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The Chevalley–Jordan Decomposition and Spectral Projections of Complex Matrices

Said Zriaa and Mohammed Mouçouf

abstract: In this paper, a novel and simple method for obtaining the Chevalley–Jordan decomposition and
the spectral projections of matrices is presented. Our method is direct and elementary, it gives tractable and
manageable formulas with minimum mathematical prerequisites. Moreover, knowing only some associated
matrices of the matrix, we can simply provide the minimal polynomial of this matrix.
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1. Introduction

The Chevalley–Jordan decomposition of a complex matrix plays a central role in linear algebra. In
a recent work, the Chevalley–Jordan decomposition is proved to be a powerful technique in electroen-
cephalography signals [1]. This decomposition is a further development of Jordan canonical form. For any
square complex matrix the Chevalley–Jordan decomposition exists and unique, it expresses any square
complex matrix as the sum of its commuting diagonalizable part and nilpotent part. This decomposition
can be described if the matrix has its Jordan normal form (which is practically difficult to compute), but
it may computed even if the Jordan normal form does not.

The main purpose of this work is to propose a new and simple method for determining explicitly the
Chevalley–Jordan decomposition and the spectral projections of matrices in a direct way.

Let α1, α2, . . . , αs be distinct elements of C and m1, m2, . . . , ms be nonnegative integers. For any
polynomial P (x) = (x − α1)m1 (x − α2)m2 · · · (x − αs)ms , we denote by Ljkj

(x)[P ] the following polyno-
mial

Ljkj
(x)[P ] = Pj(x)(x − αj)kj

mj−1−kj
∑

i=0

1

i!
g

(i)
j (αj)(x − αj)i, (1.1)

where 1 ≤ j ≤ s, 0 ≤ kj ≤ mj − 1,

Pj(x) =

s
∏

i=1,i6=j

(x − αi)
mi =

P (x)

(x − αj)mj
, 1 ≤ j ≤ s

and

gj(x) = (Pj(x))−1.

Here g
(i)
j (x) denotes the ith derivative of gj(x).

These polynomials are of great importance, they are used in [4] to invert the confluent Vandermonde
matrix and used in [5] for computing the exponential of complex matrices.
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2. Main results

In this section, we will be interested in determining explicit formulas for the Chevalley–Jordan de-
composition and the spectral projections of complex matrices. Our contribution does not consist only in
giving these formulas, but also in making their determination much practical and expressing them in an
elegant representations.
Now, we start by formulating the following important result.

Theorem 2.1. Let A be a k × k matrix, and let χA(x) = (x − α1)m1(x − α2)m2 · · · (x − αs)ms , α1 = 0,
be its characteristic polynomial (possibly m1 = 0). Then for every n ∈ N, we have

An =

m1−1
∑

j=0

δnjB1j +

m2−1
∑

j=0

(

n

j

)

α
n−j
2 B2j + · · · +

ms−1
∑

j=0

(

n

j

)

αn−j
s Bsj , (2.1)

where Bjkj
= Ljkj

(A)[χA] and δnj denotes the Kronecker symbol.

Proof. Using Theorem 2.9 of [5], one can easily prove this result. �

In the present approach, one gains a basic construction of the so-called spectral decomposition of
A. The approach makes the determination of the spectral decomposition of any square matrix more
practical than the usual method of partial fraction decomposition. Using Lagrange polynomials W. A.
Harris et al. [2] have derived the spectral decomposition of a matrix with simple eigenvalues. Here, we
generalize this result to any matrix using a generalization of Hermite’s interpolation formula given by
A. Spitzbart [6].

Using the previous theorem we find a new method to calculate the Chevalley–Jordan decomposition
and the spectral projections of A at the same time.

Theorem 2.2. Let A be a k × k matrix, and let χA(x) = (x − α1)m1(x − α2)m2 · · · (x − αs)ms , α1 = 0,
be its characteristic polynomial (possibly m1 = 0). Then the Chevalley–Jordan decomposition of A is

A = DDD + NNN, (2.2)

where
NNN = B11 + B21 + · · · + Bs1 (2.3)

and
DDD = α2B20 + α3B30 + · · · + αsBs0, (2.4)

where Bjr = Ljr(A)[χA] for j = 1, 2, . . . , s and r = 0, 1. Moreover, B10, B20, . . . , Bs0 are the spectral
projections of A at α1, α2, . . . , αs, respectively.

Proof. To obtain
A = DDD + NNN

and
I = B10 + B20 + · · · + Bs0, (2.5)

it suffices to take n = 1 and n = 0 in Formula (2.1), respectively. Since Bj0, Bj1; j = 1, 2, . . . , s, are
polynomials of the matrix A, we have DDDNNN = NNNDDD.

On the other hand, it is clear that Bj0Bi0 = Bi0Bj0 = 0, i 6= j. Multiplying both sides of (2.5) by
Bj0, we get B2

j0 = Bj0, j = 1, 2, . . . , s.
Furthermore, the matrix Bj0 is diagonalizable, then so is αjBj0. The fact that αjBj0 and αiBi0

commute assures then that DDD is diagonalizable.
To complete the proof, it remains to show that the matrix NNN is nilpotent. To see this, it suffices to

verify, using Formula (1.1), that each Bj1 is nilpotent. �

Remark 2.3. We can immediately find that Bj0, j = 1, 2, . . . , s, are the spectral projections of A by
using Proposition 3.1 and Corollary 3.8 of [3].
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The following examples are illustrations of Theorem 2.2.

Example 2.4. Let us consider the following matrix

A =





2 0 1
0 2 0
0 0 3



 .

It is clear that the characteristic polynomial of A is χA(x) = (x − 2)2(x − 3). The Chevalley–Jordan
decomposition of this matrix is

A = DDD + NNN,

where

DDD = 2B10 + 3B20 and NNN = B11.

A trivial calculation yields

B10 = L10(A)[χA] =





1 0 −1
0 1 0
0 0 0



 ,

B11 = L11(A)[χA] =





0 0 0
0 0 0
0 0 0



 ,

B20 = L20(A)[χA] =





0 0 1
0 0 0
0 0 1



 .

Then

DDD =





2 0 1
0 2 0
0 0 3



 = A and NNN = 0.

We deduce that A is diagonalizable.

Example 2.5. Consider the matrix

A =









1 −1 1 −1
0 −2 0 −3
2 3 0 3
1 5 −1 6









.

The characteristic polynomial of A is χA(x) = (x − 2)(x − 1)3. The Chevalley–Jordan decomposition of
this matrix is

A = DDD + NNN,

where

DDD = 2B10 + B20 and NNN = B21.

On the other hand, we have














B10 = (A − I)3

B20 = (A − 2I)(−A2 + A − I)

B21 = −A(A − 2I)(A − I)
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Simple calculation gives

B10 =









1 1 0 1
0 0 0 0
1 1 0 1
0 0 0 0









,

B20 =









0 −1 0 −1
0 1 0 0

−1 −1 −1 −1
0 0 0 1









,

B21 =









−1 −2 1 −2
0 −3 0 −3
1 2 −1 2
1 5 −1 5









.

Then

DDD =









2 1 0 1
0 1 0 0
1 1 −1 1
0 0 0 1









.

and

NNN =









−1 −2 1 −2
0 −3 0 −3
1 2 −1 2
1 5 −1 5









.

The following Theorem shows that knowing only the associated matrices Bij of A, we can simply
provide the minimal polynomial of the matrix A.

Theorem 2.6. Let A be a matrix and let χA(x) = (x−α1)m1 (x−α2)m2 · · · (x−αs)ms be its characteristic
polynomial with α1 = 0 (possibly m1 = 0). Then,

1. The index of αi is the greatest integer j such that Bij−1 6= 0.

2. The index of αi is 1 if and only if Bi1 = 0.

3. A is diagonalizable if and only if Bi1 = 0, i = 1, 2, . . . , s.

Proof. Clearly Formula (2.1) is a P-canonical form of A (see [3]) and the result follows then from Corol-
lary 3.6., Theorem 4.1. of [3] and Theorem 2.1 above. �

Let us consider the same matrix of Example (2.5)

Example 2.7. We have

A =









1 −1 1 −1
0 −2 0 −3
2 3 0 3
1 5 −1 6









.

Since B21 6= 0, then using (3) of the last theorem the matrix A is not diagonalizable.
It is easy to verify that

B22 = −(A − 2I)(A − I)2 =









0 0 0 0
−3 −6 3 −6
0 0 0 0
3 6 −3 6









.

using (1) of the last theorem the minimal polynomial of A is (x − 2)(x − 1)3.
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3. Conclusion

We have presented a new and elegant method to facilitate the computation of the Chevalley–Jordan
decomposition and the spectral projections of matrices. We can also provide the minimal polynomial of
matrices.
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