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Product of Generalized Derivations of Order 2 with Derivations Acting on Multilinear

Polynomials with Centralizing Conditions ∗

Swarup Kuila and Basudeb Dhara

abstract: Let R be a prime ring with char(R) 6= 2. Suppose that f(x1, . . . , xn) be a noncentral multilinear
polynomial over C, G be a nonzero generalized derivation of R and d a nonzero derivation of R. In this paper
we describe all possible forms of G in the case

G2(f(ξ))d(f(ξ)) ∈ C

for all ξ = (ξ
1
, . . . , ξ

n
) ∈ Rn.
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1. Introduction

Throughout this paper, R always denotes an associative prime ring, extended centroid C, and U its
Utumi quotient ring. It is proven that C is a field, when R is prime ring. Readers are provided [2,4] for
more details about U and C. An additive map d on R is said to be derivation if:

d(xy) = d(x)y + xd(y) for all x, y ∈ R.

In [8] Brešar introduced a new notion by extending the concept of derivation, named generalized deriva-
tion. An additive map F on R is said to be generalized derivation if there exists a derivation d on R such
that:

F (xy) = F (x)y + xd(y) for all x, y ∈ R.

The derivation d involves in the definition of generalized derivation F is called the associated derivation of
F . A polynomial f ∈ C[x1, . . . , xn] is said to be multilinear if it is linear in every xi, 1 ≤ i ≤ n. During last
three decades there has been a lot of studies on generalized derivation (see [1,3,5,6,7,10,11,12,14,17,23,24])
on different subsets of R.

In [19], Lee and Shiue showed that if R is a prime ring, f(x1, . . . , xn) a noncentral multilinear
polynomial over C and d a nonzero derivation of R such that d(u)u ∈ C for all u ∈ f(R), then char(R) = 2
and R satisfies s4.

In [5], Demir and Argaç considered a similar situation where the derivation is replaced by generalized
derivation and the evaluations are taken over a non zero right ideal of R. More precisely they proved:
Let R be a noncommutative prime ring and F is a generalized derivation on R such that F (u)u ∈ C for
all u ∈ f(ρ), where ρ is a right ideal of R. Then F (x) = ax, where a ∈ C and f(x1, . . . , xn)2 is central
valued on R, except when char(R) = 2 and R satisfies s4.

In [14], it is proved that if F1 and F2 are generalized derivations of a prime ring R having char(R) 6= 2,
such that F1(x)F2(x) = 0 for all x ∈ R, then there exist elements p, q ∈ U such that F1(x) = xp and
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F2(x) = qx for all x ∈ R and pq = 0 except when atleast one Fi is zero. Moreover the above identity is
studied by Carini et al [3] by taking the multilinear polynomial and studied the structures of F1 and F2.

Furthermore, Eroǧlu and Argaç [10] determined all possible structures of F by considering F 2(u)u ∈ C
for all u ∈ f(R) and F is a generalized derivation of R.

More recently, Yadav [24] described all possible forms of the maps when F 2(u)d(u) = 0 for all
u ∈ f(R), where F is generalized derivation of R and d is a nonzero derivation of R. He proved the
following:

Let R be a noncommutative prime ring of char(R) 6= 2, U be its Utumi quotient ring, C be its
extended centroid and f(x1, . . . , xn) be a noncentral multilinear polynomial over C. Suppose that d is a
nonzero derivation of R and G is a generalized derivation on R. If

G2(f(ξ))d(f(ξ)) = 0

for all ξ = (ξ1, . . . , ξn) ∈ Rn, then one of the following holds:

1. there exist a ∈ U such that G(x) = ax for all x ∈ R with a2 = 0;

2. there exist a ∈ U such that G(x) = xa for all x ∈ R with a2 = 0.

In this article we extend Yadav’s result [24] in central case. More precisely, we study the following:

Theorem 1.1. Let R be a noncommutative prime ring of char(R) 6= 2, U be its Utumi quotient ring, C
be its extended centroid and f(x1, . . . , xn) be a noncentral multilinear polynomial over C. Suppose that d
is a nonzero derivation of R and G is a generalized derivation on R. If

G2(f(ξ))d(f(ξ)) ∈ C

for all ξ = (ξ1, . . . , ξn) ∈ Rn, then one of the following holds:

1. there exists a ∈ U such that G(x) = ax for all x ∈ R with a2 = 0;

2. there exists a ∈ U such that G(x) = xa for all x ∈ R with a2 = 0.

2. When derivations are inner

We dedicate this section to prove the main theorem in case both the generalized derivation G and the
derivation d are inner, that is, there exist a, b, c ∈ U such that G(x) = ax + xb and d(x) = [c, x] for all
x ∈ R. Then G2(f(ξ))d(f(ξ)) ∈ C for all ξ = (ξ1, . . . , ξn) ∈ Rn implies

a2f(ξ)cf(ξ) + 2af(ξ)bcf(ξ) + f(ξ)b2cf(ξ) − a2f(ξ)2c − 2af(ξ)bf(ξ)c − f(ξ)b2f(ξ)c ∈ C.

This gives

a′f(ξ)cf(ξ)2 + 2af(ξ)pf(ξ)2 + f(ξ)p′f(ξ)2

+ f(ξ)a′f(ξ)2c + 2f(ξ)af(ξ)bf(ξ)c + f(ξ)2b′f(ξ)c

− a′f(ξ)2cf(ξ) − 2af(ξ)bf(ξ)cf(ξ) − f(ξ)b′f(ξ)cf(ξ)

− f(ξ)a′f(ξ)cf(ξ) − 2f(ξ)af(ξ)pf(ξ) − f(ξ)2p′f(ξ) = 0

(2.1)

for all ξ = (ξ1, . . . , ξn) ∈ Rn, where a′ = a2, b′ = b2, p = bc and p′ = b2c.

Proposition 2.1. Let C be a field and R = Mm(C) be the ring of all m × m matrices over C, m ≥ 2.
Suppose that char (R) 6= 2 and f(x1, . . . , xn) a noncentral multilinear polynomial over C. If a, b and
c ∈ R such that (2.1) holds for all ξ = (ξ1, . . . , ξn) ∈ Rn, then either a or b or c are scalar matrices.

Proof. By our assumption (2.1) is a generalized polynomial identity of R. Suppose that all of a, b and c
are not scalar matrices.
Case-I: Suppose that C is infinite field.
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As we assumed a /∈ C.Im and b /∈ C.Im and c /∈ C.Im. By [11, Lemma 1.5] there exists an invertible
matrix P in Mm(C) such that P aP −1, P bP −1 and P cP −1 have all non-zero entries. Clearly R satisfies

P a′P −1f(ξ)P cP −1f(ξ)2 + 2P aP −1f(ξ)P pP −1f(ξ)2

+ f(ξ)P p′P −1f(ξ)2 + f(ξ)P a′P −1f(ξ)2P cP −1

+ 2f(ξ)P aP −1f(ξ)P bP −1f(ξ)P cP −1 + f(ξ)2P b′P −1f(ξ)P cP −1

− P a′P −1f(ξ)2P cP −1f(ξ) − 2P aP −1f(ξ)P bP −1f(ξ)P cP −1f(ξ)

− f(ξ)P b′P −1f(ξ)P cP −1f(ξ) − f(ξ)P a′P −1f(ξ)P cP −1f(ξ)

− 2f(ξ)P aP −1f(ξ)P pP −1f(ξ) − f(ξ)2P p′P −1f(ξ) = 0

(2.2)

for all ξ = (ξ1, . . . , ξn) ∈ Rn. By hypothesis f(x1, . . . , xn) is non central valued. Hence by [18] (see also
[20]), there exist matrices ξ1, . . . , ξn ∈ Mm(C) and 0 6= γ ∈ C such that f(ξ1, . . . , ξn) = γeij , with i 6= j.
We replace this value of f(ξ1, . . . , ξn) in (2.2), we get

2eijP aP −1eijP bP −1eijP cP −1 − 2P aP −1eijP bP −1eijP cP −1eij

− eijP b′P −1eijP cP −1eij − eijP a′P −1eijP cP −1eij

− 2eijP aP −1eijP pP −1eij = 0

(2.3)

Now multiplying by eij in (2.3) from right side, we get 2eijP aP −1eijP bP −1eijP cP −1eij = 0, this implies
eijP aP −1eijP bP −1eijP cP −1eij = 0, as char(R) 6= 2. This is a contradiction as P aP −1, P bP −1 and
P cP −1 have all non-zero entries.

Case-II: When C is finite field.
Let K be an infinite field which is an extension of the field C. Let R = Mm(K) ∼= R ⊗C K. Since
multilinear polynomial f(x1, . . . , xn) is non-central-valued on R, so it is also non-central-valued on R.
Consider the generalized polynomial

φ(ξ1, . . . , ξn) = a′f(ξ)cf(ξ)2 + 2af(ξ)pf(ξ)2 + f(ξ)p′f(ξ)2

+ f(ξ)a′f(ξ)2c + 2f(ξ)af(ξ)bf(ξ)c + f(ξ)2b′f(ξ)c

− a′f(ξ)2cf(ξ) − 2af(ξ)bf(ξ)cf(ξ) − f(ξ)b′f(ξ)cf(ξ)

− f(ξ)a′f(ξ)cf(ξ) − 2f(ξ)af(ξ)pf(ξ) − f(ξ)2p′f(ξ)

which is a generalized polynomial identity for R. Moreover, it is a multi-homogeneous of multi-degree
(2, . . . , 2) in the indeterminates ξ1, . . . , ξn.

Hence the complete linearization of φ(ξ1, . . . , ξn) is a multilinear generalized polynomial
Θ(ξ1, . . . , ξn, s1, . . . , sn) in 2n indeterminates, moreover

Θ(ξ1, . . . , ξn, s1, . . . , sn) = 2nφ(ξ1, . . . , ξn).

Clearly the multilinear polynomial Θ(ξ1, . . . , ξn, s1, . . . , sn) is a generalized polynomial identity for R and
R too. Since char(C) 6= 2 we obtain φ(ξ1, . . . , ξn) = 0 for all ξ1, . . . , ξn ∈ R and then conclusion follows
from above when C was infinite.

�

Proposition 2.2. Let R be a prime ring of char (R) 6= 2, C the extended centroid of R and f(x1, . . . , xn) a
non-central multilinear polynomial over C. If R satisfies (2.1), then either a or b or c are scalar matrices.

Proof. Since R and U satisfy the same generalized polynomial identities (see [4]), U satisfies

a′f(ξ)cf(ξ)2 + 2af(ξ)pf(ξ)2 + f(ξ)p′f(ξ)2

+ f(ξ)a′f(ξ)2c + 2f(ξ)af(ξ)bf(ξ)c + f(ξ)2b′f(ξ)c

− a′f(ξ)2cf(ξ) − 2af(ξ)bf(ξ)cf(ξ) − f(ξ)b′f(ξ)cf(ξ)

− f(ξ)a′f(ξ)cf(ξ) − 2f(ξ)af(ξ)pf(ξ) − f(ξ)2p′f(ξ)

(2.4)
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for all ξ = (ξ1, . . . , ξn) ∈ Un. Suppose that this is a trivial GPI for U . So,

a′f(ξ)cf(ξ)2 + 2af(ξ)pf(ξ)2 + f(ξ)p′f(ξ)2

+ f(ξ)a′f(ξ)2c + 2f(ξ)af(ξ)bf(ξ)c + f(ξ)2b′f(ξ)c

− a′f(ξ)2cf(ξ) − 2af(ξ)bf(ξ)cf(ξ) − f(ξ)b′f(ξ)cf(ξ)

− f(ξ)a′f(ξ)cf(ξ) − 2f(ξ)af(ξ)pf(ξ) − f(ξ)2p′f(ξ)

(2.5)

is zero element in T = U ∗C C{ξ1, . . . , ξn}, the free product of U and C{ξ1, . . . , ξn}, the free C-algebra
in noncommuting indeterminates ξ1, . . . , ξn. This implies {1, c} is linearly C−dependent, that is c ∈ C,
as desired. Let us assume c /∈ C, then by (2.5)

{f(ξ)a′f(ξ) + 2f(ξ)af(ξ)b + f(ξ)2b′}f(ξ)c = 0 ∈ T. (2.6)

This again implies that {1, b, b′} is linearly C−dependent. There exist α1, α2, α3 ∈ C such that α1 +
α2b + α3b′ = 0. If α3 = 0, then α2 6= 0 and hence b ∈ C, as desired. Thus we assume α3 6= 0 and b /∈ C.
Then by (2.6)

{f(ξ)a′f(ξ) + 2f(ξ)af(ξ)b + αf(ξ)2b + βf(ξ)2}f(ξ)c = 0 ∈ T. (2.7)

Assume a /∈ C, then 2f(ξ)af(ξ)bf(ξ)c appears nontrivially in (2.7), which is a contradiction. So, either
a or b or c is central, as desired.
Next suppose that (2.4) is a non-trivial GPI for Q. Let C be the algebraic closure of C. We know that
U and U ⊗C C satisfy the same GPIs. Since both U and U ⊗C C are prime and centrally closed [9,
Theorems 2.5 and 3.5], we may replace R by U or U ⊗C C according to C finite or infinite and then
applying Martindale’s theorem [21], we can say that R is a primitive ring with nonzero socle soc(R) and
with C as its associated division ring. Then, by Jacobson’s theorem [15, p.75], R is isomorphic to a
dense ring of linear transformations of a vector space V over C. Assume first that V is finite dimensional
over C, that is, dimCV = m. By density of R, we have R ∼= Mm(C). Since f(ξ1, . . . , ξn) is not central
valued on R, R must be noncommutative and so m ≥ 2. In this case, by Proposition 2.1, we get that
either a or b or c are in C. If V is infinite dimensional over C, then for any e2 = e ∈ soc(R) we have
eRe ∼= Mt(C) with t =dimCV e. Since a2, a3, a5 are not in C, there exist h1, h2, h3 ∈ soc(R) such that
[a, h1] 6= 0 [b, h2] 6= 0, [c, h3] 6= 0. By Litoff’s Theorem [13], there exists idempotent e ∈ soc(R) such that
ah1, h1a, bh2, h2b, ch3, h3c, h1, h2, h3 ∈ eRe. Since R satisfies generalized identity

e

{

a′f(eξ1e, . . . , eξne)cf(eξ1e, . . . , eξne)2 + 2af(eξ1e, . . . , eξne)pf(eξ1e, . . . , eξne)2

+ f(eξ1e, . . . , eξne)p′f(eξ1e, . . . , eξne)2 + f(eξ1e, . . . , eξne)a′f(eξ1e, . . . , eξne)2c

+ 2f(eξ1e, . . . , eξne)af(eξ1e, . . . , eξne)bf(eξ1e, . . . , eξne)c

+ f(eξ1e, . . . , eξne)2b′f(eξ1e, . . . , eξne)c − a′f(eξ1e, . . . , eξne)2cf(eξ1e, . . . , eξne)

− 2af(eξ1e, . . . , eξne)bf(eξ1e, . . . , eξne)cf(eξ1e, . . . , eξne)

− f(eξ1e, . . . , eξne)b′f(eξ1e, . . . , eξne)cf(eξ1e, . . . , eξne)

− f(eξ1e, . . . , eξne)a′f(eξ1e, . . . , eξne)cf(eξ1e, . . . , eξne)

− 2f(eξ1e, . . . , eξne)af(eξ1e, . . . , eξne)pf(eξ1e, . . . , eξne)

− f(eξ1e, . . . , eξne)2p′f(eξ1e, . . . , eξne)

}

e = 0,
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then the subring eRe satisfies

ea′ef(ξ1, . . . , ξn)ecef(ξ1, . . . , ξn)2 + 2eaef(ξ1, . . . , ξn)epef(ξ1, . . . , ξn)2

+ f(ξ1, . . . , ξn)ep′ef(ξ1, . . . , ξn)2 + f(ξ1, . . . , ξn)ea′ef(ξ1, . . . , ξn)2ece

+ 2f(ξ1, . . . , ξn)eaef(ξ1, . . . , ξn)ebef(ξ1, . . . , ξn)ece

+ f(ξ1, . . . , ξn)2eb′ef(ξ1, . . . , ξn)ece − ea′ef(ξ1, . . . , ξn)2ecef(ξ1, . . . , ξn)

− 2eaef(ξ1, . . . , ξn)ebef(ξ1, . . . , ξn)ecef(ξ1, . . . , ξn)

− f(ξ1, . . . , ξn)eb′ef(ξ1, . . . , ξn)ecef(ξ1, . . . , ξn)

− f(ξ1, . . . , ξn)ea′ef(ξ1, . . . , ξn)ecef(ξ1, . . . , ξn)

− 2f(ξ1, . . . , ξn)eaef(ξ1, . . . , ξn)epef(ξ1, . . . , ξn)

− f(ξ1, . . . , ξn)2ep′ef(ξ1, . . . , ξn) = 0.

Then by the above finite dimensional case, either eae or ebe or ece are central elements of eRe. Thus either
ah1 = (eae)h1 = h1(eae) = h1a or bh2 = (ebe)h2 = h2(ebe) = h2b or ch3 = (ece)h3 = h3(ece) = h3c, in
any case we get a contradiction.

Hence, we say that either a or b or c are in C. �

By the same way as above we can prove the following prepositions.

Proposition 2.3. Let R be a prime ring of char (R) 6= 2, C the extended centroid of R and f(x1, . . . , xn)
a non-central multilinear polynomial over C. If c and k ∈ R such that

f(ξ)kcf(ξ)2 − f(ξ)kf(ξ)cf(ξ) − f(ξ)2kcf(ξ) + f(ξ)2kf(ξ)c = 0

for all ξ = (ξ1, . . . , ξn) ∈ Rn, then either k ∈ C or c ∈ C.

Proposition 2.4. Let R be a prime ring of char (R) 6= 2, C the extended centroid of R and f(x1, . . . , xn)
a non-central multilinear polynomial over C. If c and k ∈ R such that

kf(ξ)cf(ξ)2 − kf(ξ)2cf(ξ) − f(ξ)kf(ξ)cf(ξ) + f(ξ)kf(ξ)2c = 0

for all ξ = (ξ1, . . . , ξn) ∈ Rn, then either k ∈ C or c ∈ C.

Lemma 2.5. Let R be a noncommutative prime ring of char(R) 6= 2, U be its Utumi quotient ring, C be
its extended centroid and f(x1, . . . , xn) be a noncentral multilinear polynomial over C. Suppose for some
a, b, c ∈ U , G(x) = ax + xb, and d(x) = [c, x] for all x ∈ R with c /∈ C. If

G2(f(ξ))d(f(ξ)) ∈ C

for all ξ = (ξ1, . . . , ξn) ∈ Rn, then one of the following holds:

1. G(x) = (a + b)x for all x ∈ R with (a + b)2 = 0;

2. G(x) = x(a + b) for all x ∈ R with (a + b)2 = 0.

Proof. By the hypothesis, we have

(

a2f(ξ) + 2af(ξ)b + f(ξ)b2
)(

cf(ξ) − f(ξ)c
)

∈ C (2.8)

that is
[(

a2f(ξ) + 2af(ξ)b + f(ξ)b2
)(

cf(ξ) − f(ξ)c
)

, f(ξ)
]

= 0 (2.9)

for all ξ = (ξ1, . . . , ξn) ∈ Rn. Then by Proposition 2.2, either a ∈ C or b ∈ C or c ∈ C. Since c /∈ C, so
either a ∈ C or b ∈ C.

If a ∈ C, it follows hypothesis as

f(ξ)(a + b)2
(

cf(ξ) − f(ξ)c
)

∈ C
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that is

f(ξ)(a + b)2cf(ξ)2 − f(ξ)(a + b)2f(ξ)cf(ξ) − f(ξ)2(a + b)2cf(ξ) + f(ξ)2(a + b)2f(ξ)c = 0

for all ξ = (ξ1, . . . , ξn) ∈ Rn. Then by Proposition 2.3, (a + b)2 ∈ C.
If b ∈ C, it follows hypothesis as

(a + b)2f(ξ)
(

cf(ξ) − f(ξ)c
)

∈ C

that is

(a + b)2f(ξ)cf(ξ)2 − (a + b)2f(ξ)2cf(ξ) − f(ξ)(a + b)2f(ξ)cf(ξ) + f(ξ)(a + b)2f(ξ)2c = 0

for all ξ = (ξ1, . . . , ξn) ∈ Rn. Then by Proposition 2.4, (a + b)2 ∈ C. Thus in both the above cases we
have (a + b)2 ∈ C and hence we can write (a + b)2x = G2(x) = x(a + b)2 for all x ∈ f(R).

Considering G2(f(ξ)) = f(ξ)(a+b)2, our hypothesis G2(f(ξ))d(f(ξ)) ∈ C gives f(ξ)
[

(a+b)2c, f(ξ)
]

∈
C for all ξ = (ξ1, . . . , ξn) ∈ Rn. Then by [19] we have (a + b)2c ∈ C. This implies (a + b)2 = 0 as c /∈ C.

Thus we arrive either G(x) = (a+b)x or x(a+b), with (a+b)2 = 0. These are our required conclusions.
�

3. Proof of the main theorem

In light of the notion in [17, Theorem 3], generalized derivation G has its form G(x) = ax + δ(x) for
some a ∈ U and δ is a derivation on U .

Now if we consider f(ξ1, . . . , ξn) be a noncentral multilinear polynomial over the field C and d is a
derivation on R.

We shall use the notation

f(ξ1, . . . , ξn) = ξ1ξ2 · · · ξn +
∑

σ∈Sn,σ 6=id

ασξσ(1)ξσ(2) · · · ξσ(n)

for some ασ ∈ C, and Sn denotes the symmetric group of degree n.
Then we have

d(f(ξ1, . . . , ξn)) = fd(ξ1, . . . , ξn) +
∑

i

f(ξ1, . . . , d(ξi), . . . , ξn),

where fd(ξ1, . . . , ξn) be the polynomials obtained from f(ξ1, . . . , ξn) replacing each coefficients ασ with
d(ασ). Similarly, by calculation, we have

d2(f(ξ1, . . . , ξn)) = fd2

(ξ1, . . . , ξn) + 2
∑

i

fd(ξ1, . . . , d(ξi), . . . , ξn)

+
∑

i

f(ξ1, . . . , d2(ξi), . . . , ξn)

+
∑

i6=j

f(ξ1, . . . , d(ξi), . . . , d(ξj), . . . , ξn).

By hypothesis, we have
(

G(a)f(ξ) + 2aδ(f(ξ)) + δ2(f(ξ))
)

d(f(ξ)) ∈ C

for all ξ = (ξ1, . . . , ξn) ∈ Rn. By [18], we have
(

G(a)f(ξ) + 2aδ(f(ξ)) + δ2(f(ξ))
)

d(f(ξ)) ∈ C (3.1)

for all ξ = (ξ1, . . . , ξn) ∈ Un.

If d and δ both are inner derivations, then by Proposition 2.2, we have our conclusions of Main
Theorem. Thus, to prove our Main Theorem, we need to consider the case when not both d and δ are
inner. Indeed we have to consider the two following embedded cases.



Generalized Derivations on Multilinear Polynomials 7

• d and δ are linearly C-independent modulo inner derivations of U .

• d and δ are linearly C-dependent modulo inner derivations of U .

Case-1: When d and δ are linearly C-independent modulo inner derivations of U .

By (3.1) U satisfies
{

F (a)f(ξ1, . . . , ξn) + 2a
{

f δ(ξ1, . . . , ξn) +
∑

i

f(ξ1, . . . , δ(ξi), . . . , ξn)
}

+
{

f δ2

(ξ1, . . . , ξn) + 2
∑

i

f δ(ξ1, . . . , δ(ξi), . . . , ξn) +
∑

i

f(ξ1, . . . , δ2(ξi), . . . , ξn)

+
∑

i6=j

f(ξ1, . . . , δ(ξi), . . . , δ(ξj), . . . , ξn)
}

}

{

fd(ξ1, . . . , ξn)

+
∑

i

f(ξ1, . . . , d(ξi), . . . , ξn)
}

∈ C.

for all ξ1, . . . , ξn ∈ U . Since d and δ are not inner, by Kharchenko’s theorem [16], U satisfies
{

F (a)f(ξ1, . . . , ξn) + 2a
{

f δ(ξ1, . . . , ξn) +
∑

i

f(ξ1, . . . , xi, . . . , ξn)
}

+
{

f δ2

(ξ1, . . . , ξn) + 2
∑

i

f δ(ξ1, . . . , xi, . . . , ξn) +
∑

i

f(ξ1, . . . , yi, . . . , ξn)

+
∑

i6=j

f(ξ1, . . . , xi, . . . , xj , . . . , ξn)
}

}

{

fd(ξ1, . . . , ξn)

+
∑

i

f(ξ1, . . . , zi, . . . , ξn)
}

∈ C.

In particular U satisfies the blended component
[

∑

i

f(ξ1, . . . , yi, . . . , ξn)
∑

i

f(ξ1, . . . , zi, . . . , ξn), f(ξ1, . . . , ξn)

]

= 0. (3.2)

Putting yi = [q′, ξi] for each i ∈ {1, . . . , n}, for some q′ /∈ C and z1 = ξ1, z2 = . . . , zn = 0, we get
[

[q′f(ξ1, . . . , ξn)]f(ξ1, . . . , ξn), f(ξ1, . . . , ξn)
]

= 0

that is
[q′, f(ξ1, . . . , ξn)]2f(ξ1, . . . , ξn) = 0

this implies
[q′, f(ξ1, . . . , ξn)]2 = 0 as f(ξ1, . . . , ξn) /∈ C

for all ξ1, . . . , ξn ∈ U . Then by [22] we get q′ ∈ C, which is a contradiction.

Case-2: When d and δ are linearly C-dependent modulo inner derivations of U .

In this case we get α, β ∈ C and q ∈ U such that αd + βδ = adq. It is clear from the context that
(α, β) 6= (0, 0). So with out loss of generality we arrive the following two subcases:

Sub-case-i: When α = 0.
Then we get δ(x) = [p, x], where p = β−1q. It is obvious that d is not inner, otherwise we get contradiction.
Now from (3.1) we have

(a′2f(ξ1, . . . , ξn) + 2a′f(ξ1, . . . , ξn)b′ + f(ξ1, . . . , ξn)b′2)df
(

d(f(ξ1, . . . , ξn))
)

∈ C
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for all ξ1, . . . , ξn ∈ U and a′ = a + p, b′ = −p ∈ U . Now from above we can write

(

a′2f(ξ1, . . . , ξn) + 2a′f(ξ1, . . . , ξn)b′ + f(ξ1, . . . , ξn)b′2
)

.
(

fd(ξ1, . . . , ξn) +
∑

i

f(ξ1, . . . , d(ξi), . . . , ξn)
)

∈ C. (3.3)

Since d is not inner, by Kharchenko’s theorem [16]

(

a′2f(ξ1, . . . , ξn) + 2a′f(ξ1, . . . , ξn)b′ + f(ξ1, . . . , ξn)b′2
)

.
(

fd(ξ1, . . . , ξn) +
∑

i

f(ξ1, . . . , yi, . . . , ξn)
)

∈ C.

In particular U satisfies the blended component
[

(

a′2f(ξ1, . . . , ξn) + 2a′f(ξ1, . . . , ξn)b′ + f(ξ1, . . . , ξn)b′2
)

.

∑

i

f(ξ1, . . . , yi, . . . , ξn), f(ξ1, . . . , ξn)

]

= 0.
(3.4)

Replacing yi by [q, ξi], for some q /∈ C in (3.4) we have

[

(

a′2f(ξ1, . . . , ξn) + 2a′f(ξ1, . . . , ξn)b′ + f(ξ1, . . . , ξn)b′2
)

[

q, f(ξ1, . . . , ξn)
]

, f(ξ1, . . . , ξn)

]

= 0.

(3.5)

Which is similar as (2.9) of Lemma 2.5, so from there we get our conclusions (1) and (2) of main theorem.

Sub-case-ii: When α 6= 0.
Then we have d = µδ + adc, for some µ ∈ C and c ∈ U . Here δ never be an inner derivation, otherwise
both d and δ will be inner, a contradiction. Then from (3.1) we have

(

G(a)f(ξ1, . . . , ξn) + 2aδ(f(ξ1, . . . , ξn)) + δ2(f(ξ1, . . . , ξn))
)

(

µδ
(

f(ξ1, . . . , ξn)
)

+
[

c, f(ξ1, . . . , ξn)
])

∈ C
(3.6)

for all ξ = (ξ1, . . . , ξn) ∈ Un. This is a differential identity containing the terms of the type δ and δ2.
As, δ and δ2 are outer, by Kharchenko’s theorem [16] δ(ξi) and δ2(ξi) can be replaced by xi and yi

respectively in (3.6). And hence U satisfies the blended component

(

∑

i

f(ξ1, . . . , yi, . . . , ξn)
)(

µ
∑

i

f(ξ1, . . . , xi, . . . , ξn)
)

∈ C,

that is
[

µ
∑

i

f(ξ1, . . . , yi, . . . , ξn)
∑

i

f(ξ1, . . . , xi, . . . , ξn), f(ξ1, . . . , ξn)

]

= 0. (3.7)

Replacing yi by [q, ξi], where q /∈ C and x1 = ξ1, x2 = . . . = xn = 0 in (3.7) we get

[

µ
[

q, f(ξ1, . . . , ξn)
]

f(ξ1, . . . , ξn), f(ξ1, . . . , ξn)

]

= 0,

that is
[

[

µq, f(ξ1, . . . , ξn)
]

, f(ξ1, . . . , ξn)

]

f(ξ1, . . . , ξn) = 0,

that is
[

µq, f(ξ1, . . . , ξn)
]

2
= 0,
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for all ξ1, . . . , ξn ∈ R, as f(ξ1, . . . , ξn) is noncentral. So by [22] we get µq ∈ C, this says µ = 0. Then
from (3.6) we get

(

G(a)f(ξ1, . . . , ξn) + 2aδ(f(ξ1, . . . , ξn))

+ δ2(f(ξ1, . . . , ξn))

)

[

c, f(ξ1, . . . , ξn)
]

∈ C,

(3.8)

for all ξ1, . . . , ξn ∈ U . Again from above putting the expressions of δ(f(ξ1, . . . , ξn)) and δ2(f(ξ1, . . . , ξn))
we will find a blended component satisfied by U as follows:

∑

i

f(ξ1, . . . , δ2(ξi), . . . , ξn)[c, f(ξ1, . . . , ξn)] ∈ C. (3.9)

As it is mentioned earlier that δ is outer, then by applying Kharchenko’s theorem [16], we replace δ2(ξi)
by yi in (3.9) we get the following:

∑

i

f(ξ1, . . . , yi, . . . , ξn)[c, f(ξ1, . . . , ξn)] ∈ C.

In particular y1 = ξ1 and y2 = · · · yn = 0 we get

f(ξ1, . . . , ξn)[c, f(ξ1, . . . , ξn)] ∈ C

for all ξ1, . . . , ξn ∈ R. Then from [19] we get c ∈ C. Finally we get µ = 0 and c ∈ C, which implies
d = 0, a contradiction.

This completes the proof.
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