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1. Introduction

The class of weak⋆ Dunford-Pettis operators appeared for the first time in [12]. In [2] the authors
studied its relationship between M-weakly compact and almost Dunford-Pettis operator, the class of
unbounded absolutely weakly Dunford-Pettis operators was introduced in [17]. Here, we study the
relationship between the class of weak⋆ Dunford-Pettis operator and other classes of operators such that
the well known Dunford-Pettis operators, weak Dunford-Pettis operators and σ-unbounded absolutely
weakly Dunford-Pettis operators.
By Theorem 3.1 we show necessary and sufficient conditions under which a weak⋆ Dunford-Pettis operator
is σ-unbounded Dunford-Pettis operator. Clearly a Dunford-Pettis operator is a weak⋆ Dunford-Pettis,
but the converse is not true in general, by Theorem 3.5 we study when the converse is true. Since the
weak convergence implies the weak⋆ convergence, every weak⋆ Dunford-Pettis operator is weak Dunford-
Pettis, but the converse is not true in general, by theorem 3.7, we give properties on Banach lattices
whenever every weak Dunford-Pettis is weak⋆ Dunford-Pettis operator. We start this article by recalling
few definitions in the first section.

2. Preliminaries

Throughout this paper X and Y denote two Banach lattices, X and Y two Banach spaces. The
positive cone of E is denoted by E+. BX is the closed unit ball of X . The term operator between two
Banach spaces means a bounded linear mapping.
A norm bounded subset A of X is said to be

• Dunford-Pettis set if every weak null sequence (fn) of X ′ converges uniformly on A, that is,
lim

n→∞

supx∈A |〈fn, x〉| = 0.

• Limited set if every weak⋆ null sequence (fn) of X ′ converges uniformly on A, that is,
lim

n→∞

supx∈A |〈fn, x〉| = 0.

Let us recall that an operator T : X −→ Y is said to be:

• Dunford-Pettis if T carries weakly convergent sequences to norm convergent sequences [1].
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• Weak Dunford-Pettis whenever xn → 0 for σ(X, X ′)-topology (shortly, xn

w
−→ 0) and fn → 0 for

σ(Y ′, Y ′′)-topology imply that lim
n→∞

fn(T (xn)) = 0 [1].

• Weak⋆ Dunford-Pettis whenever xn → 0 for σ(X, X ′)-topology and fn → 0 for σ(Y ′, Y )-topology

(shortly, fn

w
⋆

−→ 0) imply that lim
n→∞

fn(T (xn)) = 0 [12].

• Limited if T (BX) is a limited set of Y , alternatively, T is limited if, and only if, ||T ′(fn)|| → 0 for
every weak⋆ null sequence (fn) in Y ′ [4].

• M-weakly compact whenever ||T (xn)|| → 0 holds for every norm bounded disjoint sequence (xn) ⊂
X [1].

A Banach space X has

• The Dunford-Pettis⋆ property (shortly, DP⋆ property) if every relatively compact subset of X is
limited, which is equivalent to say that X has the DP ⋆ property if, and only if, lim

n→∞

fn(xn) = 0

for every weak null sequence (xn) in X and every weak⋆ null sequence (fn) of X ′, by Borwein in
[5]

• The Grothendieck property if for every sequence (fn) in X ′ such that fn

w
⋆

−→ 0 then fn

w
−→ 0 in X ′

[19].

• The Schur property if each weakly null sequence in E converges to zero in the norm. For example,
the Banach lattice ℓ1 has the Schur property but the Banach lattice L1([0, 1]) does not have the
Schur property.

To state our results, we need to fix some notations and recall some definitions. A Banach lattice is a
Banach space (E, ‖ · ‖) such that E is a vector lattice and its norm satisfies the following property: for
each x, y ∈ E such that |x| ≤ |y|, we have ‖x‖ ≤ ‖y‖. If E is a Banach lattice, its topological dual
E′, endowed with the dual norm, is also a Banach lattice. A norm ‖ · ‖ of a Banach lattice E is order
continuous if for each generalized sequence (xα) such that xα ↓ 0 in E, the sequence (xα) converges to
0 for the norm ‖ · ‖, where the notation xα ↓ 0 means that the sequence (xα) is decreasing, its infimum
exists and inf(xα) = 0.
Note that if E is a Banach lattice, its topological dual E′, endowed with the dual norm and the dual
order, is also a Banach lattice.
The unbounded absolute weak convergence (uaw-convergence) was introduced first by Zabeti in
[18]. A sequence (xn)n is unbounded absolutely weakly convergent (shortly, uaw-convergent) to a vector

x in E if (|xn − x| ∧ u) is weakly convergent to zero for every u ∈ E+; we write xn

uaw
−→ x.

The unbounded norm convergence (un-convergence) in a Banach lattices was first introduced by
V. Troitsky in [8]. A sequence is said to be unbounded norm convergent (shortly un-convergence) to a

vector x in E if || |xn − x| ∧ u|| converges to zero for every u ∈ E+; we write xn

un
−→ x.

The lattice operations in E′ are called weak⋆ sequentially continuous if the sequence (|fn|)n converges to
0 by the weak⋆ topology whenever the sequence (fn) converges weak⋆ to 0 in E′.
An operator T : X → Y between two Banach spaces is said to be an embedding whenever there exist
two positive constants K and M satisfying:

K||x|| ≤ ||T (x)|| ≤ M ||x|| for all x ∈ X

For all unexplained terminology and standard facts on vector and Banach lattices, we refer the reader
to the monographs [1] and the paper [18].

3. Main results

Recall that an operator T : E → F is σ-unbounded Dunford-Pettis if for every norm bounded sequence
(xn), xn

uaw
−→ 0 in E implies that T (xn)

un
−→ 0 [15]. Note that there exists a weak⋆ Dunford-Pettis

operators which is not σ-unbounded Dunford-Pettis. In fact, the identity operator Idℓ∞ : ℓ∞ → ℓ∞ is



Some Properties of Weak ⋆ Dunford-Pettis Operators on Banach Lattices 3

weak⋆ Dunford-Pettis (bcause ℓ∞ has the Dunford-Pettis⋆ property) but fails to be σ-unbounded Dunford-
Pettis. In fact, the standard basis (en)n is uaw-null in ℓ∞. By considering (1, 1, 1, , ...........) ∈ ℓ∞ where
(1,1,1,.........) is the constant sequence with all rang value is 1. It is clear that ‖en∧(1, 1, 1, 1, 1, ...........)‖ =

1. Hence, en

un
9 0.

In the following result, we show necessary and sufficient conditions under which a weak⋆ Dunford-Pettis
operator is σ-unbounded Dunford-Pettis.

Theorem 3.1. Let E and F be two Banach lattices such that F is a Dedekind σ-complete. Then the
following assertions are equivalent:

1. Every positive weak⋆ Dunford-Pettis operator T : E → F is M-weakly compact.

2. Every positive weak⋆ Dunford-Pettis operator T : E → F is σ-unbounded Dunford-Pettis.

3. One of the following is valid:

(a) The norms of E′ and F are order continuous.

(b) E is finite-dimensional.

(c) F = {0}.

Proof. (1) =⇒ (2) Let T : E → F be an M-weakly compact operator, by [21, Theorem 2.7], ‖T xn‖ −→ 0
for every uaw-null sequence xn ⊂ BE . Since norm convergence implies un-convergence then, T is σ-
unbounded Dunford-Pettis.

(2) =⇒ (3) It suffices to prove separately the two following assertions:
(α) If the norm of F is not order continuous, then E is finite-dimensional (β) If the norm of E′ is not
order continuous, then F = {0}.

Assume that (α) is false, i.e. the norm of F is not order continuous and E is infinite-dimensional.
Then, it results from [1, Theorem 4.51] that ℓ∞ is a lattice embedding in F . Let i : ℓ∞ → F be a lattice
embedded, then there exist two positive constants m and M satisfying

m‖x‖∞ ≤ ‖i(x)‖ ≤ M‖x‖∞ for all x ∈ ℓ∞(∗)

On the other hand, since E is an infinite-dimensional Banach lattice, it follows from [3, Lemma 2.3] and
[3, Lemma 2.5] the existence of a positive disjoint sequence (xn) in E+ with ‖xn‖ = 1 for all n ∈ N and
there exists a positive disjoint sequence (gn) of E′ with ‖gn‖ ≤ 1 for each n, such that gn(xn) = 1 and
gn(xm) = 0 for n 6= m.
To finish the proof, we have to construct a positive weak⋆ Dunford-Pettis operator T : E → F which is
not σ-unbounded Dunford-Pettis. Now, we define the operator P : E −→ ℓ∞ defined by P (x) = (gn(x))n.
Clearly P is well defined and is positive. Let

T = i ◦ P : E −→ ℓ∞ −→ F

then T is a positive weak⋆ Dunford-Pettis operator (because ℓ∞ has the Dunford-Pettis⋆ property). But

T is not σ-unbounded Dunford-Pettis operator. Indeed, by [Lemma 2, [18]], xn

uaw
−→ 0, we will prove the

existence of an element u ∈ F + such that ‖T (xn) ∧ u‖ 9 0. In fact, let consider (1, 1, 1, .........) ∈ ℓ∞

where (1, 1, 1.......) is the constant sequence from ℓ∞ with all rang value is 1. Since i is a positive operator
defined on ℓ∞ −→ F , then i(1, 1, 1, 1.........) ∈ F +, as the operator i is a lattice homomorphism then, by
[ [1], Theorem 2.14] we have the following

‖T (xn) ∧ i(1, 1, 1, .........)‖ = ‖i ◦ P (xn) ∧ i(1, 1, 1, .........)‖
= ‖i[(gk(xn))k ∧ (1, 1, 1, .........)]‖
= ‖i(gk(xn))k‖
≥ m‖gk(xn))k‖∞ from(∗)
≥ m = m|gn(xn)|

for all n ∈ N. Then, ‖T (xn) ∧ i(1, 1, 1, 1.........)‖ 9 0 and hence T (xn)
un
9 0 , so T is not σ-unbounded

Dunford-Pettis.
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(β) Assume that (1) holds. We will prove that if the norm on E′ is not order continuous, then
F = {0}. If not, there exists some y > 0 in F and since the norm of E′ is not order continuous then,
il follows from Theorem 2.4.14 and Proposition 2.3.11 [14] that ℓ1 is a closed sublattice of E and there
exists a positive projection P : E −→ ℓ1.
Consider the positive operator S defined by

S : ℓ1 −→ F, (αn)n 7→

∞∑

n=1

αny

The composed operator T = S ◦ P is compact (because S is compact as its rank is one), hence T is
weak⋆ Dunford-Pettis but T is not σ-unbounded Dunford-Pettis. Indeed, let (en) be the canonical basis

of ℓ1 we have en

uaw
−→ 0 but ‖T (en) ∧ y‖ 9 0 (T (en) ∧ y = y ∧ y = y for each n ∈ N). Thus, T is not a

σ-unbounded Dunford-Pettis operator.
(3.a) =⇒ (1) We will adapt here the implication (1) =⇒ (2) in the proof of [13, Theorem 2.1].

We will prove that ‖T xn‖ −→ 0 for every disjoint sequence xn ⊂ BE .
Let T : E −→ F be a positive weak⋆ Dunford-Pettis operator and (xn) be a disjoint sequence in BE . By
[ [7], Corollary 2.6], it suffices to prove that |T xn| −→ 0 in the σ(F, F ′)-topology of F and fn(T xn) −→ 0
for every disjoint and norm bounded sequence (fn) ⊂ (F ′)+. In fact,
- Let f ∈ (F ′)+. As the norm of E′ is order continuous then, xn −→ 0 and |xn| −→ 0 in the σ(E, E′)-
topology of E (because (xn) is a disjoint sequence). It follows from [1, Theorem 1.23] that for each n

there exists some gn ∈ [−f, f ] with f |T (xn)| = gn(T (xn)). Now, since |xn| −→ 0 in the σ(E, E′)-topology
of E and T is positive then,

0 ≤ f |T xn| = gn(T xn) = T ′(gn)(xn) ≤ |T ′(gn)||xn| ≤ T ′(f)|xn| −→ 0

and hence |T (xn)| −→ 0 in the σ(F, F ′)-topology of F .
- Let (fn) ⊂ (F ′)+ be a disjoint and norm bounded sequence. As the norm of F is order continuous, then
by [14, Corollary 2.4.3], fn −→ 0 in the σ(F ′, F )-topology of F ′. Now, since T is weak∗ Dunford-Pettis
then, fn(T (xn)) −→ 0. This finishes the proof.
(3.b) =⇒ (1) It follows from [13, Theorem 2.4].
(3.c) =⇒ (1) Obvious. �

Remark 3.2. If we consider only the condition of order continuity of E′, it will not be sufficient for a
weak⋆ Dunford-Pettis operator to be σ-unbounded Dunford-Pettis, we consider again the example of the
identity from ℓ∞ to ℓ∞, which is weak⋆ Dunford-Pettis. The dual of ℓ∞ is order continuous, but this
identity is not σ-unbounded Dunford-Pettis.

To establish our next results, we need the following Lemma,

Lemma 3.3. Let A be a bounded subset of a Banach space X. if for each ε > 0 there exists a limited set
Aε in X such that A ⊆ Aε + εBX , then A is a limited set.

Proof. Let (fn) be a weak⋆ null sequence in X ′, and ε an arbitrary element of R such that ε > 0. Pick
some M > 0 with ‖fn‖ ≤ M for all n. By hypothesis, there exits some limited subset Aε of X such that
A ⊆ Aε + ε

2M
BX , since ε is arbitrary, then

sup
x∈A

|fn(x)| ≤ sup
x∈Aε

|fn(x)| +
ε

2
.

As Aε is limited, there exists some n0 with supx∈A |fn(x)| ≤ ε

2 for all n ≥ n0. Thus, supx∈A |fn(x)| ≤ ε

for all n ≥ n0. This implies supx∈A |fn(x)| −→ 0, and then A is limited. �

Recall that an operator from a Banach lattice E into a Banach space Y is almost Dunford-Pettis if
‖T (xn)‖ → 0 for every weakly null sequence (xn) consisting of pairwise disjoint elements in E [22].
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Theorem 3.4. Let E and F be two Banach lattices. If F ′ has weak⋆ sequentially continuous lattice
operations, then every positive almost Dunford-Pettis operator from E into F is weak⋆ Dunford-Pettis.

Proof. Let T : E −→ F be a positive almost Dunford-Pettis operator, and let W be a relatively weakly
compact set in E. We want to show that T (W ) is a limited set in F .
Let ε > 0, and let A = Sol(W ). By [1, Theorem 4.36], there exists u ≥ 0 lying in the ideal generated be
A satisfying T (W ) ⊂ [−T (u), T (u)] + εBX . Or F ′ has weak⋆ sequentially continuous lattice operations
then, il follows from [11, Proposition 3.1] that [−T (u), T (u)] is a limited set in F . Then, by Lemma 3.3
the set T (W ) is limited in F and hence T is weak⋆ Dunford-Pettis. �

Clearly, a Dunford-Pettis operator is a weak⋆ Dunford-Pettis but a weak⋆ Dunford-Pettis operator is
not necessary Dunford-Pettis. For example, the identity operator Idℓ∞ : ℓ∞ −→ ℓ∞ is weak⋆ Dunford-
Pettis (because ℓ∞ has the DP⋆ property) but is not Dunford-Pettis (because ℓ∞ does not have the Schur
property).

In the following result, we show properties on Banach lattices E and F whenever every weak⋆ Dunford-
Pettis operator is Dunford-Pettis,

Theorem 3.5. Let E and F be two Banach lattices. If every weak⋆ Dunford-Pettis operator T : E −→ F

is Dunford-Pettis, then one of the following is valid:

1. E has the Schur property,

2. The norm of F is order continuous.

Proof. Let suppose that (1) and (2) doesn’t hold, i.e., the norm of F is not order continuous and E does
not have the Schur property. We will construct an operator T : E −→ F which is weak⋆ Dunford-Pettis
but is not Dunford-Pettis. Indeed, suppose that E does not have the Schur property. Then there exists
a weakly null sequence (xn) ⊂ E and ε > 0 and a sequence (fn) ⊂ BE′ such that |fn(xn)| > ε .
Now, consider the operator P : E −→ ℓ∞ defined by

P (x) = (fn(x))n

Since the norm of F is not order continuous, it follows from [1, Theorem 4.51] that ℓ∞ is lattice embed-
dable in F , i.e., there exists a lattice homomorphism S : ℓ∞ −→ F and there exist two positive constants
M and m satisfying

m ‖(λk)
k
‖

∞
≤ ‖S ((λk)

k
) ‖ ≤ M ‖(λk)

k
‖

∞

for all (λk)
k

∈ ℓ∞.
Let consider the operator T = S ◦ P : E −→ ℓ∞ −→ F , and note that T is a weak⋆ Dunford-Pettis
operator (because ℓ∞ has the DP⋆ property), but is not Dunford-Pettis. In fact, since (xn) is weakly null
sequence in E and as

‖T (xn)‖ = ‖S ◦ P (xn)‖
= ‖S((fk(xn))k)‖
≥ m‖(fk(xn))‖∞

≥ m|fn(xn)|
> mε

for every n. Then, T is not Dunford-Pettis, and this finishes the proof.
�

As an immediate consequence, we have the following result,

Corollary 3.6. Let E be a Banach lattice. If every weak⋆ Dunford-Pettis operator T : E −→ E is
Dunford-Pettis, then the norm of E is order continuous.
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Clearly, a weak⋆ Dunford-Pettis operator is weak Dunford-Pettis, but the converse doens’t hold in
general. In fact, the identity operator Idc0

: c0 −→ c0 is weak Dunford-Pettis (because c0 has the DP
property) but it is not weak⋆ Dunford-Pettis (because c0 fails the DP⋆ property).

Although, by virtue of following result, we show properties on Banach lattices E and F whenever a
weak Dunford-Pettis operator is weak⋆ Dunford-Pettis operator.

Theorem 3.7. Let E and F be two Banach lattices such that F is Dedekind σ-complete and the norm
on E′ is order continuous. If each weak Dunford-Pettis operator T : E −→ F is weak⋆ Dunford-Pettis,
then one of the following assertions is valid:

1. E has the wDP⋆ property.

2. F is a KB-space.

Proof. Suppose that F is not a KB-space, we will prove that E has the wDP⋆ property. Since F is not
a KB-space, then by [ [1],theorem 4.60] c0 is lattice embeddable in F , let consider an arbitrary positif
operator T : E −→ c0.
The Banach lattice c0 has the Dunford-Pettis property, then T is a weak Dunford-Pettis operator, by
assumption, T is weak⋆ Dunford-Pettis, since the norm on c0 and E′ are order continuous then by theorem
3.1, T is M-weakly compact, by [21, Theorem 2.7], T is uaw-Dunford-Pettis. Since c0 is discrete and
order continuous then by virtue of theorem 3 of [9], T is Dunford-Pettis. Theorem 3.5 of [6] shows that
E has the wDP⋆ property. �

Remark 3.8. 1. If the norm on E′ is not order continuous, then the first condition is not sufficient,
for instance, let consider E = F = L1[0, 1]. The Banach lattice L1[0, 1] has the positive Schur
property, then by [ [6], proposition 3.3], L1[0, 1] has the wDP⋆ property.
The identity operator Id : L1[0, 1] −→ L1[0, 1] is weak Dunford-Pettis but not weak⋆ Dunford-Pettis
because L1[0, 1] has the Dunford-Pettis property without the DP⋆ property. (Indeed, a separable
Banach space with the DP⋆ property must have the Schur property, while L1[0, 1] has the positive
Schur property without the Schur property).

2. The second condition of Theorem 3.7 is not necessary, indeed, we consider E = F = L∞[0, 1], by
virtue of Corollary 4.45 of [1], L∞[0, 1] has the Grothendieck property, then every weak Dunford-
Pettis operator T : L∞[0, 1] −→ L∞[0, 1] is weak⋆ Dunford-Pettis. Although (L∞[0, 1])′ is order
continuous and L∞[0, 1] is not KB-space.

Remark 3.9. L1[0, 1] is KB-space, but it’s not a discrete Banach lattice. As we saw above (remark 3.8),
there exists a weak Dunford-Pettis (Id : L1[0, 1] −→ L1[0, 1]) which is not weak⋆ Dunford-Pettis. we will
see by theorem bellow that the statement holds for an operator T : E −→ F , if F is a discrete KB-space.

Furthermore, we give bellow sufficient conditions on Banach lattices under which a weak Dunford-
Pettis operator from E into F is weak⋆ Dunford-Pettis.

Theorem 3.10. Let E and F be two Banach lattices. Then each positive weak Dunford-Pettis operator
from E into F is weak⋆ Dunford-Pettis if one of the following assertions is valid:

1. E has the DP⋆ property.

2. F has the Grothendieck property.

3. F is reflexive.

4. F is a dual KB-space and the lattice operations in E are weakly sequentially continuous.

5. F is a discrete KB-space.

6. The norm of the topological bi-dual F ′′ is order continuous and the lattice operations in E are weakly
sequentially continuous.
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Proof. 1. Let T : E −→ F a positive operator, (fn) ⊂ F ′, xn ⊂ E such that xn

w
−→ 0 and fn

w
⋆

−→ 0.

The composed operator fn ◦ T ⊂ E′ is a linear function, with fn ◦ T
w

⋆

−→ 0, since E has the DP⋆

property, then fn(T (xn)) −→ 0, this proves that T is weak⋆ Dunford-Pettis operator.

2. Obvious.

3. In this case F has Grothendieck property.(Reflexive spaces have Grothendieck property.)

4. , (5) and (6) Follow from theorem 2.4 of [16] (since every Dunford-Pettis operator is weak⋆ Dunford-
Pettis).

�

Bellow we study weak compactness of weak⋆ Dunford-Pettis operators.

Theorem 3.11. Let E and F be two Banach lattices. If each weak⋆ Dunford-Pettis operator T : E −→ F

is weakly compact then one of the following assertions is valid:

1. E′ is KB-space.

2. F is a reflexive.

Proof. Let assume that E′ is not KB-space, we will prove that F is reflexive.
It follows from [ [1], Theorem 4.59] that E′ is not order continuous, then by [ [14], Proposition 2.3.11
and Theorem 2.4.14], E contains a sublattice isomorphic to l1 and there exists a positive projection
P : E −→ l1.
Let consider an arbitrary positif operator T : l1 −→ F .
l1 has the Dunford-Pettis⋆ property, then T is a weak⋆ Dunford-Pettis operator, by assumption, T is
weakly compact. Theorem 5.29 of [1] shows that F is reflexive.

�
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