

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 2024 (42)** : 1–10. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.63862

Product of Generalized Derivations of Order 2 with Derivations Acting on Multilinear Polynomials with Centralizing Conditions *

Swarup Kuila and Basudeb Dhara

ABSTRACT: Let R be a prime ring with $char(R) \neq 2$. Suppose that $f(x_1, \ldots, x_n)$ be a noncentral multilinear polynomial over C, G be a nonzero generalized derivation of R and d a nonzero derivation of R. In this paper we describe all possible forms of G in the case

 $G^2(f(\xi))d(f(\xi)) \in C$

for all $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$.

Key Words: Prime ring, derivation, generalized derivation.

Contents

1 Introduction

2 When derivations are inner

3 Proof of the main theorem

1. Introduction

Throughout this paper, R always denotes an associative prime ring, extended centroid C, and U its Utumi quotient ring. It is proven that C is a field, when R is prime ring. Readers are provided [2,4] for more details about U and C. An additive map d on R is said to be derivation if:

$$d(xy) = d(x)y + xd(y)$$
 for all $x, y \in R$.

In [8] Brešar introduced a new notion by extending the concept of derivation, named generalized derivation. An additive map F on R is said to be generalized derivation if there exists a derivation d on R such that:

$$F(xy) = F(x)y + xd(y)$$
 for all $x, y \in R$.

The derivation d involves in the definition of generalized derivation F is called the associated derivation of F. A polynomial $f \in C[x_1, \ldots, x_n]$ is said to be multilinear if it is linear in every $x_i, 1 \le i \le n$. During last three decades there has been a lot of studies on generalized derivation (see [1,3,5,6,7,10,11,12,14,17,23,24]) on different subsets of R.

In [19], Lee and Shiue showed that if R is a prime ring, $f(x_1, \ldots, x_n)$ a noncentral multilinear polynomial over C and d a nonzero derivation of R such that $d(u)u \in C$ for all $u \in f(R)$, then char(R) = 2 and R satisfies s_4 .

In [5], Demir and Argaç considered a similar situation where the derivation is replaced by generalized derivation and the evaluations are taken over a non zero right ideal of R. More precisely they proved: Let R be a noncommutative prime ring and F is a generalized derivation on R such that $F(u)u \in C$ for all $u \in f(\rho)$, where ρ is a right ideal of R. Then F(x) = ax, where $a \in C$ and $f(x_1, \ldots, x_n)^2$ is central valued on R, except when char(R) = 2 and R satisfies s_4 .

In [14], it is proved that if F_1 and F_2 are generalized derivations of a prime ring R having $char(R) \neq 2$, such that $F_1(x)F_2(x) = 0$ for all $x \in R$, then there exist elements $p, q \in U$ such that $F_1(x) = xp$ and

1

 $\mathbf{2}$

6

 $^{^{*}\,}$ The first author expresses his thanks to the University Grants Commission, New Delhi, for its JRF awarded to him under UGC-Ref. No.: 1168/(CSIR-UGC NET JUNE 2018) dated 16.04.2019.

²⁰¹⁰ Mathematics Subject Classification: 16W25, 16N60.

Submitted June 06, 2022. Published January 11, 2023

 $F_2(x) = qx$ for all $x \in R$ and pq = 0 except when at least one F_i is zero. Moreover the above identity is studied by Carini et al [3] by taking the multilinear polynomial and studied the structures of F_1 and F_2 .

Furthermore, Eroğlu and Argaç [10] determined all possible structures of F by considering $F^2(u)u \in C$ for all $u \in f(R)$ and F is a generalized derivation of R.

More recently, Yadav [24] described all possible forms of the maps when $F^2(u)d(u) = 0$ for all $u \in f(R)$, where F is generalized derivation of R and d is a nonzero derivation of R. He proved the following:

Let R be a noncommutative prime ring of $char(R) \neq 2$, U be its Utumi quotient ring, C be its extended centroid and $f(x_1, \ldots, x_n)$ be a noncentral multilinear polynomial over C. Suppose that d is a nonzero derivation of R and G is a generalized derivation on R. If

$$G^2(f(\xi))d(f(\xi)) = 0$$

for all $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, then one of the following holds:

- 1. there exist $a \in U$ such that G(x) = ax for all $x \in R$ with $a^2 = 0$;
- 2. there exist $a \in U$ such that G(x) = xa for all $x \in R$ with $a^2 = 0$.

In this article we extend Yadav's result [24] in central case. More precisely, we study the following:

Theorem 1.1. Let R be a noncommutative prime ring of $char(R) \neq 2$, U be its Utumi quotient ring, C be its extended centroid and $f(x_1, \ldots, x_n)$ be a noncentral multilinear polynomial over C. Suppose that d is a nonzero derivation of R and G is a generalized derivation on R. If

$$G^2(f(\xi))d(f(\xi)) \in C$$

for all $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, then one of the following holds:

- 1. there exists $a \in U$ such that G(x) = ax for all $x \in R$ with $a^2 = 0$;
- 2. there exists $a \in U$ such that G(x) = xa for all $x \in R$ with $a^2 = 0$.

2. When derivations are inner

We dedicate this section to prove the main theorem in case both the generalized derivation G and the derivation d are inner, that is, there exist $a, b, c \in U$ such that G(x) = ax + xb and d(x) = [c, x] for all $x \in R$. Then $G^2(f(\xi))d(f(\xi)) \in C$ for all $\xi = (\xi_1, \ldots, \xi_n) \in R^n$ implies

$$a^{2}f(\xi)cf(\xi) + 2af(\xi)bcf(\xi) + f(\xi)b^{2}cf(\xi) - a^{2}f(\xi)^{2}c - 2af(\xi)bf(\xi)c - f(\xi)b^{2}f(\xi)c \in C.$$

This gives

$$a'f(\xi)cf(\xi)^{2} + 2af(\xi)pf(\xi)^{2} + f(\xi)p'f(\xi)^{2} + f(\xi)a'f(\xi)^{2}c + 2f(\xi)af(\xi)bf(\xi)c + f(\xi)^{2}b'f(\xi)c - a'f(\xi)^{2}cf(\xi) - 2af(\xi)bf(\xi)cf(\xi) - f(\xi)b'f(\xi)cf(\xi) - f(\xi)a'f(\xi)cf(\xi) - 2f(\xi)af(\xi)pf(\xi) - f(\xi)^{2}p'f(\xi) = 0$$
(2.1)

for all $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, where $a' = a^2$, $b' = b^2$, p = bc and $p' = b^2c$.

Proposition 2.1. Let C be a field and $R = M_m(C)$ be the ring of all $m \times m$ matrices over C, $m \ge 2$. Suppose that char $(R) \ne 2$ and $f(x_1, \ldots, x_n)$ a noncentral multilinear polynomial over C. If a, b and $c \in R$ such that (2.1) holds for all $\xi = (\xi_1, \ldots, \xi_n) \in R^n$, then either a or b or c are scalar matrices.

Proof. By our assumption (2.1) is a generalized polynomial identity of R. Suppose that all of a, b and c are not scalar matrices.

Case-I: Suppose that C is infinite field.

As we assumed $a \notin C.I_m$ and $b \notin C.I_m$ and $c \notin C.I_m$. By [11, Lemma 1.5] there exists an invertible matrix P in $M_m(C)$ such that PaP^{-1} , PbP^{-1} and PcP^{-1} have all non-zero entries. Clearly R satisfies

$$Pa'P^{-1}f(\xi)PcP^{-1}f(\xi)^{2} + 2PaP^{-1}f(\xi)PpP^{-1}f(\xi)^{2} + f(\xi)Pp'P^{-1}f(\xi)^{2} + f(\xi)Pa'P^{-1}f(\xi)^{2}PcP^{-1} + 2f(\xi)PaP^{-1}f(\xi)PbP^{-1}f(\xi)PcP^{-1} + f(\xi)^{2}Pb'P^{-1}f(\xi)PcP^{-1} - Pa'P^{-1}f(\xi)^{2}PcP^{-1}f(\xi) - 2PaP^{-1}f(\xi)PbP^{-1}f(\xi)PcP^{-1}f(\xi) - f(\xi)Pb'P^{-1}f(\xi)PcP^{-1}f(\xi) - f(\xi)Pa'P^{-1}f(\xi)PcP^{-1}f(\xi) - 2f(\xi)PaP^{-1}f(\xi)PpP^{-1}f(\xi) - f(\xi)^{2}Pp'P^{-1}f(\xi) = 0$$

$$(2.2)$$

for all $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$. By hypothesis $f(x_1, \ldots, x_n)$ is non central valued. Hence by [18] (see also [20]), there exist matrices $\xi_1, \ldots, \xi_n \in M_m(C)$ and $0 \neq \gamma \in C$ such that $f(\xi_1, \ldots, \xi_n) = \gamma e_{ij}$, with $i \neq j$. We replace this value of $f(\xi_1, \ldots, \xi_n)$ in (2.2), we get

$$2e_{ij}PaP^{-1}e_{ij}PbP^{-1}e_{ij}PcP^{-1} - 2PaP^{-1}e_{ij}PbP^{-1}e_{ij}PcP^{-1}e_{ij}- e_{ij}Pb'P^{-1}e_{ij}PcP^{-1}e_{ij} - e_{ij}Pa'P^{-1}e_{ij}PcP^{-1}e_{ij}- 2e_{ij}PaP^{-1}e_{ij}PpP^{-1}e_{ij} = 0$$
(2.3)

Now multiplying by e_{ij} in (2.3) from right side, we get $2e_{ij}PaP^{-1}e_{ij}PbP^{-1}e_{ij}PcP^{-1}e_{ij} = 0$, this implies $e_{ij}PaP^{-1}e_{ij}PbP^{-1}e_{ij}PcP^{-1}e_{ij} = 0$, as $char(R) \neq 2$. This is a contradiction as PaP^{-1} , PbP^{-1} and PcP^{-1} have all non-zero entries.

Case-II: When C is finite field.

Let K be an infinite field which is an extension of the field C. Let $\overline{R} = M_m(K) \cong R \otimes_C K$. Since multilinear polynomial $f(x_1, \ldots, x_n)$ is non-central-valued on R, so it is also non-central-valued on \overline{R} . Consider the generalized polynomial

$$\begin{split} \phi(\xi_1, \dots, \xi_n) &= a' f(\xi) c f(\xi)^2 + 2a f(\xi) p f(\xi)^2 + f(\xi) p' f(\xi)^2 \\ &+ f(\xi) a' f(\xi)^2 c + 2f(\xi) a f(\xi) b f(\xi) c + f(\xi)^2 b' f(\xi) c \\ &- a' f(\xi)^2 c f(\xi) - 2a f(\xi) b f(\xi) c f(\xi) - f(\xi) b' f(\xi) c f(\xi) \\ &- f(\xi) a' f(\xi) c f(\xi) - 2f(\xi) a f(\xi) p f(\xi) - f(\xi)^2 p' f(\xi) \end{split}$$

which is a generalized polynomial identity for R. Moreover, it is a multi-homogeneous of multi-degree $(2, \ldots, 2)$ in the indeterminates ξ_1, \ldots, ξ_n .

Hence the complete linearization of $\phi(\xi_1, \ldots, \xi_n)$ is a multilinear generalized polynomial $\Theta(\xi_1, \ldots, \xi_n, s_1, \ldots, s_n)$ in 2n indeterminates, moreover

$$\Theta(\xi_1,\ldots,\xi_n,s_1,\ldots,s_n)=2^n\phi(\xi_1,\ldots,\xi_n)$$

Clearly the multilinear polynomial $\Theta(\xi_1, \ldots, \xi_n, s_1, \ldots, s_n)$ is a generalized polynomial identity for R and \overline{R} too. Since $char(C) \neq 2$ we obtain $\phi(\xi_1, \ldots, \xi_n) = 0$ for all $\xi_1, \ldots, \xi_n \in \overline{R}$ and then conclusion follows from above when C was infinite.

Proposition 2.2. Let R be a prime ring of char $(R) \neq 2$, C the extended centroid of R and $f(x_1, \ldots, x_n)$ a non-central multilinear polynomial over C. If R satisfies (2.1), then either a or b or c are scalar matrices.

Proof. Since R and U satisfy the same generalized polynomial identities (see [4]), U satisfies

$$a'f(\xi)cf(\xi)^{2} + 2af(\xi)pf(\xi)^{2} + f(\xi)p'f(\xi)^{2} + f(\xi)a'f(\xi)^{2}c + 2f(\xi)af(\xi)bf(\xi)c + f(\xi)^{2}b'f(\xi)c - a'f(\xi)^{2}cf(\xi) - 2af(\xi)bf(\xi)cf(\xi) - f(\xi)b'f(\xi)cf(\xi) - f(\xi)a'f(\xi)cf(\xi) - 2f(\xi)af(\xi)pf(\xi) - f(\xi)^{2}p'f(\xi)$$
(2.4)

for all $\xi = (\xi_1, \dots, \xi_n) \in U^n$. Suppose that this is a trivial GPI for U. So,

$$a'f(\xi)cf(\xi)^{2} + 2af(\xi)pf(\xi)^{2} + f(\xi)p'f(\xi)^{2} + f(\xi)a'f(\xi)^{2}c + 2f(\xi)af(\xi)bf(\xi)c + f(\xi)^{2}b'f(\xi)c - a'f(\xi)^{2}cf(\xi) - 2af(\xi)bf(\xi)cf(\xi) - f(\xi)b'f(\xi)cf(\xi) - f(\xi)a'f(\xi)cf(\xi) - 2f(\xi)af(\xi)pf(\xi) - f(\xi)^{2}p'f(\xi)$$
(2.5)

is zero element in $T = U *_C C\{\xi_1, \ldots, \xi_n\}$, the free product of U and $C\{\xi_1, \ldots, \xi_n\}$, the free C-algebra in noncommuting indeterminates ξ_1, \ldots, ξ_n . This implies $\{1, c\}$ is linearly C-dependent, that is $c \in C$, as desired. Let us assume $c \notin C$, then by (2.5)

$$\{f(\xi)a'f(\xi) + 2f(\xi)af(\xi)b + f(\xi)^2b'\}f(\xi)c = 0 \in T.$$
(2.6)

This again implies that $\{1, b, b'\}$ is linearly C-dependent. There exist $\alpha_1, \alpha_2, \alpha_3 \in C$ such that $\alpha_1 + \alpha_2 b + \alpha_3 b' = 0$. If $\alpha_3 = 0$, then $\alpha_2 \neq 0$ and hence $b \in C$, as desired. Thus we assume $\alpha_3 \neq 0$ and $b \notin C$. Then by (2.6)

$$\{f(\xi)a'f(\xi) + 2f(\xi)af(\xi)b + \alpha f(\xi)^2b + \beta f(\xi)^2\}f(\xi)c = 0 \in T.$$
(2.7)

Assume $a \notin C$, then $2f(\xi)af(\xi)bf(\xi)c$ appears nontrivially in (2.7), which is a contradiction. So, either a or b or c is central, as desired.

Next suppose that (2.4) is a non-trivial GPI for Q. Let \overline{C} be the algebraic closure of C. We know that U and $U \otimes_C \overline{C}$ satisfy the same GPIs. Since both U and $U \otimes_C \overline{C}$ are prime and centrally closed [9, Theorems 2.5 and 3.5], we may replace R by U or $U \otimes_C \overline{C}$ according to C finite or infinite and then applying Martindale's theorem [21], we can say that R is a primitive ring with nonzero socle soc(R) and with C as its associated division ring. Then, by Jacobson's theorem [15, p.75], R is isomorphic to a dense ring of linear transformations of a vector space V over C. Assume first that V is finite dimensional over C, that is, $\dim_C V = m$. By density of R, we have $R \cong M_m(C)$. Since $f(\xi_1, \ldots, \xi_n)$ is not central valued on R, R must be noncommutative and so $m \ge 2$. In this case, by Proposition 2.1, we get that either a or b or c are in C. If V is infinite dimensional over C, then for any $e^2 = e \in soc(R)$ we have $eRe \cong M_t(C)$ with $t = \dim_C Ve$. Since a_2, a_3, a_5 are not in C, there exists $h_1, h_2, h_3 \in soc(R)$ such that $[a, h_1] \neq 0$ $[b, h_2] \neq 0$, $[c, h_3] \neq 0$. By Litoff's Theorem [13], there exists idempotent $e \in soc(R)$ such that $ah_1, h_1a, bh_2, h_2b, ch_3, h_3c, h_1, h_2, h_3 \in eRe$. Since R satisfies generalized identity

$$\begin{split} & e \Biggl\{ a'f(e\xi_1e,\ldots,e\xi_ne)cf(e\xi_1e,\ldots,e\xi_ne)^2 + 2af(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne)^2 \\ & + f(e\xi_1e,\ldots,e\xi_ne)p'f(e\xi_1e,\ldots,e\xi_ne)^2 + f(e\xi_1e,\ldots,e\xi_ne)a'f(e\xi_1e,\ldots,e\xi_ne)^2c \\ & + 2f(e\xi_1e,\ldots,e\xi_ne)af(e\xi_1e,\ldots,e\xi_ne)bf(e\xi_1e,\ldots,e\xi_ne)c \\ & + f(e\xi_1e,\ldots,e\xi_ne)^2b'f(e\xi_1e,\ldots,e\xi_ne)c - a'f(e\xi_1e,\ldots,e\xi_ne)^2cf(e\xi_1e,\ldots,e\xi_ne) \\ & - 2af(e\xi_1e,\ldots,e\xi_ne)bf(e\xi_1e,\ldots,e\xi_ne)cf(e\xi_1e,\ldots,e\xi_ne) \\ & - f(e\xi_1e,\ldots,e\xi_ne)b'f(e\xi_1e,\ldots,e\xi_ne)cf(e\xi_1e,\ldots,e\xi_ne) \\ & - 2f(e\xi_1e,\ldots,e\xi_ne)af(e\xi_1e,\ldots,e\xi_ne)cf(e\xi_1e,\ldots,e\xi_ne) \\ & - f(e\xi_1e,\ldots,e\xi_ne)af(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne) \\ & - f(e\xi_1e,\ldots,e\xi_ne)af(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne) \\ & - f(e\xi_1e,\ldots,e\xi_ne)af(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne) \\ & - f(e\xi_1e,\ldots,e\xi_ne)af(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne)pf(e\xi_1e,\ldots,e\xi_ne)pf$$

then the subring eRe satisfies

$$\begin{split} &ea'ef(\xi_1,\ldots,\xi_n)ecef(\xi_1,\ldots,\xi_n)^2+2eaef(\xi_1,\ldots,\xi_n)epef(\xi_1,\ldots,\xi_n)^2\\ &+f(\xi_1,\ldots,\xi_n)ep'ef(\xi_1,\ldots,\xi_n)^2+f(\xi_1,\ldots,\xi_n)ea'ef(\xi_1,\ldots,\xi_n)^2ece\\ &+2f(\xi_1,\ldots,\xi_n)eaef(\xi_1,\ldots,\xi_n)ebef(\xi_1,\ldots,\xi_n)ece\\ &+f(\xi_1,\ldots,\xi_n)^2eb'ef(\xi_1,\ldots,\xi_n)ece-ea'ef(\xi_1,\ldots,\xi_n)^2ecef(\xi_1,\ldots,\xi_n)\\ &-2eaef(\xi_1,\ldots,\xi_n)ebef(\xi_1,\ldots,\xi_n)ecef(\xi_1,\ldots,\xi_n)\\ &-f(\xi_1,\ldots,\xi_n)eb'ef(\xi_1,\ldots,\xi_n)ecef(\xi_1,\ldots,\xi_n)\\ &-f(\xi_1,\ldots,\xi_n)ea'ef(\xi_1,\ldots,\xi_n)ecef(\xi_1,\ldots,\xi_n)\\ &-2f(\xi_1,\ldots,\xi_n)eaef(\xi_1,\ldots,\xi_n)epef(\xi_1,\ldots,\xi_n)\\ &-f(\xi_1,\ldots,\xi_n)^2ep'ef(\xi_1,\ldots,\xi_n)=0. \end{split}$$

Then by the above finite dimensional case, either *eae* or *ebe* or *ece* are central elements of *eRe*. Thus either $ah_1 = (eae)h_1 = h_1(eae) = h_1a$ or $bh_2 = (ebe)h_2 = h_2(ebe) = h_2b$ or $ch_3 = (ece)h_3 = h_3(ece) = h_3c$, in any case we get a contradiction.

Hence, we say that either a or b or c are in C.

By the same way as above we can prove the following prepositions.

Proposition 2.3. Let R be a prime ring of char $(R) \neq 2$, C the extended centroid of R and $f(x_1, \ldots, x_n)$ a non-central multilinear polynomial over C. If c and $k \in R$ such that

$$f(\xi)kcf(\xi)^2 - f(\xi)kf(\xi)cf(\xi) - f(\xi)^2kcf(\xi) + f(\xi)^2kf(\xi)c = 0$$

for all $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, then either $k \in \mathbb{C}$ or $c \in \mathbb{C}$.

Proposition 2.4. Let R be a prime ring of char $(R) \neq 2$, C the extended centroid of R and $f(x_1, \ldots, x_n)$ a non-central multilinear polynomial over C. If c and $k \in R$ such that

$$kf(\xi)cf(\xi)^{2} - kf(\xi)^{2}cf(\xi) - f(\xi)kf(\xi)cf(\xi) + f(\xi)kf(\xi)^{2}c = 0$$

for all $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, then either $k \in \mathbb{C}$ or $c \in \mathbb{C}$.

Lemma 2.5. Let R be a noncommutative prime ring of char(R) $\neq 2$, U be its Utumi quotient ring, C be its extended centroid and $f(x_1, \ldots, x_n)$ be a noncentral multilinear polynomial over C. Suppose for some $a, b, c \in U$, G(x) = ax + xb, and d(x) = [c, x] for all $x \in R$ with $c \notin C$. If

$$G^2(f(\xi))d(f(\xi)) \in C$$

for all $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, then one of the following holds:

- 1. G(x) = (a + b)x for all $x \in R$ with $(a + b)^2 = 0$;
- 2. G(x) = x(a+b) for all $x \in R$ with $(a+b)^2 = 0$.

Proof. By the hypothesis, we have

$$\left(a^{2}f(\xi) + 2af(\xi)b + f(\xi)b^{2}\right)\left(cf(\xi) - f(\xi)c\right) \in C$$
(2.8)

that is

$$\left[\left(a^{2}f(\xi) + 2af(\xi)b + f(\xi)b^{2}\right)\left(cf(\xi) - f(\xi)c\right), f(\xi)\right] = 0$$
(2.9)

for all $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$. Then by Proposition 2.2, either $a \in C$ or $b \in C$ or $c \in C$. Since $c \notin C$, so either $a \in C$ or $b \in C$.

If $a \in C$, it follows hypothesis as

$$f(\xi)(a+b)^2 \left(cf(\xi) - f(\xi)c \right) \in C$$

that is

$$f(\xi)(a+b)^2 c f(\xi)^2 - f(\xi)(a+b)^2 f(\xi) c f(\xi) - f(\xi)^2 (a+b)^2 c f(\xi) + f(\xi)^2 (a+b)^2 f(\xi) c = 0$$

for all $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$. Then by Proposition 2.3, $(a+b)^2 \in \mathbb{C}$.

If $b \in C$, it follows hypothesis as

$$(a+b)^2 f(\xi) \left(cf(\xi) - f(\xi)c \right) \in C$$

that is

$$(a+b)^{2}f(\xi)cf(\xi)^{2} - (a+b)^{2}f(\xi)^{2}cf(\xi) - f(\xi)(a+b)^{2}f(\xi)cf(\xi) + f(\xi)(a+b)^{2}f(\xi)^{2}c = 0$$

for all $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$. Then by Proposition 2.4, $(a+b)^2 \in \mathbb{C}$. Thus in both the above cases we have $(a+b)^2 \in \mathbb{C}$ and hence we can write $(a+b)^2 x = G^2(x) = x(a+b)^2$ for all $x \in f(\mathbb{R})$.

Considering $G^2(f(\xi)) = f(\xi)(a+b)^2$, our hypothesis $G^2(f(\xi))d(f(\xi)) \in C$ gives $f(\xi)[(a+b)^2c, f(\xi)] \in C$ for all $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$. Then by [19] we have $(a+b)^2c \in C$. This implies $(a+b)^2 = 0$ as $c \notin C$. Thus we arrive either G(x) = (a+b)x or x(a+b), with $(a+b)^2 = 0$. These are our required conclusions.

3. Proof of the main theorem

In light of the notion in [17, Theorem 3], generalized derivation G has its form $G(x) = ax + \delta(x)$ for some $a \in U$ and δ is a derivation on U.

Now if we consider $f(\xi_1, \ldots, \xi_n)$ be a noncentral multilinear polynomial over the field C and d is a derivation on R.

We shall use the notation

$$f(\xi_1, \dots, \xi_n) = \xi_1 \xi_2 \cdots \xi_n + \sum_{\sigma \in S_n, \sigma \neq id} \alpha_\sigma \xi_{\sigma(1)} \xi_{\sigma(2)} \cdots \xi_{\sigma(n)}$$

for some $\alpha_{\sigma} \in C$, and S_n denotes the symmetric group of degree n.

Then we have

$$d(f(\xi_1,\ldots,\xi_n)) = f^d(\xi_1,\ldots,\xi_n) + \sum_i f(\xi_1,\ldots,d(\xi_i),\ldots,\xi_n),$$

where $f^d(\xi_1, \ldots, \xi_n)$ be the polynomials obtained from $f(\xi_1, \ldots, \xi_n)$ replacing each coefficients α_σ with $d(\alpha_\sigma)$. Similarly, by calculation, we have

$$d^{2}(f(\xi_{1},...,\xi_{n})) = f^{d^{2}}(\xi_{1},...,\xi_{n}) + 2\sum_{i} f^{d}(\xi_{1},...,d(\xi_{i}),...,\xi_{n})$$

+
$$\sum_{i} f(\xi_{1},...,d^{2}(\xi_{i}),...,\xi_{n})$$

+
$$\sum_{i\neq j} f(\xi_{1},...,d(\xi_{i}),...,d(\xi_{j}),...,\xi_{n}).$$

By hypothesis, we have

 $\left(G(a)f(\xi) + 2a\delta(f(\xi)) + \delta^2(f(\xi))\right)d(f(\xi)) \in C$

for all $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$. By [18], we have

$$\left(G(a)f(\xi) + 2a\delta(f(\xi)) + \delta^2(f(\xi))\right)d(f(\xi)) \in C$$

$$(3.1)$$

for all $\xi = (\xi_1, \dots, \xi_n) \in U^n$.

If d and δ both are inner derivations, then by Proposition 2.2, we have our conclusions of Main Theorem. Thus, to prove our Main Theorem, we need to consider the case when not both d and δ are inner. Indeed we have to consider the two following embedded cases.

- d and δ are linearly C-independent modulo inner derivations of U.
- d and δ are linearly C-dependent modulo inner derivations of U.

Case-1: When d and δ are linearly C-independent modulo inner derivations of U.

By (3.1) U satisfies

$$\begin{split} &\left\{F(a)f(\xi_1,\ldots,\xi_n)+2a\left\{f^{\delta}(\xi_1,\ldots,\xi_n)+\sum_i f(\xi_1,\ldots,\delta(\xi_i),\ldots,\xi_n)\right\}\right.\\ &+\left\{f^{\delta^2}(\xi_1,\ldots,\xi_n)+2\sum_i f^{\delta}(\xi_1,\ldots,\delta(\xi_i),\ldots,\xi_n)+\sum_i f(\xi_1,\ldots,\delta^2(\xi_i),\ldots,\xi_n)\right.\\ &+\left.\sum_{i\neq j} f(\xi_1,\ldots,\delta(\xi_i),\ldots,\delta(\xi_j),\ldots,\xi_n)\right\}\right\}\left\{f^d(\xi_1,\ldots,\xi_n)\right.\\ &+\left.\sum_i f(\xi_1,\ldots,d(\xi_i),\ldots,\xi_n)\right\}\in C. \end{split}$$

for all $\xi_1, \ldots, \xi_n \in U$. Since d and δ are not inner, by Kharchenko's theorem [16], U satisfies

$$\left\{ F(a)f(\xi_1, \dots, \xi_n) + 2a \left\{ f^{\delta}(\xi_1, \dots, \xi_n) + \sum_i f(\xi_1, \dots, x_i, \dots, \xi_n) \right\} \\ + \left\{ f^{\delta^2}(\xi_1, \dots, \xi_n) + 2\sum_i f^{\delta}(\xi_1, \dots, x_i, \dots, \xi_n) + \sum_i f(\xi_1, \dots, y_i, \dots, \xi_n) \right\} \\ + \sum_{i \neq j} f(\xi_1, \dots, x_i, \dots, x_j, \dots, \xi_n) \right\} \left\{ f^d(\xi_1, \dots, \xi_n) \\ + \sum_i f(\xi_1, \dots, z_i, \dots, \xi_n) \right\} \in C.$$

In particular U satisfies the blended component

$$\left[\sum_{i} f(\xi_1, \dots, y_i, \dots, \xi_n) \sum_{i} f(\xi_1, \dots, z_i, \dots, \xi_n), f(\xi_1, \dots, \xi_n)\right] = 0.$$
(3.2)

Putting $y_i = [q', \xi_i]$ for each $i \in \{1, \ldots, n\}$, for some $q' \notin C$ and $z_1 = \xi_1, z_2 = \ldots, z_n = 0$, we get

$$\left[[q'f(\xi_1,\ldots,\xi_n)]f(\xi_1,\ldots,\xi_n), f(\xi_1,\ldots,\xi_n) \right] = 0$$

that is

$$[q', f(\xi_1, \dots, \xi_n)]_2 f(\xi_1, \dots, \xi_n) = 0$$

this implies

$$[q', f(\xi_1, \dots, \xi_n)]_2 = 0$$
 as $f(\xi_1, \dots, \xi_n) \notin C$

for all $\xi_1, \ldots, \xi_n \in U$. Then by [22] we get $q' \in C$, which is a contradiction.

Case-2: When d and δ are linearly C-dependent modulo inner derivations of U.

In this case we get $\alpha, \beta \in C$ and $q \in U$ such that $\alpha d + \beta \delta = ad_q$. It is clear from the context that $(\alpha, \beta) \neq (0, 0)$. So with out loss of generality we arrive the following two subcases:

<u>Sub-case-i</u>: When $\alpha = 0$.

Then we get $\delta(x) = [p, x]$, where $p = \beta^{-1}q$. It is obvious that d is not inner, otherwise we get contradiction. Now from (3.1) we have

$$(a'^{2}f(\xi_{1},\ldots,\xi_{n})+2a'f(\xi_{1},\ldots,\xi_{n})b'+f(\xi_{1},\ldots,\xi_{n})b'^{2})df(d(f(\xi_{1},\ldots,\xi_{n}))))\in C$$

for all $\xi_1, \ldots, \xi_n \in U$ and $a' = a + p, b' = -p \in U$. Now from above we can write

$$(a'^{2}f(\xi_{1},\ldots,\xi_{n}) + 2a'f(\xi_{1},\ldots,\xi_{n})b' + f(\xi_{1},\ldots,\xi_{n})b'^{2}). (f^{d}(\xi_{1},\ldots,\xi_{n}) + \sum_{i} f(\xi_{1},\ldots,d(\xi_{i}),\ldots,\xi_{n})) \in C.$$

$$(3.3)$$

Since d is not inner, by Kharchenko's theorem [16]

$$(a'^2 f(\xi_1, \dots, \xi_n) + 2a' f(\xi_1, \dots, \xi_n)b' + f(\xi_1, \dots, \xi_n)b'^2). (f^d(\xi_1, \dots, \xi_n) + \sum_i f(\xi_1, \dots, y_i, \dots, \xi_n)) \in C.$$

In particular U satisfies the blended component

$$\left[\left(a'^{2} f(\xi_{1}, \dots, \xi_{n}) + 2a' f(\xi_{1}, \dots, \xi_{n})b' + f(\xi_{1}, \dots, \xi_{n})b'^{2} \right) \right]$$

$$\sum_{i} f(\xi_{1}, \dots, y_{i}, \dots, \xi_{n}), f(\xi_{1}, \dots, \xi_{n}) = 0.$$
(3.4)

Replacing y_i by $[q, \xi_i]$, for some $q \notin C$ in (3.4) we have

$$\left[\left(a'^{2} f(\xi_{1}, \dots, \xi_{n}) + 2a' f(\xi_{1}, \dots, \xi_{n})b' + f(\xi_{1}, \dots, \xi_{n})b'^{2} \right) \\ \left[q, f(\xi_{1}, \dots, \xi_{n}) \right], f(\xi_{1}, \dots, \xi_{n}) \right] = 0.$$
(3.5)

Which is similar as (2.9) of Lemma 2.5, so from there we get our conclusions (1) and (2) of main theorem.

<u>Sub-case-ii:</u> When $\alpha \neq 0$.

Then we have $d = \mu \delta + ad_c$, for some $\mu \in C$ and $c \in U$. Here δ never be an inner derivation, otherwise both d and δ will be inner, a contradiction. Then from (3.1) we have

$$(G(a)f(\xi_1,\ldots,\xi_n) + 2a\delta(f(\xi_1,\ldots,\xi_n)) + \delta^2(f(\xi_1,\ldots,\xi_n))) (\mu\delta(f(\xi_1,\ldots,\xi_n)) + [c,f(\xi_1,\ldots,\xi_n)]) \in C$$

$$(3.6)$$

for all $\xi = (\xi_1, \ldots, \xi_n) \in U^n$. This is a differential identity containing the terms of the type δ and δ^2 . As, δ and δ^2 are outer, by Kharchenko's theorem [16] $\delta(\xi_i)$ and $\delta^2(\xi_i)$ can be replaced by x_i and y_i respectively in (3.6). And hence U satisfies the blended component

$$\left(\sum_{i} f(\xi_1, \dots, y_i, \dots, \xi_n)\right) \left(\mu \sum_{i} f(\xi_1, \dots, x_i, \dots, \xi_n)\right) \in C,$$

that is

$$\left[\mu \sum_{i} f(\xi_{1}, \dots, y_{i}, \dots, \xi_{n}) \sum_{i} f(\xi_{1}, \dots, x_{i}, \dots, \xi_{n}), f(\xi_{1}, \dots, \xi_{n})\right] = 0.$$
(3.7)

Replacing y_i by $[q, \xi_i]$, where $q \notin C$ and $x_1 = \xi_1, x_2 = \ldots = x_n = 0$ in (3.7) we get

$$\left\lfloor \mu \left[q, f(\xi_1, \dots, \xi_n) \right] f(\xi_1, \dots, \xi_n), f(\xi_1, \dots, \xi_n) \right\rfloor = 0,$$

that is

$$\left[\left[\mu q, f(\xi_1, \dots, \xi_n)\right], f(\xi_1, \dots, \xi_n)\right] f(\xi_1, \dots, \xi_n) = 0,$$

that is

$$\left[\mu q, f(\xi_1, \dots, \xi_n)\right]_2 = 0,$$

for all $\xi_1, \ldots, \xi_n \in \mathbb{R}$, as $f(\xi_1, \ldots, \xi_n)$ is noncentral. So by [22] we get $\mu q \in \mathbb{C}$, this says $\mu = 0$. Then from (3.6) we get

$$\left(G(a)f(\xi_1,\ldots,\xi_n) + 2a\delta(f(\xi_1,\ldots,\xi_n)) + \delta^2(f(\xi_1,\ldots,\xi_n))\right) \left[c,f(\xi_1,\ldots,\xi_n)\right] \in C,$$
(3.8)

for all $\xi_1, \ldots, \xi_n \in U$. Again from above putting the expressions of $\delta(f(\xi_1, \ldots, \xi_n))$ and $\delta^2(f(\xi_1, \ldots, \xi_n))$ we will find a blended component satisfied by U as follows:

$$\sum_{i} f(\xi_1, \dots, \delta^2(\xi_i), \dots, \xi_n)[c, f(\xi_1, \dots, \xi_n)] \in C.$$

$$(3.9)$$

As it is mentioned earlier that δ is outer, then by applying Kharchenko's theorem [16], we replace $\delta^2(\xi_i)$ by y_i in (3.9) we get the following:

$$\sum_{i} f(\xi_1, \dots, y_i, \dots, \xi_n)[c, f(\xi_1, \dots, \xi_n)] \in C.$$

In particular $y_1 = \xi_1$ and $y_2 = \cdots y_n = 0$ we get

$$f(\xi_1,\ldots,\xi_n)[c,f(\xi_1,\ldots,\xi_n)] \in C$$

for all $\xi_1, \ldots, \xi_n \in \mathbb{R}$. Then from [19] we get $c \in \mathbb{C}$. Finally we get $\mu = 0$ and $c \in \mathbb{C}$, which implies d = 0, a contradiction.

This completes the proof.

References

- Argaç, N., and De Filippis, V., Actions of generaliged derivations on multilinear polynomials in prime rings, Algebra Colloq. 18 (Spec 1) (2011), 955-964.
- Beidar, K. I., Martimdale III W. S., and Mikhalev, A. V., Rings with generalized identities, Pure and Applied Math., 196, Marcel Dekker, New York, 1996.
- Carini, L., De Filippis, V., and Scudo, G., Identites with product of generalized derivations of primr rings, Algebra Colloq. 20 (2013), 711-720.
- 4. Chuang, C. L., GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (3) (1988), 723-728.
- 5. Demir, Ç., and Argaç, N., Prime rings with generalized derivations on right ideals, Algebra Collog. 18 (2011), 987-998.
- Dhara B., and De Filippis, V., Co-commutators with generalized derivations in prime and semiprime rings, Publ. Math. Debrecen 85(3-4) (2014), 339360.
- Dhara, B., Kar, S., and Das, P., Pair of generalized derivations acting on multilinear polynomials in prime rings, *Hacet. J. Math. Stat.* 49 (2) (2020), 740-753.
- Brešar, M., On the distance of the composition of two derivations to the generalized derivations, *Glasgow Math. J.* 33 (1991), 89-93.
- 9. Erickson, T. S., Martindale III, W. S., and Osborn, J. M., Prime nonassociative algebras, *Pacific J. Math.* 60 (1975), 49-63.
- Eroğlu, M. P., and Argaç, N., On identities with composition of generalized derivations, Canad. Math. Bull. 60(4) (2017), 721-735.
- De Filippis, V., Product of generalized derivations on polynomials in prime rings, Collectanea Mathematica 61(3) (2010), 303-322.
- De Filippis, V., and Dhara, B., Generalized derivations on right ideals and polynomials in prime rings, Southeast Asian Bull. Math. 38 (2014), 341-357.
- 13. Faith, C., and Utumi, Y., On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hung. 14 (1963), 369-371.
- 14. Fosner, M., Vukman, J., Identities with generalized derivations in prime rings, Mediterr. J. Math. 9 (2012), 847-863.
- 15. Jacobson, N., Structure of rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.

S. Kuila and B. Dhara

- 16. Kharchenko, V. K., Differential identity of prime rings, Algebra and Logic 17 (1978), 155-168.
- 17. Lee, T. K., Generalized derivations of left faithful rings, Comm. Algebra 27 (8) (1999), 4057-4073.
- 18. Lee, T. K., Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1) (1992), 27-38.
- 19. Lee, T. K., and Shiue, W.K., Derivations cocentralizing polynomials, Taiwanese J. Math. 2 (4) (1998), 457-467.
- 20. Leron, U., Nil and power central polynomials in rings, Trans. Amer. Math. Soc. 202 (1975), 97-103.
- 21. Martindale III, W. S., Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
- 22. Posner, E. C., Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
- Tiwari, S. K., Identities with Generalized Derivations and Multilinear Polynomials, Bull. Iranian Math. Soc. 46 (2020), 425-440.
- Yadav, V. K., Identities involving generalized derivations in prime rings, Rend. Circ. Mat. Palermo, II. Ser. 71 (2022), 259-270.

Swarup Kuila, Department of Mathematics, Jadavpur University, Kolkata, India, 700032. E-mail address: skuila1993@gmail.com

and

Basudeb Dhara, Department of Mathematics, Belda College, Paschim Medinipur, India, 721424. E-mail address: basu_dhara@yahoo.com