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abstract: Let R be a commutative ring with unity and M be a unitary R-module. Let T (M) be the
set of all torsion elements of M and NT (M) = M − T (M) be the set of all non-torsion elements of M . The
non-torsion element graph of M over R is an undirected simple graph GNT (M) with NT (M) as vertex set and
any two distinct vertices x and y are adjacent if and only if x + y ∈ T (M). In this paper, we study the basic
properties of the graph GNT (M). We also study the diameter and girth of GNT (M). Further, we determine
the domination number and the bondage number of GNT (M). We establish a relation between diameter and
domination number of GNT (M). We also establish a relation between girth and bondage number of GNT (M).
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1. Introduction

The study of graphs by associating various algebraic structures has become an intriguing research topic
since the last three decades. Recently, this area is growing rapidly leading to many interesting results
and questions. It was Beck [7] who first introduced the concept of zero-divisor graph of commutative
rings. He was mostly interested in coloring of commutative rings. Beck’s introduction has been slightly
modified by Anderson and Naseer in [2]. After that, many fundamental papers assigning graphs to rings
and modules have been published, for instance, see [1,3,4,6,20].

In 2008, Anderson and Badawi [3] introduced the total graph of a commutative ring and later this
notion was generalised to many algebraic structures, in particular to module over a commutative ring
(see [6,10,11]). Atani and Habibi [6] have generalised the total graph as in [3] by introducing the total
torsion element graph of a module over a commutative ring. They have studied the characteristics of this
total graph and it’s induced subgraphs by considering two cases, T (M) is a submodule of M or is not a
submodule of M .

The concepts of dominating sets and domination numbers play a vital role in graph theory. Dominating
sets are the focus of many books of graph theory, for example see [13] and [14]. But not much research
has been done on domination of graphs associated to algebraic structures such as groups, rings, modules
in terms of algebraic properties. However, some works on domination of graphs associated to rings and
modules have appeared recently, for instance, see [9,12,17,18,19,21].

In this paper, we define the non-torsion element graph GNT (M) of a module M over a commutative
ring R as a subgraph of the Total torsion element graph [6]. We study the basic properties of the
graph GNT (M). We also determine the diameter and girth of GNT (M). Further, we investigate the
domination number and the bondage number of GNT (M). We establish a relationship between diameter
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and domination number of GNT (M). We also establish a relationship between girth and bondage number
of GNT (M).

2. Preliminaries

In this section, we recall some basic definitions and results which are useful in the later sections.
Throughout this paper, R is a commutative ring with unity and M is an unitary R-module, unless

otherwise specified. An element a of a commutative ring R is called a zero-divisor of R if ab = 0 for
some non-zero element b of R. Let Z(R) be the set of zero-divisors of R. Let T (M) = {m ∈ M | rm = 0,
for some r(6= 0) ∈ R} be the set of torsion elements of M . Let NT (M) = M − T (M) be the set of
non-torsion elements of M . A module M is called torsion module if T (M) = M . On the other hand, a
module M is called torsion-free if T (M) = {0}. For any undefined terminology in rings and modules we
refer to [5,15,16].

By a graph G, we mean a simple undirected graph without loops. For a graph G, we denote the set
of all vertices by V (G) and edges by E(G). We call a graph is finite if both V (G) and E(G) are finite
sets, and we use the symbol |G| to denote the number of vertices in the graph G. We say that G is a
null graph if both V (G) = φ and E(G) = φ. Two vertices x and y of a graph G are connected if there is
a path in G connecting them. Also, a graph G is connected if there is a path between any two distinct
vertices. A graph G is disconnected if it is not connected. A graph G is said to be totally disconnected if
E(G) = φ. A graph G is complete if every pair of distinct vertices of the graph are adjacent. We denote
a complete graph on n vertices by Kn. If the vertex set V (G) of the graph G is partitioned into two
non-empty disjoint sets X and Y of cardinality |X | = m and |Y | = n, and two vertices are adjacent if
and only if they are not in the same partite set, then G is called a bipartite graph. A graph G is called a
complete bipartite graph if every vertex in X is adjacent to every vertex in Y . We denote the complete
bipartite graph on m and n vertices by Km,n.

For vertices x, y ∈ G the distance d(x, y) is defined as the length of the shortest path between x and
y, if the vertices are connected in G. If they are not connected, d(x, y) = ∞. The diameter of the graph
G is

diam(G) = sup{d(x, y)| x, y ∈ G}

A cycle is a closed path which begins and ends at the same vertex. The cycle of n vertices is denoted
by Cn. The girth of the graph G, denoted by gr(G) is the length of the shortest cycle in G and gr(G) = ∞
if G has no cycles.

A subset S ⊆ V is called a dominating set if every vertex in V − S is adjacent to at least one vertex
in S. The domination number γ(G) of G is defined to be the minimum cardinality of a dominating set
in G and such a dominating set is called γ-set of G. If G is a trivial graph, then γ(G) = 0. The bondage
number b(G) is the minimum number of edges whose removal increases the domination number. For basic
definitions and results in domination we refer to [13] and for any undefined graph-theoretic terminology
we refer to [8].

Now we summarize some results on domination number and bondage number of a graph which will
be useful for the later sections.

Lemma 2.1. [14]

(i) If G is a graph of order n, then 1 ≤ γ(G) ≤ n. A graph G of order n has domination number 1 if
and only if G contains a vertex v of degree n − 1; while γ(G) = n if and only if G ∼= Kn.

(ii) γ(Kn) = 1 for a complete graph Kn, but the converse is not true, in general and γ(Kn) = n for a
null graph Kn.

(iii) Let G be a complete r-partite graph (r ≥ 2) with partite sets V1, V2, ..., Vr. If |Vi| ≥ 2 for 1 ≤ i ≤ r,
then γ(G) = 2; because one vertex of V1 and one vertex of V2 dominate G. If |Vi| = 1 for some i,
then γ(G) = 1.

(iv) γ(K1,n) = 1 for a star graph K1,n.



Non-Torsion Element Graph of a Module Over a Commutative Ring 3

(v) If G is a union of disjoint subgraphs G1, G2, ..., Gk, then γ(G) = γ(G1) + γ(G2) + ... + γ(Gk).

(vi) Domination number of a bistar graph is 2, because the set consisting of two centres of the graph is
a minimal dominating set.

(vii) Let Cn and Pn be an n-cycle and a path with n vertices, respectively. Then γ(Cn) = ⌈
n

3
⌉ = γ(Pn).

Lemma 2.2. [14]

(i) If G is a simple graph of order n, then 1 ≤ b(G) ≤ n − 1.

(ii) b(Kn) = n − 1 for a complete graph Kn, but the converse is not true, in general and b(Kn) = 0 for
a null graph Kn.

(iii) Let G be a complete r-partite graph with partite sets V1, V2, ..., Vr. Then b(G) = min{|V1|, |V2|, ..., |Vr|}.
In particular, b(Km,n) = min{m, n}.

(iv) If G is a union of disjoint subgraphs G1, G2, ..., Gk, then b(G) = min{b(G1), b(G2), ..., b(Gk)}.

(v) Let Cn and Pn be an n-cycle and a path with n vertices, respectively. Then b(Pn) = 1 and b(Cn) = 2.

3. Non-torsion element Graph GNT (M) of a Module

In this section we introduce the Non-Torsion element Graph GNT (M) of a module M and study some
of it’s basic properties. We begin with the following definition.

Definition 3.1. Let R be a commutative ring and M be an R-module. The non-torsion element
graph GNT (M) of a Module M is an undirected simple graph defined by taking NT (M) as the vertex
set and two distinct vertices x and y are adjacent if and only if x + y ∈ T (M).

Now, we discuss some examples.

Example 3.2. Let R = Z8 and M = R = Z8 is a module over itself. T (M) = {0, 2, 4, 6} is a
submodule of M . Therefore NT (M) = {1, 3, 5, 7}. Now, we can observe that the graph GNT (M) is the
complete graph K4 as shown in the following figure.

Figure 1: GNT (Z8)

Example 3.3. Let R = Z and M = Z4. Then M is an R-module with the usual operations, and
T (M) = {0, 1, 2, 3}. Now, we can see that the graph GNT (M) is the null graph.

Proposition 3.4. Let M be a module over a commutative ring R such that T (M) is a submodule of
M . If two distinct vertices of GNT (M) are connected, then there exists a path of length 2 or 1 between
them. In particular, if GNT (M) is connected, then diam(GNT (M)) ≤ 2.

Proof. Let x, y be two distinct vertices of GNT (M) which are connected. If x, y are adjacent in GNT (M),
then obviously we get a path of length 1 between them. If x, y are not adjacent in GNT (M), then there
exists a path x ∼ x1 ∼ x2 ∼ ... ∼ xn−1 ∼ y of length n (> 1) in GNT (M).
Now if n is odd, then we have
x + y = (x + x1) − (x1 + x2) + ... − (xn−2 + xn−1) + (xn−1 + y) ∈ T (M), a contradiction.
Therefore, n must be even and so we have
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x − y = (x + x1) − (x1 + x2) + ... + (xn−2 + xn−1) − (xn−1 + y) ∈ T (M).
Hence, there exists a path x ∼ (−y) ∼ y of length 2 between x and y . Similarly, we also get a path
x ∼ (−x) ∼ y of length 2 between x and y. Thus, if GNT (M) is connected, then diam(GNT (M)) ≤ 2. �

Proposition 3.5. Let M be a module over a commutative ring R such that T (M) is a submodule of
M . Then the following conditions are equivalent :
(1) GNT (M) is connected.
(2) Either x + y ∈ T (M) or x − y ∈ T (M) ∀ x, y ∈ NT (M).
(3) Either x + y ∈ T (M) or x + 2y ∈ T (M) ∀ x, y ∈ NT (M). In particular, either 2x ∈ T (M) or
3x ∈ T (M) (not both) ∀ x ∈ NT (M).

Proof. (1) ⇒ (2) Directly follows from Proposition 3.4.
(2) ⇒ (3) Since (x + y) − y = x /∈ T (M). So by our assumption (x + y) + y = x + 2y ∈ T (M). If x = y,
either 2x or 3x ∈ T (M). Now, 3x − 2x = x /∈ T (M), so 2x and 3x both can not be in T (M).
(3) ⇒ (1) Let x, y ∈ NT (M) and x + y /∈ T (M). Then by our assumption, x + 2y ∈ T (M). Now
2y /∈ T (M). So, 3y = y + 2y ∈ T (M). Now, x 6= 2y. So there exist a path x ∼ 2y ∼ y from x to y.
Therefore, GNT (M) is connected. �

Proposition 3.6. Let M be a module over a commutative ring R such that T (M) is a submodule of

M , |T (M)| = λ and |
M

T (M)
| = µ . Then

(1) If 2 = 1R + 1R ∈ Z(R), then GNT (M) is the union of µ − 1 disjoint Kλ’s.

(2) If 2 = 1R + 1R /∈ Z(R), then GNT (M) is the union of
µ − 1

2
disjoint Kλ,λ’s.

Proof. (1) For any x ∈ NT (M), x + T (M) ⊆ NT (M). Now, if 2 ∈ Z(R), then 2x ∈ T (M) for any x. For
any x1, x2 ∈ T (M), (x + x1) + (x + x2) = 2x + x1 + x2 ∈ T (M). Thus, x + T (M) is a complete graph
with λ elements.

Now, if x+ T (M) and y + T (M) are distinct cosets and x+ x1, y + x2 are adjacent. ⇒ x+ y ∈ T (M).
So, we have x − y ∈ T (M), as 2y ∈ T (M). Therefore, x + T (M) = y + T (M). Hence, GNT (M) is the
union of µ − 1 disjoint Kλ’s.
(2) Let x ∈ NT (M) and x + x1, x + x2 are adjacent in x + T (M). Now, 2x ∈ T (M). So, ∃ r(6= 0) ∈ R
such that r(2x) = 0. But x /∈ T (M). We get 2r = 0, a contradiction. Hence, no pair of elements of
x + T (M) are adjacent.

Now, x + T (M) and −x + T (M) are disjoint cosets as 2x /∈ T (M). For any two elements x + x1

and −x + x2 in x + T (M) and −x + T (M) respectively, (x + x1) + (−x + x2) = x1 + x2 ∈ T (M). Thus
(x + T (M)) ∪ (−x + T (M)) forms a complete bipartite subgraph Kλ,λ of GNT (M). If x + x1 and y + x2

are adjacent vertices of two distinct cosets of T (M), then x + x1 + y + x2 ∈ T (M). So, x + y ∈ T (M).

Therefore, x + T (M) = −y + T (M). Thus, GNT (M) is the union of
µ − 1

2
disjoint Kλ,λ’s. �

Example 3.7. Let R = Z4 and M = Z4 ×Z4. Then M is an R-module with the usual operations, and
T (M) = {(0, 0), (0, 2), (2, 0), (2, 2)} is a submodule of M . Therefore NT (M) = {(0, 1), (0, 3), (1, 0), (1, 1),

(1, 2), (1, 3), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3)}. Clearly, |T (M)| = 4 and so |
M

T (M)
| = 4. Also, it is

clear that 2 ∈ Z(R). We see that, the graph GNT (M) is union of 3 disjoint K4’s in the following figure.

Example 3.8. Let R = Z5. Then R = M is a module over itself and T (M) = {0} is a submodule

of M . Therefore, NT (M) = {1, 2, 3, 4}. Clearly, |T (M)| = 1 and so |
M

T (M)
| = 5. Also, it is clear that

2 /∈ Z(R). We see that, the graph GNT (M) is union of two disjoint K1,1’s as shown in the following figure.

Proposition 3.9. Let M be a module over a commutative ring R such that T (M) is a submodule of
M with M − T (M) 6= φ. Then
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Figure 2: GNT (Z4 × Z4)

Figure 3: GNT (Z5)

(1) GNT (M) is complete if and only if either |
M

T (M)
| = 2 or |

M

T (M)
| = |M | = 3.

(2) GNT (M) is connected if and only if either |
M

T (M)
| = 2 or |

M

T (M)
| = 3.

(3) GNT (M) is totally disconnected if and only if T (M) = {0} and 2 ∈ Z(R).

Proof. (1) If GNT (M) is complete, then by Proposition 3.6, GNT (M) contains one Kλ or K1,1.

For Kλ, µ − 1 = 1, so |
M

T (M)
| = 2 and for K1,1, λ = 1,

µ − 1

2
= 1, so |

M

T (M)
| = |M | = 3.

Conversely, if |
M

T (M)
| = 2.

M

T (M)
= {T (M), x + T (M)}, x ∈ NT (M). Then 2x ∈ T (M). So,

2 ∈ Z(R). By Proposition 3.6, GNT (M) contains one Kλ, hence complete.

If |
M

T (M)
| = |M | = 3 , then T (M) = {0}. Now if 2 ∈ Z(R), then 2a ∈ T (M) ∀a ∈ M . i.e 2a = 0

∀ a ∈ M , a contradiction as M is a cyclic group of order 3. So 2 /∈ Z(R). By Proposition 3.6(2) GNT (M)
is K1,1, a complete graph.
(2) If GNT (M) is connected, then by Proposition 3.6, GNT (M) is either Kλ or Kλ,λ. Thus µ − 1 = 1 or
µ − 1

2
= 1. So, |

M

T (M)
| = 2 or |

M

T (M)
| = 3.

Now if |
M

T (M)
| = 2, then GNT (M) is complete by Part 1, so it is connected.

If |
M

T (M)
| = 3, and if 2 ∈ Z(R), then 2x ∈ T (M) for all x.

M

T (M)
= {T (M), x + T (M), y + T (M)},

x, y ∈ NT (M). So, x + y ∈ T (M) and 2y ∈ T (M) as 2 ∈ Z(R). Now, x + y − 2y = x − y ∈ T (M).
Which gives x + T (M) = y + T (M), a contradiction. Therefore 2 /∈ Z(R). So GNT (M) is Kλ,λ, which is
connected.
(3) GNT (M) is totally disconnected if and only if it is a disjoint union of K1’s. Therefore, by Proposition
3.6(1) we have 2 ∈ Z(R) and |T (M)| = 1 which gives T (M) = {0}. This completes the proof. �

Proposition 3.10. Let
∏

i∈I Ri = R and
∏

i∈I Mi = M , where Mi is Ri-module for each i ∈ I.
Then the following holds:
(1) If GNT (Mi) is a complete graph and 2 ∈ Z(Ri) for some i ∈ I, then GNT (M) is a complete graph.
(2) If GNT (M) is complete and 2 /∈ Z(R), then GNT (Mi) is complete for each i ∈ I.
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Proof. (1) If GNT (Mi) is complete, then for any xi, yi ∈ NT (Mi), xi + yi ∈ T (Mi).
Let x = (x1, x2, ..., xi, ...), y = (y1, y2, ..., yi, ...) ∈ NT (M). Then, x + y = (x1 + y1, x2 + y2, ..., xi + yi, ...).
Since xi + yi ∈ T (Mi), so ∃ ri(6= 0) ∈ Ri such that ri.(xi + yi) = 0.

Now, (0, 0, ..., 0, ri, 0, ...).(x1 + y1, x2 + y2, ..., xi + yi, ...) = 0, i.e. r.(x + y) = 0 where
r = (0, 0, ...0, ri, 0, ...)(6= 0) ∈ R. So x + y ∈ T (M).

Again if xi = yi = w, then x + y = (x1 + y1, x2 + y2, ..., xi−1 + yi−1, 2w, xi+1 + yi+1, ...). Since
2 ∈ Z(Ri), so ∃ ri(6= 0) ∈ Ri such that 2ri = 0, Let r = (0, 0, ..., 0, ri, 0, ...), then r.(x + y) = 0, So
x + y ∈ T (M).
Hence, GNT (M) is complete.
(2) Let us assume that GNT (M) is complete. Let xi, yi ∈ NT (Mi) for some i ∈ I. Then
(x1, x2, ..., xi−1, xi, xi+1, ...), (x1, x2, ..., xi−1, yi, xi+1, ...) ∈ NT (M).

So, (2x1, 2x2, ..., 2xi−1, xi + yi, 2xi+1, ...) ∈ T (M). Since 2 /∈ Z(R), so 2xj ∈ NT (Mj) for j 6= i.
Therefore, xi + yi ∈ T (Mi). Hence GNT (Mi) is complete. �

Proposition 3.11. Let
∏

i∈I Ri = R and
∏

i∈I Mi = M , where Mi is Ri-module for each i ∈ I.

If M − T (M) 6= φ, then |
M

T (M)
| = |

Mi

T (Mi)
| for some i.

Proof. If |
M

T (M)
| = α, then there exists at least (α − 1) elements x1, x2, ..., xα−1 ∈ NT (M). So there

exists x1i, x2i, . . . x(α−1)i ∈ NT (Mi).

Therefore, |
Mi

T (Mi)
| ≥ α = |

M

T (M)
|

Now, if |
Mi

T (Mi)
| = β, we can find at least (β − 1) elements y1, y2, ..., yβ−1 ∈ NT (Mi). Since M −

T (M) 6= φ, so there exists an element x = (x1, x2, ...) ∈ NT (M). Using y1, y2, ..., yβ−1 we can get (β − 1)
non-torsion elements of M such as (x1, x2, ..., xi−1, y1, xi+1, ...), (x1, x2, ..., xi−1, y2, xi+1, ...), . . .

So, we have |
M

T (M
| ≥ β = |

Mi

T (Mi)
|

Which gives |
M

T (M
| = |

Mi

T (Mi)
|. �

Proposition 3.12. Let
∏

i∈I Ri = R and
∏

i∈I Mi = M , where Mi is Ri-module for each i ∈ I.
When M − T (M) 6= φ

(1) If 2 ∈ Z(R), then GNT (M) is complete if and only if |
Mi

T (Mi)
| = 2 for some i ∈ I.

(2) If 2 /∈ Z(R), then GNT (M) is complete if and only if |
Mi

T (Mi)
| = |Mi| = 3 for each i ∈ I.

Proof. (1) Suppose 2 ∈ Z(R) and GNT (M) is complete. Then, |
M

T (M)
| = 2 by Proposition 3.9(1). So,

|
Mi

T (Mi)
| = 2, for some i by Proposition 3.11.

Conversely, If 2 ∈ Z(R) and |
Mi

T (Mi)
| = 2. Then by Proposition 3.9(1) we have, GNT (Mi) is complete.

Also, 2 ∈ Z(Ri) as |
Mi

T (Mi)
| = 2. Hence by Proposition 3.9(1), GNT (M) is complete.

(2) If GNT (M) is complete and 2 /∈ Z(R), then by Proposition 3.10(2) we have, GNT (Mi) is complete

for each i. So, |
Mi

T (Mi)
| = 2 or |

Mi

T (Mi)
| = |Mi| = 3 for each i by Proposition 3.9(1).

Since 2 /∈ Z(Ri) for each i, So |
Mi

T (Mi)
| 6= 2, ⇒ |

Mi

T (Mi)
| = |Mi| = 3 for each i.
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Conversely, If |
Mi

T (Mi)
| = |Mi| = 3 for each i ∈ I, then each GNT (Mi) is complete by Proposition

3.9(1). So for any two distinct elements x, y ∈ NT (M), there exists xi 6= yi and xi + yi ∈ T (Mi). So
x + y ∈ T (M). Hence, GNT (M) is complete. �

4. Diameter and Girth of GNT (M)

In this section, we have discussed the diameter and the girth of the Non-Torsion Graph GNT (M). We
begin with the following proposition.

Proposition 4.1. Let M be a module over a commutative ring R such that T (M) is a submodule of
M and M − T (M) 6= φ. Then

(1) diam(GNT (M)) = 0 if and only if T (M) = {0} and |M | = 2.

(2) diam(GNT (M)) = 1 if and only if either T (M) 6= {0} and |
M

T (M)
| = 2 or T (M) = {0} and |M | = 3.

(3) diam(GNT (M)) = 2 if and only if T (M) 6= {0} and |
M

T (M)
| = 3.

(4) Otherwise, diam(GNT (M))) = ∞.

Proof. (1) If T (M) = {0} and |M | = 2, then |NT (M)| = 1, so diam(GNT (M)) = 0.
Conversely, if diam(GNT (M)) = 0, GNT (M) contains one K1. Which gives T (M) = {0} and |M | = 2.
(2) If diam(GNT (M)) = 1 then GNT (M) is complete and the proof follows from Proposition 3.9(1).

If T(M) 6= {0} and |
M

T (M)
| = 2, then GNT (M)) contains one Kλ, λ > 1, so GNT (M) is complete.

If T (M) = {0} and |M | = 3, then GNT (M) is the complete bipartite graph K1,1 by Proposition 3.9(1)
and Proposition 3.6. Hence the proof.

(3) If diam(GNT (M)) = 2, GNT (M) is connected. So, by Proposition 3.9(2), |
M

T (M)
| = 3 and T (M) 6=

{0}.

Conversely, if T (M) 6= {0} and |
M

T (M)
| = 3, GNT (M) is connected by Proposition 3.9(2) and

diam(GNT (M)) ≤ 2 by Proposition 3.4. Therefore by part (1) and part (2) above, we have diam(GNT (M)) 6=
0, 1 which yields diam(GNT (M)) = 2.
(4) If GNT (M) is connected, then diam(GNT (M)) ≤ 2. So If GNT (M) is disconnected, diam(GNT (M)) =
∞ �

Example 4.2. Let R = Z9, then R = M is a module over itself. Then T (M) = {0, 3, 6} is a

submodule of M . Therefore NT (M) = {1, 2, 4, 5, 7, 8}. Clearly, T (M) 6= {0} and |
M

T (M)
| = 3. In the

following figure, We see the graph GNT (M) has diameter 2.

Figure 4: GNT (Z9)

Proposition 4.3. Let M be a module over a commutative ring R such that T (M) is a submodule of
M and M − T (M) 6= φ. Then the following holds :



8 P. P. Gogoi and J. Goswami

(1) gr(GNT (M)) = 3 if and only if 2 ∈ Z(R) and |T (M)| ≥ 3.

(2) gr(GNT (M)) = 4 if and only if 2 /∈ Z(R) and |T (M)| ≥ 2.

(3) Otherwise, gr(GNT (M)) = ∞.

Proof. (1) If 2 ∈ Z(R), |T (M)| ≥ 3, GNT (M) is disjoint union of Kλ, λ ≥ 3 by Proposition 3.6(1).
Therefore Kλ will contain a 3-cycle which yields gr(GNT (M)) = 3.

If gr(GNT (M)) = 3, GNT (M) can not be union of bipartite graph, so 2 ∈ Z(R) by Proposition 3.6(2)
and |T (M)| ≥ 3.
(2) If 2 /∈ Z(R) and |T (M)| ≥ 2, then GNT (M) is union of complete bipartite graph Kλ,λ, λ ≥ 2 by
Proposition 3.6(2). So gr(GNT (M)) = 4.

Now, if gr(GNT (M)) = 4, then GNT (M) contains complete bipartite graph with |T (M)| ≥ 2 and so
2 /∈ Z(R) by Proposition 3.6(2).
(3) Since GNT (M) contains either complete graphs or complete bipartite graphs by Proposition 3.6 . So
gr(GNT (M)) is either 3 or 4 if GNT (M) contains a cycle. Otherwise gr(GNT (M)) = ∞. �

Example 4.4. Let R = Z8, then R = M is a module over itself. Then T (M) = {0, 2, 4, 6} is a
submodule of M . Therefore NT (M) = {1, 3, 5, 7}. Clearly, |T (M)| = 4 and 2 ∈ Z(R). In the following
figure, We see the graph GNT (M) has girth 3.

Figure 5: GNT (Z8)

5. Domination Number and Bondage number of GNT (M)

In this section we determine the domination number and the bondage number of the the Non-torsion
element Graph GNT (M). We establish a relationship between diameter and domination number of
GNT (M). We also establish a relationship between girth and bondage number of GNT (M). We begin
with the following proposition.

Proposition 5.1. Let M be a module over a commutative ring R such that T (M) is a submodule of

M , |T (M)| = λ, λ ≥ 2 and |
M

T (M)
| = µ, then γ(GNT (M)) = µ − 1.

Proof. Let us consider the following two cases of Z(R) .
Case 1: Suppose that 2 = 1R + 1R ∈ Z(R). Then we have from Proposition 3.6(1) that the graph
GNT (M) is the union of µ − 1 disjoint Kλ’s and we know that γ(Kλ) = 1. Thus γ(GNT (M)) = µ − 1.
Case 2: Suppose that 2 = 1R + 1R /∈ Z(R). Then again we have from Proposition 3.6(2) that the graph

GNT (M) is the union of
µ − 1

2
disjoint Kλ,λ’s and we know that γ(Kλ,λ) = 2. Thus γ(GNT (M)) =

µ − 1

2
× 2 = µ − 1.

Hence, γ(GNT (M)) = µ − 1. �

Example 5.2. Let R = Z4 and M = Z4 ×Z4. Then M is an R-module with the usual operations, and
T (M) = {(0, 0), (0, 2), (2, 0), (2, 2)} is a submodule of M . Therefore NT (M) = {(0, 1), (0, 3), (1, 0), (1, 1),

(1, 2), (1, 3), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3)}. Clearly, λ = |T (M)| = 4 and so µ = |
M

T (M)
| = 4.
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Also, it is clear that 2 ∈ Z(R). From Example 3.7 we can observe that, the graph GNT (M) is union of 3
disjoint K4’s. Therefore, γ(GNT (M)) = γ(K4∪K4∪K4) = γ(K4)+γ(K4)+γ(K4) = 1+1+1 = 3 = µ−1.

Proposition 5.3. Let M be a non-zero torsion-free module over a commutative ring R such that

|
M

T (M)
| = µ, then γ(GNT (M)) =

µ − 1

2
.

Proof. Since M is torsion-free, so we have T (M) = {0}. Therefore, |
M

T (M)
| = |M | = µ. Now, we show

that Z(R) = {0}. Let x (6= 0) ∈ Z(R), then there exists y (6= 0) ∈ R such that xy = 0. Let us consider
an element m (6= 0) ∈ M , and we have (xy)m = 0 which yields x(ym) = 0. Then ym = 0 as x 6= 0 which
implies either y = 0 or m = 0, a contradiction. Therefore, Z(R) = 0. So, 2 = 1R + 1R /∈ Z(R) and from

Proposition 3.6(2) we have the graph GNT (M) is the union of
µ − 1

2
disjoint K1,1’s.

Thus γ(GNT (M)) =
µ − 1

2
× 1 =

µ − 1

2
. �

Example 5.4. Let R = Z5. Then R = M is a module over itself and T (M) = {0} is a submodule of

M . Therefore, NT (M) = {1, 2, 3, 4}. Clearly, λ = |T (M)| = 1 and so µ = |
M

T (M)
| = 5. From Example

3.8 we can see that, the graph GNT (M) is union of two disjoint K1,1’s. Therefore, γ(GNT (M)) =

γ(K1,1 ∪ K1,1) = γ(K1,1) + γ(K1,1) = 1 + 1 = 2 =
µ − 1

2
.

Proposition 5.5. Let M be a module over a commutative ring R such that T (M) is a submodule of

M with M − T (M) 6= φ. Then γ(GNT (M)) = 1 if and only if |
M

T (M)
| = 2 or |

M

T (M)
| = |M | = 3.

Proof. Let us assume that γ(GNT (M)) = 1. Then clearly GNT (M) is connected. If 2 ∈ Z(R), then

µ − 1 = 1 and hence µ = 2, where µ = |
M

T (M)
|, by Proposition 3.6(1) . Thus |

M

T (M)
| = 2.

If 2 /∈ Z(R), then
µ − 1

2
= 1 and so µ = |

M

T (M)
| = 3, by Proposition 3.6(2) . Also by assumption, we

have λ = |T (M)| = 1 and hence T (M) = {0}. Thus |
M

T (M)
| = |M | = 3.

Conversely, let us assume that |
M

T (M)
| = 2 or |

M

T (M)
| = |M | = 3. Then by Proposition 3.9(1), GNT (M)

is complete and hence γ(GNT (M)) = 1.

In the following corollary, a relationship between diameter and domination number of GNT (M) has
been established. �

Proposition 5.6. Let M be a module over a commutative ring R such that T (M) is a submodule of
M . Then

(1) diam(GNT (M)) = 1 if and only if γ(GNT (M)) = 1.

(2) diam(GNT (M)) = 2 if and only if γ(GNT (M)) = 2.

Proof. (1) It is clear by Proposition 4.1(2) and Proposition 5.5 .

(2) If diam(GNT (M)) = 2, then T (M) 6= {0} and |
M

T (M)
| = 3, by Proposition 4.1(3) . Hence GNT (M)

is connected, by Proposition 3.9(2) . Therefore GNT (M) is a complete bipartite graph Kλ,λ with λ ≥ 2.
So γ(GNT (M)) = 2.
Conversely, if γ(GNT (M)) = 2, then GNT (M) is the union of two Kλ’s or is a complete bipartite graph

Kλ,λ with λ ≥ 2, by Proposition 3.6(1) and Proposition 3.6(2) . So µ − 1 = 2 or
µ − 1

2
= 1. In either
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case, |
M

T (M)
| = 3 and |T (M)| ≥ 2. Thus T (M) 6= {0} and diam(GNT (M)) = 2, by Proposition 4.1(3) .

�

Proposition 5.7. Let M be a module over a commutative ring R such that T (M) is a submodule of

M , |T (M)| = λ and |
M

T (M)
| = µ. Then

b(GNT (M)) =

{

λ − 1, if 2 = 1R + 1R ∈ Z(R)

λ , if 2 = 1R + 1R /∈ Z(R)

Proof. Let us assume that 2 = 1R + 1R ∈ Z(R). Then by Proposition 3.6(1), the graph GNT (M) is the
union of µ − 1 disjoint Kλ’s and we know that b(Kλ) = λ − 1. Thus, b(GNT (M)) = λ − 1.
Again, let us suppose that 2 = 1R + 1R /∈ Z(R). Then by Proposition 3.6(2), GNT (M) is the union of
µ − 1

2
disjoint Kλ,λ’s and we know that b(Kλ,λ) = λ. Hence, b(GNT (M)) = λ. �

Example 5.8. Let R = Z4 and M = Z4 ×Z4. Then M is an R-module with the usual operations, and
T (M) = {(0, 0), (0, 2), (2, 0), (2, 2)} is a submodule of M . Therefore NT (M) = {(0, 1), (0, 3), (1, 0), (1, 1),

(1, 2), (1, 3), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3)}. Clearly, λ = |T (M)| = 4 and so µ = |
M

T (M)
| = 4.

Also, it is clear that 2 ∈ Z(R). From Example 3.7 we can observe that, the graph GNT (M) is union of 3
disjoint K4’s. Therefore, b(GNT (M)) = b(K4 ∪ K4 ∪ K4) = min{b(K4), b(K4), b(K4)} = min{3, 3, 3} =
3 = λ − 1.

Example 5.9. Let R = Z5. Then R = M is a module over itself and T (M) = {0} is a submodule

of M . Therefore, NT (M) = {1, 2, 3, 4}. Clearly, |T (M)| = 1 and so |
M

T (M)
| = 5. Also, it is clear that

2 /∈ Z(R). From Example 3.8, we see that the graph GNT (M) is union of two disjoint K1,1’s.
Thus, we have b(GNT (M)) = b(K1,1 ∪ K1,1) = min{b(K1,1), b(K1,1)} = min{1, 1} = 1.

Proposition 5.10. Let M be a module over a commutative ring R such that T (M) is a submodule

of M , |T (M)| = λ and |
M

T (M)
| = µ. Then

(1) gr(GNT (M)) = 3 if and only if b(GNT (M)) = λ − 1 and |T (M)| ≥ 3.

(2) gr(GNT (M)) = 4 if and only if b(GNT (M)) = λ and |T (M)| ≥ 2.

Proof. (1) If gr(GNT (M)) = 3, then 2 ∈ Z(R) and |T (M)| ≥ 3, by Proposition 4.3(1) . Since 2 ∈ Z(R)
so b(GNT (M)) = λ − 1, by Proposition 5.7 .

Conversely, let us assume that b(GNT (M)) = λ − 1 and |T (M)| ≥ 3. If 2 /∈ Z(R), then GNT (M) is

the union of
µ − 1

2
disjoint Kλ,λ’s, by Proposition 3.6(2) and hence b(GNT (M)) = λ, a contradiction to

the assumption. Therefore 2 ∈ Z(R), and then gr(GNT (M)) = 3, by Proposition 4.3(1) .

(2) If gr(GNT (M)) = 4, then 2 /∈ Z(R) and |T (M)| ≥ 2, by Proposition 4.3(2) . Since 2 /∈ Z(R) so
b(GNT (M)) = λ, by Proposition 5.7 .

Conversely, let us suppose that b(GNT (M)) = λ and |T (M)| ≥ 2. If 2 ∈ Z(R), then b(GNT (M)) =
λ − 1 by Proposition 3.6(1), a contradiction. So 2 /∈ Z(R). Therefore, GNT (M) is the union of Kλ,λ’s,
where λ ≥ 2. Thus gr(Kλ,λ) and hence gr(GNT (M)) is equal to 4. �
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