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Sequential Estimation of Generalized Linear Model Coefficients

Ali Labriji, Safae Msellek and Abdelkrim Bennar

abstract: Generalized Linear Models (GLM) allows us to model the relationship between a response variable
and one or more predictor variables while taking into account the distribution of the response variable. It
is a useful tool for modeling data that do not follow a normal distribution and can be applied to a wide
range of data types and problem settings. As data becomes increasingly relevant in our daily lives, the use
of these models is becoming more important. However, this increase in importance also implies an increase
in the complexity of estimation due to the volume of data that must be processed. In contrast, when dealing
with laboratory experiments or other situations, we may have limited observations making it challenging to
obtain robust estimates. To address these challenges, this paper proposes a simple and efficient method for
estimating the coefficients of GLM and provides mathematical proof for the almost sure convergence of this
method towards the desired solution. The proposed method is also validated on real-world data, reinforcing
its utility and effectiveness.

Key Words: GLM, Stochastic approximation, Conditional expectation, Stochastic gradient.

Contents

1 Introduction 1

2 Preliminaries 2

2.1 Almost Sure Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Main results 4

3.1 Process convergence proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Case study: Interlocks modeling 5

5 Conclusion 9

1. Introduction

The generalized linear model (GLM), initially developed in 1972 by Nelder and Wedderburn (cited
in [1]), and further detailed in Nelder and Mc Cullagh (1983) ( [2]), Agresti (1990) ( [3]), and Antoniadis
et al. (1992) ( [4]), is a generalization of the multiple linear regression model in which the variable that
we seek to explain no longer follows a normal distribution, but instead has a probability density that
belongs to the exponential family of densities. Therefore, it is often more appropriate to build a linear
model for the transformation of the expected value of the response, such as for U = (U1, U2, ..., Un)′ and
for the observation ith we have Vi = (Vi1, Vi2, ..., Vip) and let θ be a vector of unconditional parameters
with θ = (θ1, θ2, ..., θp)′ the model can be written as:

l−1(E(U |V )) = V θ. (1.1)

The function l s the link function, and the right side of the equation is the linear component of the model.
The GLM model can be specified by the following three elements:

• the probability density of U wwhich belongs to the exponential family of densities, including the
Gaussian, Poisson, Binomial, Gamma, and other distributions,

• the link function, which allows us to use a linear model to model non-normal data,

• the linear component.
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There are two main methods for estimating the θ parameter that maximizes the likelihood, the iteratively
reweighted least squares and the Fisher scoring method. The iteratively reweighted least squares method
involves reformulating the maximization problem by adding weights at each iteration, as proposed in [1]
(for more information, see [5]). The Fisher scoring method can be written as follows:

θn+1 = θn − Jac S(θn)−1S(θn), (1.2)

with S(θn) = ∂L(θn)
∂θn

and L() is the log-likelihood of the GLM for the observations U1, U2, ..., Un.

We propose a simple method for estimating the θ parameter for a class of generalized linear model
without requiring a specification of the exact distribution of the phenomenon. For example, this method
allows us to avoid distinguishing between the Poisson and negative binomial distributions when estimating
the GLM regression, which can help us ignore overdispersion phenomena that are commonly observed
in random counting variables. Moreover, our method is less computationally intensive, especially in the
era of big data when data sets can be massive and classical iterative estimation can be time-consuming.
To achieve this, we use the stochastic approximation method, an iterative method for finding the root of
an equation using a random process. These algorithms were introduced by Herbert Robbins and Sutton
Monro in 1951 [6]. The goal is to find the unique root θ∗ of the function M(θ) = α, where M(θ) cannot
be directly observed. However, we can observe the variable Y (θ) such that E[Y (θ)] = M(θ). Under the

assumption that
∞
∑

n=1
an = ∞ and

∞
∑

n=1
a2

n < ∞, the following processes converge to the unique root of

M(θ) = α,

θn+1 = θn − an(M(θn) − α). (1.3)

The method involves starting with an initial estimate of θ and iteratively updating the estimate using
the observed variable Y (θ).

In our case, we are interested in the work of Bennar et al. [7], who established a theorem that
identifies the almost sure convergence conditions for a stochastic gradient type process to estimate the θ

parameter. We have chosen these results as the foundation of our work because the stochastic gradient
process performs sampling at each iteration to complete the estimates without relying on all the available
data.

We first present the convergence results elaborated by Bennar et al., then demonstrate that these
results are also valid in the framework of certain types of generalized linear model. Next, we conduct a
case study on real data to apply the proposed process, and finally, we conclude the work by discussing
potential avenues for further development.

2. Preliminaries

Let us consider an observable random variable U and a random variable V with values in R
k and

a law µ. We aim to estimate the parameter θ ∈ R
p such that φ(V, θ) approaches E [U |V ] in the least

squares sense.
Let f be the real positive function defined in R

p by:

f(θ) = E
[

(E [U |V ] − φ(V, θ))2
]

, (2.1)

we seek the value of θ∗ that minimizes the function f.

Let us define the real positive function g in R
p by:

g(θ) = E
[

(U − φ(V, θ))2
]

. (2.2)

We have:

g(θ) = f(θ) + E
[

(U − E [U |V ])2
]

. (2.3)

Therefore, the problem comes down to looking for θ that minimize the function g. We have:

▽θg(θ) = 2E[∇θφ(V, θ)(φ(V, θ) − U)]. (2.4)
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To estimate θ sequentially, we use a stochastic gradient algorithm that considers a random value θn

in R
p and updates it according to the following equation:

θn+1 = θn − an∇θφ(Vn, θn)(φ(Vn, θn) − Un), (2.5)

with:

• (an) is a sequence of positive real numbers,

• (U1, V1), (U2, V2), ..., (Un, Vn) is a sample of n pairs of independent random variables that have the
same probability distribution as (U, V ),

• φ(., .) is a real known measurable function in R
k × R

p.

In this equation, ∇θφ(Vn, θn) is the gradient of the function φ with respect to θ, evaluated at the
current values of θn and Vn. The difference between the current value of φ and the target value Un is
used to adjust the estimate of θ, and the step size an determines how much the value of θ should be
adjusted at each iteration.

In the following, 〈., .〉 and ‖.‖ denote the usual scalar product and norm in R
k, respectively. A′ denotes

the transpose of the matrix A, and λmin(A) represents the smallest eigenvalue of A. The abbreviation
"a.s." stands for almost sure convergence.

2.1. Almost Sure Convergence

Bennar et al. consider the following hypotheses:

(H1) an > 0,
∞
∑

n=1
a2

n < ∞,

(H
′

1) an > 0,
∞
∑

n=1
an = ∞,

∞
∑

n=1
a2

n < ∞,

(H2) there exist a and b such that for all θ = (θ1, θ2, ..., θp)′ ∈ R
p,

V ar

[

∂φ(V, θ)

∂θi

(φ(V, θ) − U)

]

< ag(θ) + b, for all i = 1, 2, ..., p, (2.6)

(H3) there exist K > 0 such that for all θ = (θ1, θ2, ..., θp)′ ∈ R
p,

∂2g(θ)

∂∂θj

< K, for all i = 1, 2, ..., p, (2.7)

(H4) θ∗ is a local minimum of g,

∃ α > 0 : (θ 6= θ∗, ‖θ − θ∗‖ < α ⇒ (g(θ∗) < g(θ)), (2.8)

(H5) θ∗ is the unique stationary point of g,

∀θ ∈ R
p, (θ 6= θ∗) ⇔ ▽θg(θ) 6= 0). (2.9)

Lemma 2.1. Under hypotheses, H
′

1, H2, H3, H4, H5, we have:

θn → θ∗ a.s or ‖θn‖ → +∞ a.s.

Proof: See [7]. �
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3. Main results

In our case, we aim to estimate the parameters θ of a Generalized Linear Model (GLM) using one of
the distributions listed in Table 1. These distributions are useful in various fields, including insurance
and medicine, and are tailored to specific types of data. Further details can be found in references
[8,9,10,11,12].

Table 1: Common distributions and canonical link functions.

Distribution Support of distribution Link name Link function

Normal R Identity V θ = µ

Exponential R
∗
+ Negative inverse V θ = −µ−1

Gamma R
∗
+ Negative inverse V θ = −µ−1

Inverse Gaussian R
∗
+ Inverse squared V θ = µ2

Poisson N Log V θ = ln(µ)

However, in practice, we do not limit ourselves to these specific link functions. Let l be a link function
such that:

l−1(U) = (l−1(U1), l−1(U2), ..., l−1(Un))′,

and let ρ1, ρ2, ...ρp be p functions of q measurable, real, and known variables. We note:

ρ = (ρ1, ρ2, ...ρp)′.

To estimate θ∗, which minimizes E[(E[l−1(U)|V ] − θ′ρ(V ))2], we use the following stochastic approx-
imation process (θn) in R

p:

θn+1 = θn − anρ(Vn)(ρ(Vn)′θn − l−1(Un)). (3.1)

Where (U1, V1), (U2, V2), ..., (Un, Vn) is a sample of (U, V ) consisting of independent random variables
that are identically distributed.

We make the following assumptions:
(H6) The functions ρ1(V1), ρ2(V2), ..., ρp(Vp) and ∇θφ(V, θ) are linearly independent,
(H7) The fourth moment of the vector (ρ1(V1), ρ2(V2), ..., ρp(Vp), U) exists,

(H8) The random variable θ1 satisfies [‖θ1‖
2
] < ∞,

(H9) The variables U and V are observed in finite quantities, such that U < ∞ and V < ∞.

3.1. Process convergence proof

Theorem 3.1. Under assumptions, H
′

1, H6, H7, H8, H9 we have:

θn → θ a.s.

Proof: Let φ be a real-valued function of Rq × R
p defined by:

φ(V, θ) = θ′ρ(V ) =

p
∑

j=1

θjρj(Vj). (3.2)

For j = 1, 2, ..., p,
∂φ(V,θ)

∂θi
= ρj(V ), we have ▽θφ(V, θ) = ρ(V ).

We note, A = E[ρ(V )ρ′(V )].
Under (H10), the matrix A is symmetric and positive definite, and therefore invertible.
Then, θ∗ is a unique solution of the equation:

▽θg(θ) = 2E[ρ(V )(ρ(V )′θ − l−1(U))] = 0, (3.3)
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with:
θ∗ = A−1E[ρ(V )l−1(U)]. (3.4)

Then, θ∗ is the unique solution of the equation ∇θg(θ) = 2E[ρ(V )(ρ(V )′θ − l−1(U))] = 0, with

θ∗ = A−1E[ρ(V )l−1(U)]. (3.5)

Let us prove that assumption 2 is verified.
For i = 1, 2, ..., p, we have:

V ar
[

∂φ(V,θ)
∂θi

(φ(V, θ) − l−1(U))
]

= V ar
[

ρi(Vi)(θ
′ρ(V ) − l−1(U))

]

,

≤ E
[

ρ2
i (Vi)(θ

′ρ(V ) − l−1(U))2
]

.
(3.6)

By (H9), ∃ K such that:

V ar
[

∂φ(V,θ)
∂θi

(φ(V, θ) − l−1(U))
]

= V ar
[

ρi(Vi)(θ
′ρ(V ) − l−1(U))

]

,

≤ E
[

ρ2
i (Vi)(θ

′ρ(V ) − l−1(U))2
]

,

≤ K,

≤ Ag(θ) + B (A = 0, B ≥ K).

(3.7)

Let us prove that assumption 3 is verified.

For i = 1, 2, ..., p, we have ∂g(V,θ)
∂θi

= 2E[ρi(Vi)(ρ(V )′θ − l−1(U))]

Thus, for i, j = 1, 2, ..., p,we have ∂2g(V,θ)
∂θi∂θj

= 2E[ρi(Vi)ρj(Vj)], regardless of θ.

The assumptions of Lemma 2.1 are verified, therefore,

θn → θ∗ a.s or ‖θn‖ → +∞ a.s.

It remains to be proven that we cannot have ‖θn‖ → +∞ a.s.

In fact, as Bennar et al. ( [7], Lemma 1) proved that
∑∞

n=1 an ‖∇θg(θn)‖ < ∞ a.s., therefore there
exists a subsequence of integers (nl) such that ‖∇θg(θnl

)‖ → 0 a.s.
Moreover, ∇θg(θ) = 2E[ρ(V )(ρ(V )′θ − l−1(U))] = 2A(θ − θ∗).

Therefore, ‖∇θg(θn)‖
2

≥ 4λ2
min(A) ‖θn − θ∗‖

2
(λmin(A) > 0).

Thus, if ‖θn‖ → +∞ a.s then ‖∇θg(θn)‖ → +∞ a.s Which is absurd. �

Therefore, using a stochastic gradient algorithm guarantees the estimation of the parameters of the
GLM model due to the almost sure convergence established under the mentioned assumptions.

In the next section of the paper, we conduct a data analysis and modeling to demonstrate the empirical
interest of our process. To do this, we use the Ornstein data set, which is a collection of observations
or measurements on the number of interlocks within enterprises, obtained from [13]. By analyzing and
modeling this data set, we can test and validate our process, and show that it is capable of producing
meaningful and accurate results when applied to real-world data. This will help us to prove the empirical
interest of our process, and to establish its validity and usefulness for further research and development.

4. Case study: Interlocks modeling

The table that we used in our analysis contains four variables, two of which are continuous and two of
which are categorical. For the purposes of simplifying data visualization, we focused on the continuous
variables in our analysis. The descriptive table (Table 2) provides summary statistics for these two
continuous variables. Additionally, Figure 1 illustrates the relationship between these two continuous
variables, through the use of a scatterplot.

Table 2: Descriptive table of variables.

Statistic N Mean St. Dev. Min Max

Assets 248 5,978.440 16,712.480 62 147,670
Interlocks 248 13.581 16.083 0 107



6 A. Labriji, S. Msellek and A. Bennar

Figure 1: Assets VS Interloks.

The assets variable refers to a quantitative measure or characteristic of some entity, such as a company
or individual. In our analysis, we found that this variable is highly dispersed, meaning that its values
are spread out over a wide range. To address this issue and make the data more manageable, we applied
a logarithmic transformation to the assets variable, using the log base 10 function. This transformation
reduces the dispersion of the data and makes it easier to visualize and analyze. The resulting transformed
data is plotted in Figure 2, which shows the distribution of the transformed assets variable.

Figure 2: log10(Assets) VS Interloks.

To conduct our modeling, we first randomly selected 70% of the available observations to create the
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learning sample. The remaining 30% of observations were set aside as the test sample. We used the
learning sample to fit our statistical model. The test sample was then used to evaluate the performance
of the model and assess its accuracy and predictive power. The results of the modeling are presented
in Table 3, which provides summary statistics and other relevant information about the model fit and
performance.

Table 3: Poisson regression results.

Dependent variable:

Interlocks

Log10(Assets) 1.065∗∗∗

(0.025)

Constant −1.031∗∗∗

(0.098)
Observations

Observations 178
Null deviance 3029.2 (df=177)
Residual deviance 1397.0 (df=176)
Log Likelihood −1,024.377
Akaike Inf. Crit. 2,052.753
Number of Fisher Scoring iterations 5

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The residual deviation to degrees of freedom ratio, also known as the dispersion parameter, is calcu-
lated as the ratio of the residual deviation to the degrees of freedom. In our case, this ratio is reported
as 1397.0/176, or 7.9375. A ratio that is largely superior to 1 indicates the presence of over dispersion,
which means that the data exhibit more variability than expected based on the statistical model being
used. In this case, it would be necessary to use a different error structure in the regression model to
account for the over dispersion.

One possible approach to addressing over dispersion is to use a negative binomial error structure
in the regression model. This error structure is suitable for modeling data with excess variability and
can improve the fit and accuracy of the model. The results of estimating the model using a negative
binomial error structure are presented in Table 4, which provides summary statistics and other relevant
information about the model fit and performance.

We can observe an improvement in the quality of the estimate when comparing the results of this model
to the first model. The dispersion parameter, which measures the level of overdispersion in the data, is
now closer to 1, indicating that the model is better able to capture the variability in the data. Additionally,
the Akaike information criterion (AIC) is lower in this model, indicating that it provides a better fit to
the data while using fewer parameters. Overall, these results suggest that the negative binomial error
structure is a more appropriate choice for modeling the data given the presence of overdispersion.

In our estimation using stochastic approximation, we employed the log link function and selected a
sequence of values for the learning rate, defined as an = 1

n2 . We also specified the starting point for the
estimation process as Constant = 0 and θ = 0. To assess the goodness of fit of the model, we used the
mean absolute error (MAE) as a performance metric. The MAE is calculated as the average absolute
difference between the predicted values (ûi) for each observation and the corresponding actual values

(ui), therefore MAE =

∑

n

i=1
|ûi−ui|

n
. A lower MAE indicates a better fit of the model to the data.

It is important to recall that the proposed process involves randomly selecting a pair of observations
from the available data at each iteration, and using these observations to perform the necessary calcu-
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Table 4: Negative binomial regression results.

Dependent variable:

Interlocks

Log10(Assets) 1.084∗∗∗

(0.106)

Constant −1.097∗∗∗

(0.354)
Observations

Observations 178
Null deviance 331.15 (df=177)
Residual deviance 211.02 (df=176)
Log Likelihood −613.685
Dispersion parameter for Negative Binomial 1.309∗∗∗ (0.168)
Akaike Inf. Crit. 1,231.370
Number of Fisher Scoring iterations 1

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

lations and update the model estimates. As a result, the number of observations used in the estimation
process is equal to the number of iterations that were carried out. Table 5 presents a summary of the esti-
mation process, including details such as the number of iterations, the number of observations used, and
yhe MAE. It should be noted that the calculations were performed using the R programming language.

Table 5: Estimation process summary.

Iteration MAE Constant θ

1 13.581 0 0
2 96, 380.290 -2.641 3.487
3 10.933 -2.415 1.047
4 7.322 -2.401 1.347
5 7.532 -2.405 1.322

The estimation process converged after 5 iterations, during which it used a total of 5 observations to
achieve an MAE of 7.53 on the set of available observations. However, when we applied the negative bino-
mial model distribution to the test sample, we obtained an MAE of 7.37. This suggests that the negative
binomial model may be a slightly better fit for the data, at least in terms of the MAE metric. Figure 3
provides a visual comparison of the two models, with the negative binomial model (NB) represented in
red and the result of the stochastic approximation (SA) in blue.

From the visual comparison in Figure 3, we can see that there is some discrepancy in the predictions
made by the negative binomial model and the stochastic approximation. One possible reason for this
discrepancy is that the stochastic approximation method is not as sensitive to outliers as the negative
binomial model. Outliers are observations that are significantly different from the majority of the data,
and can have a strong influence on the estimates produced by statistical models. In the case of the
stochastic approximation, the small number of observations used in the estimation process may not
include these particular outliers, leading to estimates that are more closely aligned with the mean of the
data rather than being influenced by the outliers.

In addition to potentially producing different estimates, the use of stochastic approximation has the
advantage of being more computationally efficient, as it requires fewer observations and may not require
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Figure 3: Negative binomial (NB) versus stochastic approximation (SA) modeling.

as much preprocessing of the data. This can be a useful consideration when dealing with large data sets
or when time is limited.

The results of the comparison between the negative binomial model and the stochastic approximation
highlight the advantages of using this type of estimation in certain situations. The quality of the estimate,
as measured by the MAE, is one important factor to consider, as it reflects the accuracy and precision
of the model. In addition, the speed of convergence and the number of observations used are other
important considerations, particularly when the cost of obtaining additional observations is high or when
the available data is very large.

In experimental environments where these factors are of concern, the use of stochastic approximation
can be particularly beneficial. By using a small number of observations and achieving convergence quickly,
the method can provide accurate and efficient estimates while minimizing the cost and time required for
data collection and analysis.

5. Conclusion

In this study, we successfully demonstrated the almost certain convergence of the stochastic gradient
process, which is a statistical method for estimating model parameters using a sequence of observations
selected at random from a larger data set. One major advantage of this result is the potential for significant
time and computational savings, especially when working with large data sets or when the number of
available observations is limited. By basing the estimation process on a sample of the population rather
than the entire data set, the stochastic gradient process can provide accurate estimates in a more efficient
manner.

While the choice of an = 1
n2 for the learning rate sequence produced satisfactory results in this study,

it is possible that other sequences could lead to even faster convergence. Further research could focus
on identifying the optimal sequence of an to achieve the most efficient and accurate estimates using the
stochastic gradient process.
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