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On Submanifolds of a Sasakian Manifold

G. S. Shivaprasanna, R. Rajendra, P. Siva Kota Reddy and G. Somashekhara

abstract: In this paper, we study submanifolds of a Sasakian manifolds provide with a torqued vector
field and also accepting a Ricci-Yamabe soliton of both Sasakian manifold and Sasakian spaceform. Further,
we obtain some important results which categorize the submanifolds admitting a Ricci-Yamabe soliton of
Sasakian spaceform.
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1. Introduction

The concepts of Ricci flow and Yamabe flow are introduced in 1988 by Hamilton [13]. Ricci soliton
and Yamabe soliton appear as the limit of the solutions of the Ricci flow and Yamabe flow respectively.
Ricci flow and Yamabe flow have been deliberated by many geometers (See [10,12,14]). The Ricci-Yamabe
flow is studied by Crasmareanu and Guler [9]. Some related developments can be found in [4,5,15-24].
This flow for the metrics on the Riemannian manifolds is defined as

∂

∂t
g(t) = −2p Ric(t) + q r(t)g(t), go = g(0) (1.1)

A soliton to the Ricci-Yamabe flow is called Ricci-Yamabe soliton (RY S) and it is precised on Rie-
mannain manifold (g, V, λ, p, q) satisfying

LV g + 2p S + (2λ − qr)g = 0, (1.2)

where S is the Ricci tensor, r is the scalar curvature, LV is the Lie derivative along the vector field and p, q

are the scalars. (M, g) is called RYS expanding if λ > 0; RYS shrinking if λ < 0; and RYS steady if λ = 0.

The equation (1.2) as RYS of type (p, q) is said to be p-Ricci soliton and q-Yamabe soliton when
q = 0 and p = 0 respectively. Riemannian manifold which admit torqued vector fields were first defined
by Chen [8]. By this definition, a non-zero vector field τ on a Riemannian manifold (M̄, g) is called
torqued vector field, which is given by

∇̄U1
= fU1 + π(U1)τ , π(τ ) = 0, (1.3)

where ∇̄ is the Levi-Civita connection on M̄ , for any U1 ∈ γ(T M̄). The torqued function f and 1-form
π has torqued form of τ .
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2. Preliminaries

Let M̄ be an odd dimensional almost contact metric manifold with an almost contact metric structure
(ϕ, ξ, η, g). Such that ϕ is a tensor field, ξ is a vector field, η is a 1-form tensor field on M̄ and the
Riemannain metric g please the following equations (See [6,7,11]):

ϕ2U1 = −U1 + η(U1)ξ, η ◦ ϕ = 0, ϕξ = 0, η(ξ) = 1,

g(ϕU1, ϕU2) = g(U1, U2) − η(U1)η(U2), g(U1, ϕU2) = −g(ϕU1, U2)

}

(2.1)

for any U1, U2 ∈ γ(T M̄).
An almost contact metric manifold (M̄, ϕ, ξ, η, g) is said to be Sasakian manifold if it satisfy the

following conditions
(∇̄U1ϕ)U2 = g(U1, U2)ξ − η(U2)U1, (∇̄U1

)ξ = −ϕU1 (2.2)

Further, a Sasakian manifold M̄ with constant φ-sectional curvature c is a Sasakian space form and it is
denoted by M̄(c) . The curvature tensor R̄ of a Sasakian space form (See [1,2,12]) is given by

R̄(U1, U2)U3 =
c + 3

4
[g(U2, U3)U1 − g(U1, U3)U2] +

c − 1

4
[g(U1, φU3)φU2

− g(U2, φU3)φU1 + 2g(U1, φU2)φU3 + η(U1)η(U3)U2

− η(U2)η(U3)U1 + g(U1, U3)η(U2)ξ − g(U2, U3)η(U1)ξ] (2.3)

Let M be a submanifold of dimension m of a manifold M̄ (m < n) with metric g. Also ∇ and ∇⊥ be
the incited connection on the tangent bundle T M and the normal bundle T ⊥M of M individually. The
Weingarten and Gauss equations are

∇̄U1
U2 = ∇U1

U2 + h(U1, U2), (2.4)

∇̄U1
V = −AV U1 + ∇⊥

U1
V, (2.5)

for all U1, U2 ∈ γ(T M) and V ∈ γ(T ⊥M), where h and AV are second fundamental form and the shape
operator respectively for the immersion of M into M̄ . From (2.2) and (2.4), which follows that

∇U1
ξ = −ϕU1, (2.6)

h(U1, ξ) = 0, (2.7)

where ∇ is the Levi-Civita connection of M . The h and AV are related by (see [25])

g(h(U1, U2), V ) = g(AV U1, U2) (2.8)

The equation of Gauss is given by

g(R(U1, U2)U3, U4) = g(R̄(U1, U2)U3, U4) + g(h(U1, U4), h(U2, U3))

− g(h(U1, U3), h(U2, U4)) (2.9)

A submanifold M of a manifold M̄ is said to be totally umbilical if

h(U1, U2) = g(U1, U2)L, (2.10)

where U1, U2 ∈ T M and L =
1

m

m
∑

i=1

g(ei, ei), {ei}
m
i=1 is a mean curvature on M . Further, M is called

totally geodesic when h(U1, U2) = 0 and M is minimal in M̄ when L = 0.
Torseforming vector field on a Riemannian manifold M̄ is given by

∇̄U1
ρ = fU1 + π(U1)ρ (2.11)
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Also, 1-form π is called generating form, function f is called conformal scalar of ρ. If π in (1.3) vanishes
identically, then the vector field ρ is called concircular.If f = 1 and π = 0, then the vector field ρ is called
concurrent. The vector field ρ is called recurrent if it satisfies (1.3) with f = 0. Also, if f = π = 0, the
vector field ρin (1.3) is called parallel. Let M̄ be a Sasakian manifold provide with a torqued vector field
τ and φ : M → M̄ be an isometric immersion. Then we get

τ = τ⊤ + τ⊥, (2.12)

where τ⊤and τ⊥ the tangetial and normal components of τ on M̄ , respectively.

3. The Submanifolds admitting RYS of Sasakian Manifolds

Let M be a submanifold provide with a torqued vector field τ of a Sasakian manifold M̄ . We have

∇̄U1
τ = fU1 + π(U1)τ , π(τ ) = 0 (3.1)

Suppose that ξ is a torqued vector field on M̄ . Taking τ = ξ in equation (3.1), we get

∇̄U1
ξ = fU1 + π(U1)ξ π(ξ) = 0 (3.2)

Also, using the inner product with ξ to (3.2), we have

π(U1) = −fη(U1) (3.3)

Hence the equation (3.2) reduces to

∇̄U1
ξ = f(U1 − η(U1ξ)) (3.4)

Since torqued vector field τ on the ambient space M̄ , it follows from (1.3), (2.12) and Gauss and Wein-
garten formula,

∇U1
τ⊤ + h(U1, τ⊤) − Aτ ⊥U1 + ∇⊥

U1
τ⊥ = fU1 + π(U1)τ⊤ + π(U1)τ⊥ (3.5)

To comparing the tangential and normal components of (3.5),we obtain

h(U1, τ⊤) + ∇⊥

U1
τ⊥ = π(U1)τ⊥,

∇U1
τ⊤ − Aτ ⊥U1 = fU1 + π(U1)τ⊤

}

(3.6)

If M is totally geodesic submanifold of M̄ , then the equation (3.6) becomes

∇U1
τ⊤ = fU1 + π(U1)τ⊤, (3.7)

it implies that τ⊤ is a torseforming on M .

Theorem 3.1. Let M be a submanifolds of a Sasakian manifold M̄ provide with a torqued vector field τ .
The submanifold M is totally geodesic if and only if the tangential component τ⊤ of τ is a torse-forming
vector field on M whose conformal scalar is the restriction of the torqued function and whose generating
form is the restriction of the torqued function of τ on M .

We suppose that the submanifold M admits a RYS in Theorem 3.1. From (3.6), we have the following
cases:
Case I: Let we take τ⊤ ∈ γ(D), then from (2.2),(2.7),(2.8) and (3.6) we obtain

g(∇U1
τ⊤, ξ) = g(fU1, ξ), (3.8)

where T M = D ⊕ Span ξ, for any U1 ∈ γ(T M). Since the Riemannian metric g is non-degenere, we have

∇U1
τ⊤ = fU1 (3.9)
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This shows that the vector field τ⊤ is a concircular on M .
On the other hand, from the Lie derivative and (3.9), we have

(Lτ ⊤g)(U1, U2) = g(∇U1
τ⊤, U2) + g(∇U2

τ⊤, U1) = 2fg(U1, U2), (3.10)

for any U1 ∈ γ(T M), which means that the vector field τ⊤ is conformal killing. Also from (1.2)and
(3.10), we get

S(U1, U2) =
1

2p
[qr − 2(λ + f)]g(U1, U2), (3.11)

where S is the Ricci tensor of M . Hence it is Einstein.
Case II: Suppose we take τ⊤ ∈ γ(D), then it follows from (3.8), we have

g(∇U1
τ⊤, ξ) = 0, (3.12)

for any U1 ∈ γ(D). This shows that τ⊤ is a parallel vector field on distribution D. Thus τ⊤ is a D-killing
vector field.

Further, in view of (1.2)and (3.12), we acquire the Ricci tensor SD of the distribution D

SD(U1, U2) =
1

2p
[qr − 2λ]g(U1, U2) (3.13)

Hence the distribution D is an Einstein.
Case III: Suppose we take ξ instead of τ⊤ in (3.7), we have

∇U1
ξ = fU1 + π(U1)ξ (3.14)

Taking the inner product of ξ in (3.14), we obtain

g(∇U1
ξ, ξ) = fη(U1) + π(U1), (3.15)

it implies that
π(U1) = −fU1 (3.16)

We observe that π(ξ) 6= 0, so ξ is a torseforming on M . In view of (3.6), we state that

Corollary 3.2. Let M be a submanifold of a Sasakian manifold M̄ provide with a torqued vector field τ .
If M is τ⊥- umblical, then τ⊤ is a torseforming on M .

Suppose we take ξ instead of τ⊤ in (3.6), we have

∇U1
ξ − Aτ⊥ U1 = fU1 + π(U1)ξ (3.17)

In view of (2.2), (2.4) and (3.17), we obtain

Aτ ⊥U1 = −ϕU1 − fU1 − π(U1)ξ (3.18)

If we use the equations (2.1),(2.8) and (3.18), then we have

g(h(U1, U2), τ⊥) = −g(ϕU1, U2) − fg(U1, U2) − π(U1)η(U2) (3.19)

Interchanging the roles of U1 and U2 in (3.19) gives

g(h(U2, U1), τ⊥) = −g(ϕU2, U1) − fg(U2, U1) − π(U2)η(U1) (3.20)

We know that h and g are symmetric, so from (3.19) and (3.20), it follows that

2g(h(U1, U2), τ⊥) = −2fg(U1, U2) − π(U1)η(U2) − π(U2)η(U1), (3.21)
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for any U1, U2 ∈ γ(T M).
Further, the definition of Lie-derivative together with (3.14) and (3.18) yields

Lξg(U1, U2) = g(∇U1
ξ, U2) + g(∇U2

ξ, U1) = 0 (3.22)

Now, from (1.2) and (3.22) we obtain

S(U1, U2) =
1

2p
(qr − 2λ)g(U1, U2) (3.23)

Hence, it follows that

Theorem 3.3. If M̄ is a Sasakian submanifold provide with a torqued vector field τ and M be a sub-
manifold admitting a RYS of M̄ , then (M, g, ξ, λ) is Einstein.

Contracting (3.23), we obtain

λ =
r[nq − 2p]

2
(3.24)

Theorem 3.4. If M̄ is a Sasakian submanifold provide with a torqued vector field τ , then RYS is

(i) expanding for r[nq − 2p] > 0,

(ii) shrinking for r[nq − 2p] < 0, and

(iii) steady for r[nq − 2p] = 0.

If p = 0, then from (3.24), one has

λ =
nqr

2
(3.25)

Corollary 3.5. If M̄ is a Sasakian submanifold provide with a torqued vector field τ , then q-Yamabe
soliton is

(i) expanding for nqr > 0,

(ii) shrinking for nqr < 0, and

(iii) steady for nqr = 0.

If q = 0, then from (3.24), one has
λ = −rp (3.26)

Corollary 3.6. If M̄ is a Sasakian submanifold provide with a torqued vector field τ , then p-Ricci soliton
is

(i) expanding for rp < 0,

(ii) shrinking for rp > 0, and

(iii) steady for rp = 0.

4. RYS in Sasakian space-form with torqued vector field

The submanifolds admitting a RYS in Sasakian space-form M̄(c) provide with torqued vector field τ .
From the definition of Ricci tensor, we have

S(U2, U3) =

n−1
∑

i=1

g(R(ei, U2)U3, ei) + g(R(ξ, U2)U3, ξ), (4.1)

where R is the Riemannian curvature tensor of the submanifold M .
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Taking U1 = U4 = ei in (2.9) and using (2.1),(2.3),(2.7) and (2.10), we obtain

n−1
∑

i=1

g(R(ei, U2)U3, ei) =
c + 3

4
[(n − 2)g(U2, U3) + η(U2)η(U3)]

+
c − 1

4
[3g(U2, U3) − (n + 2)η(U2)η(U3)]

+ [(n − 2)g(U2, U3) + η(U2)η(U3)] ‖ H ‖2 (4.2)

Putting U1 = U4 = ξ in (2.9), we get

g(R(ξ, U2)U3, ξ) = g(R̄(ξ, U2)U3, ξ) = η(U2)η(U3) − g(U2, U3) (4.3)

Using (4.2) and (4.3) in (4.1), then we have

S(U2, U3) =

[

c(n + 1) + 3n − 7

4
+ (n − 2) ‖ H ‖2

]

g(U2, U3)

+

[

5 − c(n + 1) − n

4
+ ‖ H ‖2

]

η(U2)η(U3) (4.4)

Hence we state that

Theorem 4.1. Let M be an n-dimensional submanifold of Sasakian space form M̄(c). If M is totally
umbilical and the mean curvature ‖ H ‖ is constant, then M is η Einstein.

If we take U2 = U3 = ξ in (3.22), then we have

S(ξ, ξ) =
1

2p
(qr − 2λ) (4.5)

Similarly, if we put U2 = U3 = ξ in (4.4), then we obtain

S(ξ, ξ) =
(n − 1)

[

1+ ‖ H ‖2
]

2
(4.6)

In view of (4.5) and (4.6), we obtain

λ =
qr − p(n − 1)

[

1 + 2 ‖ H ‖2
]

2
(4.7)

This leads to the following result:

Theorem 4.2. Let M be a totally umbilical submanifold of Sasakian spaceform provide with a torqued
vector field τ and admitting a RYS. Then the RYS is

(i) exapanding if qr > p(n − 1)
[

1 + 2 ‖ H ‖2
]

,

(ii) shrinking if qr < p(n − 1)
[

1 + 2 ‖ H ‖2
]

, and

(iii) steady if qr = p(n − 1)
[

1 + 2 ‖ H ‖2
]

.

Putting p = 0 in (4.7), we obtain

λ =
qr

2
(4.8)

Corollary 4.3. Let M be a totally umbilical submanifold of Sasakian spaceform provide with a torqued
vector field τ and admitting a RYS. Then q-Yamabe soliton is

(i) exapanding if qr > 0,
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(ii) shrinking if qr < 0, and

(iii) steady if qr = 0.

Suppose we take q = 0 in (4.7), we get

λ =
p(n − 1)

[

1 + 2 ‖ H ‖2
]

2
(4.9)

Corollary 4.4. Let M be a totally umbilical submanifold of Sasakian spaceform provide with a torqued
vector field τ and admitting RYS. Then p-Ricci soliton is

(i) exapanding if p(n − 1)[1 + 2 ‖ H ‖2] > 0,

(ii) shrinking if p(n − 1)[1 + 2 ‖ H ‖2] < 0, and

(iii) steady if p(n − 1)[1 + 2 ‖ H ‖2] = 0.
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