of X there exists some $n \in \mathbb{N}_0$, such that

$$T^n_\omega(U) \cap V \neq \emptyset.$$

Thus, the random dynamical $\Upsilon = \{T_0, T_1\}$ is topologically transitive on X.

The topological transitivity of a dynamical system is preserved under quasiconjugacy, see [10]. The following proposition proves that the same result holds for a random dynamical system.

Proposition 2.13. Let X and Y be topological spaces. Let $\mathcal{T} = \{T_{\omega}\}_{\omega \in \Omega}$ and $\mathcal{S} = \{S_{\omega}\}_{\omega \in \Omega}$ be random dynamical systems on X and Y respectively, such that \mathcal{T} is quasiconjugate to S. If \mathcal{S} is topologically transitive on Y, then \mathcal{T} is topologically transitive on X.

Proof. Suppose that S is topologically transitive. Let U and V be nonempty open subsets of X, then $\phi^{-1}(U)$ and $\phi^{-1}(V)$ are nonempty and open of Y. Hence there exists $\underline{\omega} \in \Omega^{\mathbb{N}_0}$ and $n \in \mathbb{N}_0$, such that

$$S^n_{\underline{\omega}}(\phi^{-1}(U)) \cap \phi^{-1}(V) \neq \emptyset.$$

This implies that

Thus $\ensuremath{\mathbb{T}}$ is toplogically transitive.

Corollary 2.14. Let X and Y be two topological spaces. Let $\mathfrak{T} = \{T_{\omega}\}_{\omega \in \Omega}$ and $\mathfrak{S} = \{S_{\omega}\}_{\omega \in \Omega}$ be two random dynamical systems on X and Y respectively, such that \mathfrak{T} is conjugate to S. Then \mathfrak{S} is topologically transitive on Y if only if \mathfrak{T} is topologically transitive on X.

Proposition 2.15. Let $\{X_i\}_{i=1}^n$ be a family of topological spaces and let $\mathfrak{T}_i = \{T_{i,\omega} : \omega \in \Omega\}$ be a random dynamical system on X_i , for all i = 1, 2, ..., n. If $\bigoplus_{i=1}^n \mathfrak{T}_i$ is topologically transitive in $\bigoplus_{i=1}^n X_i$, then \mathfrak{T}_i is topologically transitive in X_i , for all i = 1, 2, ..., n.

Proof. Suppose that $\bigoplus_{i=1}^{n} \mathfrak{T}_{i}$ is topologically transitive. Let U_{i} and V_{i} be nonempty open subsets of X_{i} ; $1 \leq i \leq n$. Then, $U_{1} \oplus U_{2} \oplus \cdots \oplus U_{n}$ and $V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}$ are nonempty open subsets of $\bigoplus_{i=1}^{n} X_{i}$, which implies that there exist $\underline{\omega} \in \Omega^{\mathbb{N}_{0}}$ and $p \in \mathbb{N}_{0}$ such that

$$(\oplus_{i=1}^{n}T_{i})_{\omega}^{p}(U_{1}\oplus U_{2}\oplus\cdots\oplus U_{n})\cap (V_{1}\oplus V_{2}\oplus\cdots\oplus V_{n})\neq\varnothing$$

then

$$(T_{1,\underline{\omega}}^p(U_1)\oplus T_{2,\underline{\omega}}^p(U_2)\oplus\cdots\oplus T_{n,\underline{\omega}}^p(U_n))\cap (V_1\oplus V_2\oplus\cdots\oplus V_n)\neq \emptyset,$$

it follows that

$$T^p_{i,\omega}(U_i) \cap V_i \neq \emptyset$$
 for any $i = 1, 2, \dots, n$.

Thus, \mathcal{T}_i is topologically transitive on X_i , for all $i = 1, 2, \ldots, n$.

Remark 2.16. The converse is not true. Let $X = \{z \in \mathbb{C} : |z|=1\}$ and $\Omega = \{0,1\}$. We consider the maps $T_0: X \to X$, $z \mapsto e^{i\alpha}z$, where α is irrational in $[0, 2\pi[$, and $T_1 = Id_X$. There exists $x \in X$, such that

$$\{\overline{T_0^n x, n \in \mathbb{N}_0}\} = X.$$

Then the random dynamical system $\mathfrak{T} = \{T_{\omega}\}_{\omega \in \Omega}$ is hypercyclic on X, but $\mathfrak{T} \oplus \mathfrak{T}$ is not hypercyclic in $X \oplus X$.

By the Birkhoff's transitivity theorem [12], if X is a separable F-space, then a continuous map on X is hypercyclic if and only if it is topologically transitive. For \mathcal{T} a random dynamical system we have the following remark. Recall that

$$\sigma : \Omega^{\mathbb{N}_0} \longrightarrow \Omega^{\mathbb{N}_0} (\omega_1, \omega_2, \dots) \longmapsto \sigma_{\underline{\omega}} = (\omega_2, \omega_3, \dots)$$

).

the full shift in $\Omega^{\mathbb{N}_0}$.

Remark 2.17. Let X be a topological space without isolated points and $\mathfrak{T} = \{T_{\omega}\}_{\omega \in \Omega}$ be a random dynamical system on X. It is easy to see that if $x \in HC(\mathfrak{T})$ with $\underline{\omega}$, then so is every $T_{\sigma^{p}\underline{w}}x$ $(p \geq 1)$. As a result, we have

$$\operatorname{Orb}(x,\mathfrak{T}) \subset HC(\mathfrak{T})$$

and this shows that $HC(\mathfrak{T})$ is dense in X.

In the following proposition, we prove that if \mathcal{T} is hypercyclic then it is topologically transitive.

Proposition 2.18. Let X be a topological space and $\mathcal{T} = \{T_{\omega}\}_{\omega \in \Omega}$ be a random dynamical system on X, such that for any $\omega \in \Omega$, T_{ω} is a continuous map on X. If \mathcal{T} is hypercyclic on X, then it is topologically transitive on X.

Proof. Suppose that \mathcal{T} is hypercyclic. Then there exists some $x \in X$ and $\underline{\omega} \in \Omega^{\mathbb{N}_0}$ such that

$$\{T^n_\omega x, n \in \mathbb{N}_0\} = X$$

Let U and V be two nonempty open subsets of X, then there exists some $p, n \in \mathbb{N}_0$, such that $T^p_{\underline{\omega}} x \in U$ and $T^n_{\underline{\omega}} x \in V$. Suppose that $n \ge p$, then $T^n_{\underline{\omega}} x = T^{n-p}_{\sigma^p \underline{\omega}} \circ T^p_{\underline{\omega}} x$, which implies that,

$$T^{n-p}_{\sigma^p\omega}(U) \cap V \neq \emptyset.$$

Hence, \mathcal{T} is topologically transitive.

With some additional assumptions on the topological space, the following theorem shows that we have the equivalence between the properties of hypercyclicity and topological transitivity.

Theorem 2.19. Let X be a separable complete metric space X without isolated points. Let $\mathfrak{T} = \{T_{\omega}\}_{\omega \in \Omega}$ be a random dynamical system on X. Then \mathfrak{T} is topologically transitive on X if only if it is hypercyclic on X.

Proof. Let $\{U_k\}_{k\geq 1}$ be a countable base for the topology of X. Then there is some $\underline{\omega} \in \Omega^{\mathbb{N}_0}$ such that for any nonempty open set V in X and each fixed $k \geq 1$, there is some $n \geq 0$ such that

$$T^n_\omega(V) \cap U_k \neq \emptyset$$

or equivalently

$$V \cap T_{\omega}^{-n}(U_k) \neq \emptyset$$

This shows that $\bigcup_{n\geq 0} T_{\underline{\omega}}^{-n}(U_k)$ is dense in X and hence, since X is a Baire space, the set $\cap_{k\geq 1} \cup_{n\geq 0} T_{\omega}^{-n}(U_k)$ is also dense in X. Now, if we define the set

$$D_{\underline{\omega}}(\mathfrak{T}) = \{ x \in X : \overline{\{T_{\underline{\omega}}^n x : n \in \mathbb{N}_0\}} = X \},\$$

then it is easy to see that

$$D_{\underline{\omega}}(\mathfrak{T}) = \bigcap_{k \ge 1} \bigcup_{n \ge 0} T_{\underline{\omega}}^{-n}(U_k)$$

Thus, is a dense G_{δ} set in X and in particular nonempty. So, \mathcal{T} is hypercyclic and we are done.

3. Topological mixing and Weakly Topological Mixing Random Dynamical Systems

In the following definition, we introduce the notion of topological mixing for a random dynamical system.

Definition 3.1. Let X be a topological space, and $\mathcal{T} = \{T_{\omega}\}_{\omega \in \Omega}$ be a random dynamical system on X. We say that \mathcal{T} is topologically mixing on X if, for any U and V nonempty open subsets of X, there exist $\underline{\omega} \in \Omega^{\mathbb{N}_0}$ and $N \in \mathbb{N}_0$, such that

$$T^n_{\omega}(U) \cap V \neq \emptyset$$
, for all $n \ge N$.

Remark 3.2. Let X be a topological space, and $T: X \to X$ be a continuous map on X. Take $T_{\omega} = T$ for any $\omega \in \Omega$. Then $\mathfrak{T} = \{T_{\omega}\}_{\omega \in \Omega}$ is topologically mixing on X if only if T is a topologically mixing operator on X.

Example 3.3. We pose X = [0, 1] and $\Omega = \{0, 1\}$, and we consider the maps: $T_1 : X \to X$,

$$x \mapsto \begin{cases} 2x & if \ x \in [0, \frac{1}{2}] \\ 2 - 2x & if \ x \in]\frac{1}{2}, 1 \end{cases}$$

and $T_2: X \to X$,

$$x \mapsto T_2(x) = x + \alpha \pmod{1}$$

with $\alpha \in [0,1]$. For any U and V of nonempty open subsets of X there exists some $N \in \mathbb{N}_0$, such that

$$T_1^n(U) \cap V \neq \emptyset$$
, for all $n \ge N$,

see [17]. Take $\underline{\omega} = (1, 1, 1, ...)$, then for any pair (U, V) of nonempty open subsets of X there exists some $N \in \mathbb{N}_0$, such that $T^n_{\omega}(U) \cap V \neq \emptyset$, for all $n \ge N$, hence $\mathfrak{T} = \{T_{\omega}\}_{\omega \in \Omega}$ is topologically mixing on Χ.

Proposition 3.4. Let X and Y be two topological spaces. Let $\mathfrak{T} = \{T_{\omega}\}_{\omega \in \Omega}$ and $\mathfrak{S} = \{S_{\omega}\}_{\omega \in \Omega}$ be two random dynamical systems on X and Y respectively, such that \mathcal{T} is quasi-conjugate to S with respect to ϕ . If S is topologically mixing on Y, then T is topologically mixing on X.

Proof. Suppose that S is topologically mixing on X. Let U and V be two nonempty open subsets of X, then $\phi^{-1}(V)$ and $\phi^{-1}(U)$ are nonempty and open in Y. Hence there exist $\underline{\omega} \in \Omega^{\mathbb{N}_0}$ and $N \in \mathbb{N}_0$, such that

$$S^n_{\omega}(\phi^{-1}(U)) \cap \phi^{-1}(V) \neq \emptyset$$
 for all $n \ge N$,

which implies that

$$T^n_{\omega}(U) \cap V \neq \emptyset$$
 for all $n \ge N$.

Thus \mathcal{T} is topologically mixing.

Corollary 3.5. Let X and Y be two topological spaces. Let $\mathfrak{T} = \{T_{\omega}\}_{\omega \in \Omega}$ and $\mathfrak{S} = \{S_{\omega}\}_{\omega \in \Omega}$ be two random dynamical systems on X and Y respectively, such that \mathcal{T} is conjugate to S. Then \mathcal{T} is topologically mixing on X if only if S is topologically mixing on Y.

Proposition 3.6. Let $\{X_i\}_{i=1}^n$ be a family of topological spaces, and let $\mathfrak{T}_i = \{T_{i,\omega} : \omega \in \Omega\}$ be a random dynamical system on X_i , for all i = 1, 2, ..., n. If $\bigoplus_{i=1}^n T_i$ is topologically mixing on $\bigoplus_{i=1}^n X_i$, then T_i is topologically mixing in X_i for all i = 1, 2, ..., n.

Proof. Suppose that $\bigoplus_{i=1}^{n} \mathfrak{T}_{i}$ is topologically mixing. Let U_{i} and V_{i} be nonempty open subsets of X_{i} ; $1 \leq i \leq n$. Then $U_1 \oplus U_2 \oplus \cdots \oplus U_n$ and $V_1 \oplus V_2 \oplus \cdots \oplus V_n$ are nonempty open subsets of $\bigoplus_{i=1}^n X_i$, which implies that there exists $\underline{\omega} \in \Omega^{\mathbb{N}_0}$ and $N \in \mathbb{N}_0$, such that

$$(\bigoplus_{i=1}^{n} T_i)^p_{\omega}(U_1 \oplus U_2 \oplus \cdots \oplus U_n) \cap (V_1 \oplus V_2 \oplus \cdots \oplus V_n) \neq \emptyset$$
, for all $p \ge N$.

Then

$$(T_{1,\omega}^p(U_1) \oplus T_{2,\omega}^p(U_2) \oplus \cdots \oplus T_{n,\omega}^p(U_n)) \cap (V_1 \oplus V_2 \oplus \cdots \oplus V_n) \neq \emptyset, \text{ for all } p \ge N.$$

It follows that

$$T^p_{i,\omega}(U_i) \cap V_i \neq \emptyset,$$

for all $p \ge N$, for any i = 1, 2, ..., n. Thus, \mathcal{T}_i is topologically mixing on X_i for all i = 1, 2, ..., n.

In the following definition, we introduce the notion of weakly topologically mixing for a random dynamical system.

Definition 3.7. Let X be a topological space. A random dynamical system $\mathcal{T} = \{T_{\omega}\}_{\omega \in \Omega}$ is called weakly topologically mixing on X, if $\mathfrak{T} \oplus \mathfrak{T}$ is topologically transitive on $X \oplus X$.

Proposition 3.8. Let X be a topological space, and $\mathfrak{T} = \{T_{\omega}\}_{\omega \in \Omega}$ be a random dynamical system on X. If \mathcal{T} is weakly topologically mixing on X, then it is topologically transitive on X.

Proof. This is a consequence of Proposition 2.15.

Remark 3.9. Let X be a topological space, and $\mathfrak{T} = {T_{\omega}}_{\omega \in \Omega}$ be a random dynamical system on X, then

topologically mixing \Rightarrow weak topologically mixing \Rightarrow topologically transitive.

 \square

Furthermore, if X is a separable complete metric space without isolated points, then

topologically transitive \Leftrightarrow hypercyclic.

Proposition 3.10. Let X and Y be two topological spaces. Let $\mathfrak{T} = \{T_{\omega}\}_{\omega \in \Omega}$ and $\mathfrak{S} = \{S_{\omega}\}_{\omega \in \Omega}$ be two random dynamical systems on X and Y respectively such that \mathfrak{T} is quasiconjugate to S. If S is weakly topologically mixing on Y then \mathfrak{T} is weakly topologically mixing on X.

Proof. Suppose that S is weakly topologically mixing on Y, then $S \oplus S$ is topologically transitive in X. Let $\phi : Y \to X$ be a continuous map with dense range such that for all $\omega \in \Omega$, $T_{\omega} \circ \phi = \phi \circ S_{\omega}$. Take $\psi = \phi \oplus \phi$, then ψ defines a continuous map with dense range from $Y \oplus Y$ to $X \oplus X$. Furthermore, for all $\omega \in \Omega$ we have $\psi \circ (S \oplus S)_{\omega} = (T \oplus T)_{\omega} \circ \psi$. That is $S \oplus S$ is quasiconjugate to $\mathcal{T} \oplus \mathcal{T}$ via ψ . Hence by Proposition (2.13), we deduce that $\mathcal{T} \oplus \mathcal{T}$ is topologically transitive on $X \oplus X$. Thus \mathcal{T} is weakly topologically mixing on X.

Corollary 3.11. Let X and Y be two topological spaces. Let $\mathcal{T} = \{T_{\omega}\}_{\omega \in \Omega}$ and $\mathcal{S} = \{S_{\omega}\}_{\omega \in \Omega}$ be two random dynamical systems on X and Y respectively such that \mathcal{T} is conjugate to S. Then S is weakly topologically mixing on X if only if \mathcal{T} is weakly topologically mixing on Y.

Proposition 3.12. Let X and Y be two topological spaces. Let $\mathfrak{T} = \{T_{\omega}\}_{\omega \in \Omega}$ and $\mathfrak{S} = \{S_{\omega}\}_{\omega \in \Omega}$ be two random dynamical systems on X and Y respectively. If $\mathfrak{T} \oplus \mathfrak{S}$ is weakly topologically mixing on $X \oplus Y$, then \mathfrak{T} and \mathfrak{S} are topologically weakly mixing on X and Y respectively.

Proof. Suppose that $\mathcal{T} \oplus \mathcal{S}$ is weakly mixing. We consider the maps, $\phi : X \oplus Y \to X$, $(x, y) \mapsto x$ and $\psi : X \oplus Y \to X$, $(x, y) \mapsto y$. For all $\omega \in \Omega$ we have $\phi \circ (T \oplus S)_{\omega} = T_{\omega} \circ \phi$ and $\psi \circ (T \oplus S)_{\omega} = S_{\omega} \circ \psi$, then \mathcal{T} is quasiconjugate to $\mathcal{T} \oplus \mathcal{S}$ via ϕ and \mathcal{S} is quasiconjugate to $\mathcal{T} \oplus \mathcal{S}$ via ψ . Thus, by Proposition 3.10 we deduce that \mathcal{T} and \mathcal{S} are weakly topologically mixing on X and Y respectively.

References

- 1. M. Amouch, O. Benchiheb, On cyclic sets of operators, Rendiconti del Circolo Matematico di Palermo Series 2, 68, 521-529, 2019.
- 2. M. Amouch, and O. Benchiheb. "On linear dynamics of sets of operators." Turkish Journal of Mathematics 43.1 (2019): 402-411.
- M. Amouch, O. Benchiheb, Diskcyclicity of sets of operators and applications, Acta Mathematica Sinica, English Series. 36, 1203-1220, 2020.
- 4. M. Amouch, O. Benchiheb, Some versions of supercyclicity for a set of operators, Filomat, 35, 1619-1627, 2021.
- 5. M. Amouch, O. Benchiheb. Codiskcyclic sets of operators on complex topological vector spaces, Proyecciones Journal (2022).
- 6. M. Amouch, O. Benchiheb. On recurrent sets of operators. arXiv:1907.05930v3 [math.FA] 7 May 2022
- M. Ansari, B. Khani-Robati, K. Hedayatian. On the density and transitivity of sets of operators. Turkish Journal of Mathematics 42.1, 181-189, 2018.
- 8. M. Ansari, K. Hedayatian, B. Khani-Robati, A. Moradi. A note on topological and strict transitivity. Iranian Journal of Science and Technology, Transactions A: Science, 42(1), 59-64, 2018.
- 9. F. Bayart, E Matheron. Dynamics of linear operators. 2009; New York, NY, USA, Cambridge University Press, 2009.
- J. P. Bés. Three problem's on hypercyclic operators. Ph.D. thesis, Bowling Green State University, Bowling Green, Ohio, 1998.
- 11. J. P. Bés, A. Peris. Hereditarily hypercyclic operators. Journal of Functional Analysis 167.1, 94-112, 1999.
- 12. G. D. Birkhoff. Surface transformations and their dynamical applications. Acta Mathematica, 43, 1-119, 1922.
- M. De La Rosa, C. Read. A hypercyclic operator whose direct sum T⊕T is not hypercyclic. Journal of Operator Theory 369-380, 2009.
- 14. C. Kitai. Invariant closed sets for linear operators. 1148-1148, (984.
- 15. M. Kostić. Chaos for linear operators and abstract differential equations. Nova Science Publishers, 2020.

- R. M. Gethner, J. H. Shapiro. Universal vectors for operators on spaces of holomorphic functions. Proceedings of the American Mathematical Society 100.2, 281-288, 1987.
- 17. K-G. Grosse-Erdmann, A. Peris Manguillot. Linear chaos. Springer Science and Business Media, 2011.
- K-G. Grosse-Erdmann. Universal families and hypercyclic operators. Bulletin of the American Mathematical Society 36.3, 345-381, 1999.
- A. Ludwig. Trends and open problems in the theory of random dynamical systems. Probability towards 2000. Springer, New York, NY, 34-46, 1998.
- 20. S. Rolewicz. On orbits of elements. Studia Mathematica, 32.1, 17-22, 1969.

Ahmed Zaou, Otmane Benchiheb and Mohamed Amouch, Department of Mathematics, University Chouaib Doukkali, Faculty of science, Eljadida, Morocco . E-mail address: ahmed.zaou19910gmail.com E-mail address: otmane.benchiheb@gmail.com E-mail address: amouch.m@ucd.ac.ma