

(3s.) **v. 2024 (42)** : 1–8. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.63911

Some Properties of Weak * Dunford-Pettis Operators on Banach Lattices

S. Boumnidel, A. El Kaddouri, O. Aboutafail and K. Bouras

ABSTRACT: We study relationships between the class of weak^{*} Dunford-Pettis operators and other classes of operators like Dunford-Pettis, weak Dunford-Pettis and unbounded Dunford-Pettis operators.

Key Words: Banach lattices, Dunford-Pettis operator, weak Dunford-Pettis operator, unbounded Dunford-Pettis operator, unbounded absolutely weakly convergence.

Contents

1	Introduction	1
2	Preliminaries	1
3	Main results	2

1. Introduction

The class of weak^{*} Dunford-Pettis operators appeared for the first time in [12]. In [2] the authors studied its relationship between M-weakly compact and almost Dunford-Pettis operator, the class of unbounded absolutely weakly Dunford-Pettis operators was introduced in [17]. Here, we study the relationship between the class of weak^{*} Dunford-Pettis operator and other classes of operators such that the well known Dunford-Pettis operators, weak Dunford-Pettis operators and σ -unbounded absolutely weakly Dunford-Pettis operators.

By Theorem 3.1 we show necessary and sufficient conditions under which a weak^{*} Dunford-Pettis operator is σ -unbounded Dunford-Pettis operator. Clearly a Dunford-Pettis operator is a weak^{*} Dunford-Pettis, but the converse is not true in general, by Theorem 3.5 we study when the converse is true. Since the weak convergence implies the weak^{*} convergence, every weak^{*} Dunford-Pettis operator is weak Dunford-Pettis, but the converse is not true in general, by theorem 3.7, we give properties on Banach lattices whenever every weak Dunford-Pettis is weak^{*} Dunford-Pettis operator. We start this article by recalling few definitions in the first section.

2. Preliminaries

Throughout this paper X and Y denote two Banach lattices, X and Y two Banach spaces. The positive cone of E is denoted by E^+ . B_X is the closed unit ball of X. The term operator between two Banach spaces means a bounded linear mapping.

A norm bounded subset A of X is said to be

- Dunford-Pettis set if every weak null sequence (f_n) of X' converges uniformly on A, that is, $\lim_{n \to \infty} \sup_{x \in A} |\langle f_n, x \rangle| = 0.$
- Limited set if every weak^{*} null sequence (f_n) of X' converges uniformly on A, that is, $\lim_{n \to \infty} \sup_{x \in A} |\langle f_n, x \rangle| = 0.$

Let us recall that an operator $T: X \longrightarrow Y$ is said to be:

• Dunford-Pettis if T carries weakly convergent sequences to norm convergent sequences [1].

²⁰¹⁰ Mathematics Subject Classification: 46B42, 47B60, 47B65. Submitted June 09, 2022. Published November 05, 2022

- Weak Dunford-Pettis whenever $x_n \to 0$ for $\sigma(X, X')$ -topology (shortly, $x_n \xrightarrow{w} 0$) and $f_n \to 0$ for $\sigma(Y', Y'')$ -topology imply that $\lim_{n \to \infty} f_n(T(x_n)) = 0$ [1].
- Weak^{*} Dunford-Pettis whenever $x_n \to 0$ for $\sigma(X, X')$ -topology and $f_n \to 0$ for $\sigma(Y', Y)$ -topology (shortly, $f_n \xrightarrow{w^*} 0$) imply that $\lim_{n \to \infty} f_n(T(x_n)) = 0$ [12].
- Limited if $T(B_X)$ is a limited set of Y, alternatively, T is limited if, and only if, $||T'(f_n)|| \to 0$ for every weak^{*} null sequence (f_n) in Y' [4].
- M-weakly compact whenever $||T(x_n)|| \to 0$ holds for every norm bounded disjoint sequence $(x_n) \subset X$ [1].

A Banach space X has

- The Dunford-Pettis^{*} property (shortly, DP^{*} property) if every relatively compact subset of X is limited, which is equivalent to say that X has the DP ^{*} property if, and only if, $\lim_{n\to\infty} f_n(x_n) = 0$ for every weak null sequence (x_n) in X and every weak^{*} null sequence (f_n) of X', by Borwein in [5]
- The Grothendieck property if for every sequence (f_n) in X' such that $f_n \xrightarrow{w^*} 0$ then $f_n \xrightarrow{w} 0$ in X'[19].
- The Schur property if each weakly null sequence in E converges to zero in the norm. For example, the Banach lattice ℓ^1 has the Schur property but the Banach lattice $L^1([0,1])$ does not have the Schur property.

To state our results, we need to fix some notations and recall some definitions. A Banach lattice is a Banach space $(E, \|\cdot\|)$ such that E is a vector lattice and its norm satisfies the following property: for each $x, y \in E$ such that $|x| \leq |y|$, we have $||x|| \leq ||y||$. If E is a Banach lattice, its topological dual E', endowed with the dual norm, is also a Banach lattice. A norm $\|\cdot\|$ of a Banach lattice E is order continuous if for each generalized sequence (x_{α}) such that $x_{\alpha} \downarrow 0$ in E, the sequence (x_{α}) converges to 0 for the norm $\|\cdot\|$, where the notation $x_{\alpha} \downarrow 0$ means that the sequence (x_{α}) is decreasing, its infimum exists and $\inf(x_{\alpha}) = 0$.

Note that if E is a Banach lattice, its topological dual E', endowed with the dual norm and the dual order, is also a Banach lattice.

The unbounded absolute weak convergence (uaw-convergence) was introduced first by Zabeti in [18]. A sequence $(x_n)_n$ is unbounded absolutely weakly convergent (shortly, uaw-convergent) to a vector x in E if $(|x_n - x| \land u)$ is weakly convergent to zero for every $u \in E^+$; we write $x_n \xrightarrow{uaw}{x} x$.

The unbounded norm convergence (un-convergence) in a Banach lattices was first introduced by V. Troitsky in [8]. A sequence is said to be unbounded norm convergent (shortly un-convergence) to a vector x in E if $|| |x_n - x| \wedge u||$ converges to zero for every $u \in E^+$; we write $x_n \xrightarrow{un} x$.

The lattice operations in E' are called weak^{*} sequentially continuous if the sequence $(|f_n|)_n$ converges to 0 by the weak^{*} topology whenever the sequence (f_n) converges weak^{*} to 0 in E'.

An operator $T: X \to Y$ between two Banach spaces is said to be an embedding whenever there exist two positive constants K and M satisfying:

$$K||x|| \le ||T(x)|| \le M||x|| \qquad \text{for all} \qquad x \in X$$

For all unexplained terminology and standard facts on vector and Banach lattices, we refer the reader to the monographs [1] and the paper [18].

3. Main results

Recall that an operator $T: E \to F$ is σ -unbounded Dunford-Pettis if for every norm bounded sequence $(x_n), x_n \xrightarrow{uaw} 0$ in E implies that $T(x_n) \xrightarrow{un} 0$ [15]. Note that there exists a weak^{*} Dunford-Pettis operators which is not σ -unbounded Dunford-Pettis. In fact, the identity operator $Id_{\ell^{\infty}}: \ell^{\infty} \to \ell^{\infty}$ is

weak^{*} Dunford-Pettis (bcause ℓ^{∞} has the Dunford-Pettis^{*} property) but fails to be σ -unbounded Dunford-Pettis. In fact, the standard basis $(e_n)_n$ is uaw-null in ℓ^{∞} . By considering $(1, 1, 1, 1, \dots,) \in \ell^{\infty}$ where $(1,1,1,\dots,)$ is the constant sequence with all rang value is 1. It is clear that $||e_n \wedge (1,1,1,1,1,1,\dots,)|| = 1$. Hence, $e_n \stackrel{un}{\rightarrow} 0$.

In the following result, we show necessary and sufficient conditions under which a weak^{*} Dunford-Pettis operator is σ -unbounded Dunford-Pettis.

Theorem 3.1. Let E and F be two Banach lattices such that F is a Dedekind σ -complete. Then the following assertions are equivalent:

- 1. Every positive weak^{*} Dunford-Pettis operator $T: E \to F$ is M-weakly compact.
- 2. Every positive weak^{*} Dunford-Pettis operator $T: E \to F$ is σ -unbounded Dunford-Pettis.
- 3. One of the following is valid:
 - (a) The norms of E' and F are order continuous.
 - (b) E is finite-dimensional.
 - (c) $F = \{0\}.$

Proof. (1) \Longrightarrow (2) Let $T: E \to F$ be an M-weakly compact operator, by [21, Theorem 2.7], $||Tx_n|| \to 0$ for every uaw-null sequence $x_n \subset B_E$. Since norm convergence implies un-convergence then, T is σ -unbounded Dunford-Pettis.

 $(2) \Longrightarrow (3)$ It suffices to prove separately the two following assertions:

(α) If the norm of F is not order continuous, then E is finite-dimensional (β) If the norm of E' is not order continuous, then $F = \{0\}$.

Assume that (α) is false, i.e. the norm of F is not order continuous and E is infinite-dimensional. Then, it results from [1, Theorem 4.51] that ℓ^{∞} is a lattice embedding in F. Let $i : \ell^{\infty} \to F$ be a lattice embedded, then there exist two positive constants m and M satisfying

$$m\|x\|_{\infty} \le \|i(x)\| \le M\|x\|_{\infty}$$
 for all $x \in \ell^{\infty}(*)$

On the other hand, since E is an infinite-dimensional Banach lattice, it follows from [3, Lemma 2.3] and [3, Lemma 2.5] the existence of a positive disjoint sequence (x_n) in E^+ with $||x_n|| = 1$ for all $n \in \mathbb{N}$ and there exists a positive disjoint sequence (g_n) of E' with $||g_n|| \leq 1$ for each n, such that $g_n(x_n) = 1$ and $g_n(x_m) = 0$ for $n \neq m$.

To finish the proof, we have to construct a positive weak^{*} Dunford-Pettis operator $T : E \to F$ which is not σ -unbounded Dunford-Pettis. Now, we define the operator $P : E \longrightarrow \ell^{\infty}$ defined by $P(x) = (g_n(x))_n$. Clearly P is well defined and is positive. Let

$$T = i \circ P : E \longrightarrow \ell^{\infty} \longrightarrow F$$

then T is a positive weak^{*} Dunford-Pettis operator (because ℓ^{∞} has the Dunford-Pettis^{*} property). But T is not σ -unbounded Dunford-Pettis operator. Indeed, by [Lemma 2, [18]], $x_n \xrightarrow{uaw} 0$, we will prove the existence of an element $u \in F^+$ such that $||T(x_n) \wedge u|| \rightarrow 0$. In fact, let consider $(1, 1, 1, \dots,) \in \ell^{\infty}$ where $(1, 1, 1, \dots,)$ is the constant sequence from ℓ^{∞} with all rang value is 1. Since i is a positive operator defined on $\ell^{\infty} \longrightarrow F$, then $i(1, 1, 1, \dots,) \in F^+$, as the operator i is a lattice homomorphism then, by [1], Theorem 2.14] we have the following

$$\begin{aligned} \|T(x_n) \wedge i(1, 1, 1, \dots, m)\| &= \|i \circ P(x_n) \wedge i(1, 1, 1, \dots, m)\| \\ &= \|i[(g_k(x_n))_k \wedge (1, 1, 1, \dots, m)]\| \\ &= \|i(g_k(x_n))_k\| \\ &\ge m \|g_k(x_n))_k\|_{\infty} \quad \text{from}(*) \\ &\ge m = m|g_n(x_n)| \end{aligned}$$

for all $n \in \mathbb{N}$. Then, $||T(x_n) \wedge i(1, 1, 1, 1, \dots, n)|| \not\rightarrow 0$ and hence $T(x_n) \stackrel{un}{\not\rightarrow} 0$, so T is not σ -unbounded Dunford-Pettis.

(β) Assume that (1) holds. We will prove that if the norm on E' is not order continuous, then $F = \{0\}$. If not, there exists some y > 0 in F and since the norm of E' is not order continuous then, il follows from Theorem 2.4.14 and Proposition 2.3.11 [14] that ℓ^1 is a closed sublattice of E and there exists a positive projection $P: E \longrightarrow \ell^1$.

Consider the positive operator S defined by

$$S: \ell^1 \longrightarrow F, (\alpha_n)_n \mapsto \sum_{n=1}^{\infty} \alpha_n y$$

The composed operator $T = S \circ P$ is compact (because S is compact as its rank is one), hence T is weak^{*} Dunford-Pettis but T is not σ -unbounded Dunford-Pettis. Indeed, let (e_n) be the canonical basis of ℓ^1 we have $e_n \xrightarrow{uaw} 0$ but $||T(e_n) \wedge y|| \not\rightarrow 0$ $(T(e_n) \wedge y = y \wedge y = y$ for each $n \in \mathbb{N}$). Thus, T is not a σ -unbounded Dunford-Pettis operator.

 $(3.a) \Longrightarrow (1)$ We will adapt here the implication $(1) \Longrightarrow (2)$ in the proof of [13, Theorem 2.1]. We will prove that $||Tx_n|| \longrightarrow 0$ for every disjoint sequence $x_n \subset B_E$.

Let $T: E \longrightarrow F$ be a positive weak^{*} Dunford-Pettis operator and (x_n) be a disjoint sequence in B_E . By [[7], Corollary 2.6], it suffices to prove that $|Tx_n| \longrightarrow 0$ in the $\sigma(F, F')$ -topology of F and $f_n(Tx_n) \longrightarrow 0$ for every disjoint and norm bounded sequence $(f_n) \subset (F')^+$. In fact,

- Let $f \in (F')^+$. As the norm of E' is order continuous then, $x_n \longrightarrow 0$ and $|x_n| \longrightarrow 0$ in the $\sigma(E, E')$ -topology of E (because (x_n) is a disjoint sequence). It follows from [1, Theorem 1.23] that for each n there exists some $g_n \in [-f, f]$ with $f|T(x_n)| = g_n(T(x_n))$. Now, since $|x_n| \longrightarrow 0$ in the $\sigma(E, E')$ -topology of E and T is positive then,

$$0 \le f|Tx_n| = g_n(Tx_n) = T'(g_n)(x_n) \le |T'(g_n)||x_n| \le T'(f)|x_n| \longrightarrow 0$$

and hence $|T(x_n)| \longrightarrow 0$ in the $\sigma(F, F')$ -topology of F.

- Let $(f_n) \subset (F')^+$ be a disjoint and norm bounded sequence. As the norm of F is order continuous, then by [14, Corollary 2.4.3], $f_n \longrightarrow 0$ in the $\sigma(F', F)$ -topology of F'. Now, since T is weak^{*} Dunford-Pettis then, $f_n(T(x_n)) \longrightarrow 0$. This finishes the proof.

 \Box

 $(3.b) \Longrightarrow (1)$ It follows from [13, Theorem 2.4].

 $(3.c) \Longrightarrow (1)$ Obvious.

Remark 3.2. If we consider only the condition of order continuity of E', it will not be sufficient for a weak^{*} Dunford-Pettis operator to be σ -unbounded Dunford-Pettis, we consider again the example of the identity from ℓ^{∞} to ℓ^{∞} , which is weak^{*} Dunford-Pettis. The dual of ℓ^{∞} is order continuous, but this identity is not σ -unbounded Dunford-Pettis.

To establish our next results, we need the following Lemma,

Lemma 3.3. Let A be a bounded subset of a Banach space X. if for each $\varepsilon > 0$ there exists a limited set A_{ε} in X such that $A \subseteq A_{\varepsilon} + \varepsilon B_X$, then A is a limited set.

Proof. Let (f_n) be a weak^{*} null sequence in X', and ε an arbitrary element of \mathbb{R} such that $\varepsilon > 0$. Pick some M > 0 with $||f_n|| \leq M$ for all n. By hypothesis, there exits some limited subset A_{ε} of X such that $A \subseteq A_{\varepsilon} + \frac{\varepsilon}{2M}B_X$, since ε is arbitrary, then

$$\sup_{x \in A} |f_n(x)| \le \sup_{x \in A_{\varepsilon}} |f_n(x)| + \frac{\varepsilon}{2}.$$

As A_{ε} is limited, there exists some n_0 with $\sup_{x \in A} |f_n(x)| \leq \frac{\varepsilon}{2}$ for all $n \geq n_0$. Thus, $\sup_{x \in A} |f_n(x)| \leq \varepsilon$ for all $n \geq n_0$. This implies $\sup_{x \in A} |f_n(x)| \longrightarrow 0$, and then A is limited.

Recall that an operator from a Banach lattice E into a Banach space Y is almost Dunford-Pettis if $||T(x_n)|| \to 0$ for every weakly null sequence (x_n) consisting of pairwise disjoint elements in E [22].

Theorem 3.4. Let E and F be two Banach lattices. If F' has weak^{*} sequentially continuous lattice operations, then every positive almost Dunford-Pettis operator from E into F is weak^{*} Dunford-Pettis.

Proof. Let $T: E \longrightarrow F$ be a positive almost Dunford-Pettis operator, and let W be a relatively weakly compact set in E. We want to show that T(W) is a limited set in F. Let $\varepsilon > 0$, and let A = Sol(W). By [1, Theorem 4.36], there exists $u \ge 0$ lying in the ideal generated be A satisfying $T'(W) \subset [-T(u)] + \varepsilon R_{22} = On F'$ has weak's sequentially continuous lattice operations

A satisfying $T(W) \subset [-T(u), T(u)] + \varepsilon B_X$. Or F' has weak* sequentially continuous lattice operations then, il follows from [11, Proposition 3.1] that [-T(u), T(u)] is a limited set in F. Then, by Lemma 3.3 the set T(W) is limited in F and hence T is weak* Dunford-Pettis.

Clearly, a Dunford-Pettis operator is a weak^{*} Dunford-Pettis but a weak^{*} Dunford-Pettis operator is not necessary Dunford-Pettis. For example, the identity operator $Id_{\ell^{\infty}} : \ell^{\infty} \longrightarrow \ell^{\infty}$ is weak^{*} Dunford-Pettis (because ℓ^{∞} has the DP^{*} property) but is not Dunford-Pettis (because ℓ^{∞} does not have the Schur property).

In the following result, we show properties on Banach lattices E and F whenever every weak^{*} Dunford-Pettis operator is Dunford-Pettis,

Theorem 3.5. Let E and F be two Banach lattices. If every weak^{*} Dunford-Pettis operator $T : E \longrightarrow F$ is Dunford-Pettis, then one of the following is valid:

- 1. E has the Schur property,
- 2. The norm of F is order continuous.

Proof. Let suppose that (1) and (2) doesn't hold, i.e., the norm of F is not order continuous and E does not have the Schur property. We will construct an operator $T: E \longrightarrow F$ which is weak^{*} Dunford-Pettis but is not Dunford-Pettis. Indeed, suppose that E does not have the Schur property. Then there exists a weakly null sequence $(x_n) \subset E$ and $\varepsilon > 0$ and a sequence $(f_n) \subset B_{E'}$ such that $|f_n(x_n)| > \varepsilon$. Now, consider the operator $P: E \longrightarrow \ell^{\infty}$ defined by

$$P(x) = (f_n(x))_n$$

Since the norm of F is not order continuous, it follows from [1, Theorem 4.51] that ℓ^{∞} is lattice embeddable in F, i.e., there exists a lattice homomorphism $S: \ell^{\infty} \longrightarrow F$ and there exist two positive constants M and m satisfying

$$m \left\| (\lambda_k)_k \right\|_{\infty} \le \left\| S \left((\lambda_k)_k \right) \right\| \le M \left\| (\lambda_k)_k \right\|_{\infty}$$

for all $(\lambda_k)_k \in \ell^{\infty}$.

Let consider the operator $T = S \circ P : E \longrightarrow \ell^{\infty} \longrightarrow F$, and note that T is a weak^{*} Dunford-Pettis operator (because ℓ^{∞} has the DP^{*} property), but is not Dunford-Pettis. In fact, since (x_n) is weakly null sequence in E and as

$$\begin{aligned} \|T(x_n)\| &= \|S \circ P(x_n)\| \\ &= \|S((f_k(x_n))_k)\| \\ &\geq m \|(f_k(x_n))\|_{\infty} \\ &\geq m |f_n(x_n)| \\ &> m\varepsilon \end{aligned}$$

for every *n*. Then, *T* is not Dunford-Pettis, and this finishes the proof. \Box

As an immediate consequence, we have the following result,

Corollary 3.6. Let E be a Banach lattice. If every weak^{*} Dunford-Pettis operator $T : E \longrightarrow E$ is Dunford-Pettis, then the norm of E is order continuous.

Clearly, a weak^{*} Dunford-Pettis operator is weak Dunford-Pettis, but the converse doens't hold in general. In fact, the identity operator $Id_{c_0} : c_0 \longrightarrow c_0$ is weak Dunford-Pettis (because c_0 has the DP property) but it is not weak^{*} Dunford-Pettis (because c_0 fails the DP^{*} property).

Although, by virtue of following result, we show properties on Banach lattices E and F whenever a weak Dunford-Pettis operator is weak^{*} Dunford-Pettis operator.

Theorem 3.7. Let E and F be two Banach lattices such that F is Dedekind σ -complete and the norm on E' is order continuous. If each weak Dunford-Pettis operator $T : E \longrightarrow F$ is weak^{*} Dunford-Pettis, then one of the following assertions is valid:

- 1. E has the wDP^{*} property.
- 2. F is a KB-space.

Proof. Suppose that F is not a KB-space, we will prove that E has the wDP^{*} property. Since F is not a KB-space, then by [[1],theorem 4.60] c_0 is lattice embeddable in F, let consider an arbitrary positif operator $T: E \longrightarrow c_0$.

The Banach lattice c_0 has the Dunford-Pettis property, then T is a weak Dunford-Pettis operator, by assumption, T is weak^{*} Dunford-Pettis, since the norm on c_0 and E' are order continuous then by theorem 3.1, T is M-weakly compact, by [21, Theorem 2.7], T is uaw-Dunford-Pettis. Since c_0 is discrete and order continuous then by virtue of theorem 3 of [9], T is Dunford-Pettis. Theorem 3.5 of [6] shows that E has the wDP^{*} property.

- **Remark 3.8.** 1. If the norm on E' is not order continuous, then the first condition is not sufficient, for instance, let consider $E = F = L^1[0,1]$. The Banach lattice $L^1[0,1]$ has the positive Schur property, then by [[6], proposition 3.3], $L^1[0,1]$ has the wDP^{*} property. The identity operator $Id: L^1[0,1] \rightarrow L^1[0,1]$ is weak Dunford-Pettis but not weak^{*} Dunford-Pettis because $L^1[0,1]$ has the Dunford-Pettis property without the DP^{*} property. (Indeed, a separable Banach space with the DP^{*} property must have the Schur property, while $L^1[0,1]$ has the positive Schur property without the Schur property).
 - The second condition of Theorem 3.7 is not necessary, indeed, we consider E = F = L[∞][0,1], by virtue of Corollary 4.45 of [1], L[∞][0,1] has the Grothendieck property, then every weak Dunford-Pettis operator T : L[∞][0,1] → L[∞][0,1] is weak^{*} Dunford-Pettis. Although (L[∞][0,1])' is order continuous and L[∞][0,1] is not KB-space.

Remark 3.9. $L^1[0,1]$ is KB-space, but it's not a discrete Banach lattice. As we saw above (remark 3.8), there exists a weak Dunford-Pettis ($Id: L^1[0,1] \rightarrow L^1[0,1]$) which is not weak^{*} Dunford-Pettis. we will see by theorem below that the statement holds for an operator $T: E \rightarrow F$, if F is a discrete KB-space.

Furthermore, we give bellow sufficient conditions on Banach lattices under which a weak Dunford-Pettis operator from E into F is weak^{*} Dunford-Pettis.

Theorem 3.10. Let E and F be two Banach lattices. Then each positive weak Dunford-Pettis operator from E into F is weak^{*} Dunford-Pettis if one of the following assertions is valid:

- 1. E has the DP^* property.
- 2. F has the Grothendieck property.
- 3. F is reflexive.
- 4. F is a dual KB-space and the lattice operations in E are weakly sequentially continuous.
- 5. F is a discrete KB-space.
- 6. The norm of the topological bi-dual F" is order continuous and the lattice operations in E are weakly sequentially continuous.

- *Proof.* 1. Let $T: E \longrightarrow F$ a positive operator, $(f_n) \subset F'$, $x_n \subset E$ such that $x_n \xrightarrow{w} 0$ and $f_n \xrightarrow{w^*} 0$. The composed operator $f_n \circ T \subset E'$ is a linear function, with $f_n \circ T \xrightarrow{w^*} 0$, since E has the DP* property, then $f_n(T(x_n)) \longrightarrow 0$, this proves that T is weak* Dunford-Pettis operator.
 - 2. Obvious.
 - 3. In this case F has Grothendieck property. (Reflexive spaces have Grothendieck property.)
 - 4., (5) and (6) Follow from theorem 2.4 of [16] (since every Dunford-Pettis operator is weak^{*} Dunford-Pettis).

Bellow we study weak compactness of weak^{*} Dunford-Pettis operators.

Theorem 3.11. Let E and F be two Banach lattices. If each weak^{*} Dunford-Pettis operator $T : E \longrightarrow F$ is weakly compact then one of the following assertions is valid:

- 1. E' is KB-space.
- 2. F is a reflexive.

Proof. Let assume that E' is not KB-space, we will prove that F is reflexive.

It follows from [[1], Theorem 4.59] that E' is not order continuous, then by [[14], Proposition 2.3.11 and Theorem 2.4.14], E contains a sublattice isomorphic to l^1 and there exists a positive projection $P: E \longrightarrow l^1$.

Let consider an arbitrary positif operator $T: l^1 \longrightarrow F$.

 l^1 has the Dunford-Pettis^{*} property, then T is a weak^{*} Dunford-Pettis operator, by assumption, T is weakly compact. Theorem 5.29 of [1] shows that F is reflexive.

Acknowledgments

The authors would like to thank the referee for his useful comments and suggestions to improve the quality of the paper.

References

- 1. C. D. Aliprantis and O. Burkinshaw, Positive operators, Reprint of the 1985 original. Springer. Dordrecht. (2006).
- A. El Kaddouri, J. H'michane, K. Bouras and M. Moussa, On the class of weak^{*} Dunford-Pettis operators, Rend. Circ. Mat. Palermo (2) 62, 261-265 (2013).
- 3. B. Aqzzouz, A. Elbour, and J. H'michane, On some properties of the class of semi-compact operators. Bull. Belg. Math. Soc. Simon Stevin 18 (2011).
- 4. J. Bourgain and J. Diestel, Limited operators and strict cosingularity. Math. Nachr. 119. 55–58 (1984).
- 5. J. Borwein, M. Fabian and J. Vanderwer, Characterizations of Banach spaces via convex and other locally Lipschitz functions. Acta. Math. Vietnam. 22(1) pp 53-69 (1997).
- J. Chen, Z. Chen and G. Xing, almost limited sets in Banach lattices. Journal of Mathematical Analysis and Applications. 412(1), p.547-553 (2014).
- 7. P.G. Dodds and D.H. Fremlin, Compact operators on Banach lattices, Israel J. Math. 34, 287-320 (1979).
- 8. E. Yu. Emelyanov and M. A. A. Marabeh, Two measure-free versions of the Brezis-Lieb lemma. Vladikavkaz. Mat. Zh. 18(1):21–25 (2016).
- 9. H. Li and Z. Chen, Some results on unbounded absolute weak Dunford-Pettis operators, Positivity 1-10 (2019).
- 10. H. Carrión, P. Galindo and M. L. Lourenço, A stronger Dunford Pettis property. Studia Mathematica 184 (3) (2008).
- A. El Kaddouri; M. Moussa, About the class of ordered limited operators, Acta Universitatis Carolinae. Mathematica et Physica, Vol. 54 (2013), No. 1, 37–43.

- J. H'michane, A. El Kaddouri, K. Bouras and M. Moussa, On the class of limited operators, AMUC. Vol 85 No 2 (2016).
- K. El Fahri, J. Hmichane, A. El Kaddouri and O. Aboutafail, On the weak compactness of weak^{*} Dunford-Pettis operators on Banach Lattices, Adv. Oper. Theory 2(3: 192-200 (2017).
- 14. P. Meyer-Nieberg, Banach lattices. Universitext.Springer-Verlag, Berlin, (1991).
- M. Ouyang, Z. Chen, J. Chen and Z. Wang, σ-Unbounded Dunford-Pettis operators on Banach lattices, 1909.07681v2 [math.FA] 24 Sep (2019).
- M. Moussa and K. Bouras, About positive weak Dunford-Pettis operators on Banach lattices. J. Math. Anal. Appl. 381 (2011) 891–896.
- N. Erkur_sun-Özcan, N. Anl Gezer and O. Zabeti, Unbounded absolutely weak Dunford–Pettis operators, Turkish journal of mathematics, 43 (2019), pp. 2731–2740.
- 18. O. Zabeti, Unbounded Absolute Weak Convergence in Banach Lattices, Positivity, 22(1), pp. 501-505 (2018).
- 19. O. Zabeti, The grothendieck property from an ordered point of view, Positivity 26, 17 (2022).
- 20. Z. Wang and Z. Chen, Applications for unbounded convergences in Banach Lattices, Fractal Fract. 2022, 6, 199.
- Z. Wang, Z. Chen and J. Chen, Unbounded convergence in Banach lattices and applications. arXiv 2017, arXiv:1903.02168v12.
- W. Wnuk, Banach lattices with the weak Dunford–Pettis property. Atti Sem. Mat. Fis. Univ. Modena 42(1), 227–236 (1994).

Sanaa Boumnidel, MMA, FPL, Abdelmalek Essaâdi University, Morocco. E-mail address: bsanouaa@gmail.com

and

Abdelmonaim El Kaddouri, ILM Department, Engineering Sciences Laboratory, National School of Applied Sciences (ENSAK), Ibn Tofail University, Morocco. E-mail address: elkaddouri.abdelmonaim@gmail.com

and

Othman Aboutafail, ILM Department, Engineering Sciences Laboratory, National School of Applied Sciences (ENSAK), Ibn Tofail University, Morocco. E-mail address: aboutafail@yahoo.fr

and

Khalid Bouras, MMA, FLP, Abdelmalek Essaâdi University, Morocco. E-mail address: bouraskhalid@hotmail.com