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A Class of Central Unstaggered Schemes for Nonlocal Conservation Laws: Applications to

Traffic Flow Models

Said Belkadi and Mohamed Atounti

abstract: This study introduces a new class of central unstaggered finite volume methods for approximating
solutions to nonlocal conservation laws. The proposed method is based on Nessyahu and Tadmor’s (NT).
Instead of solving Riemann’s problems at the level of cell interfaces, as in the NT scheme, the approach
we develop implicitly uses ghost cells while still generating the numerical solution on a single grid. We use
our method with the aim of solving one-dimensional, nonlocal traffic flow problems. The numerical results
we present demonstrate the accuracy, high resolution, and non-oscillatory nature of the proposed method
and compare very favorably with those obtained using the original NT method, demonstrating the expected
simplicity of a family of unstaggered central schemes and confirming that nonlocal traffic flow models can be
treated very efficiently by the suggested method.
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1. Introduction

The second-order, non-oscillatory central scheme was introduced in the early 1990s by Nessyahu and
Tadmor in [19]. The NT scheme is a first-order staggered Lax-Friedrich extension that evolves numerical
solutions on an original grid and a staggered dual grid over time steps. The NT method is second-order
accurate due to a piecewise linear numerical solution constructed on the cells. In the NT method, slope
limiting is also used to prevent oscillations in the numerical solution.

Recently, non-oscillatory NT-type central schemes [12,17] have been proposed for solving nonlocal
conservation laws. These NT-type schemes have been used successfully to solve problems in traffic flow
models [5,16], and sedimentation models [4,7]. Besides, other nonlocal traffic flow models have also been
proposed and investigated in [2,3,8,9,11,15,18,19,20].

The fact that the numerical solution in NT-type schemes requires two grids at successive time steps, on
the other hand, is considered as a flaw in the method [23]. To put it more specifically, a synchronization
problem develops if the numerical solution calculated using an NT-type base scheme needs additional
processing to retain a physical property. This is since each continuation of the updated solution needs the
solution values calculated at various times. The problem gets harder when the original and dual-staggered
cells don’t have the same sizes.
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In [14], Jiang et al. provided an unstaggered adaptation of the NT scheme; the method they created
incorporates the Nessyahu and Tadmor iteration formulas, but the second iteration contains a zero-
time step. In [22], R.Touma developed a one-dimensional unstaggered central scheme for shallow water
equations and later derived the same solution for hyperbolic systems [23]. He described a method that can
be considered an unstaggered adaption of the NT scheme and a generalization of the technique presented
in [14].

This study develops a class of second-order accurate unstaggered central schemes (UCS) to solve the
nonlocal conservation laws arising in traffic flow models. The approach that we suggest is a two-parameter
method in one spatial dimension; it is a generalization of the method presented in [23], which is Riemann
problem solverfree and pertinent to the traffic flow model investigated in this work. It is built on a single
grid. However, it employs ghost staggered cells to avoid Riemann problem resolution at cell interfaces.
As a result, the central scheme is second-order accurate and unstaggered. The numerical results produced
by the UCS method in Section 4 conform with the results obtained by the NT original, demonstrating
the suggested method’s efficiency, robustness, high resolution, and simplicity.

The present work is structured as follows: In Section 2, we present a one-dimensional nonlocal traffic
flow model. We start in Section 3 with a brief overview of Nessyahu-Tadmor schemes (NT) for nonlocal
conservation laws, and we proceed to construct our new unstaggered central scheme. In Section 4, we
offer a number of numerical tests. We end by giving the conclusion in Section 5.

2. Non-local traffic flow model.

We propose the following one-dimensional traffic flow with a nonlocal mean velocity [12]:

∂tρ + ∂x (g(ρ)v (κη ∗ ρ(t, x))) = 0, x ∈ R, t > 0, (2.1)

with

κη ∗ ρ(t, x) =

∫ ∞

x

κη(y − x)ρ(t, y)dy), x ∈ R, t > 0, (2.2)

ρ represents vehicle density, v represents mean velocity, and κη is a kernel function whose support is
proportional to drivers’ look-ahead distance, which must be adjusted to the average downstream traffic
density. The model (2.1) is a nonlocal version of the Lighthill-Whitham-Richards (LWR) model [5]. It
reflects drivers’ behavior in reacting to events in front of them and adjusting their speed when considering
downstream density. Assume ρ ∈ [0, ρmax], v(0) = vmax, and v(ρmax) = 0 (ρmax is the maximum velocity).

For a well-posed model in the following section, we put forward the following assumptions on the
velocity function v, the function g and the kernel function κη (see, [1,12]):

g ∈ C1 ([0, ρmax],R) ,

κη ∈ C2 ([0, η],R+) , κ
′

η 6 0,
∫ η

0 κη(x)dx = 1
v ∈ C2([0, ρmax],R+), v′ 6 0.

(2.3)

3. Numerical scheme.

This section aims to give a brief overview of the Nessyahu–Tadmor scheme and then construct our
new central unstaggered numerical scheme to solve nonlocal conservation laws.

3.1. Nessyahu–Tadmor central scheme: brief overview

We consider the initial value problem:







∂tρ + ∂xF (ρ, U) = 0, x ∈ R, t > 0,

ρ(0, x) = ρ0(x), ρ0 ∈ BV (R, [0, ρmax]) ,
(3.1)

where U denote the downstream convolution product as

U = κη ∗ ρ.
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and
F (ρ, U) = g(ρ)v(U).

Here, BV denotes the space of functions with bounded variation, i.e.

BV = {u ∈ L1(R)/TV(u) < ∞}, with TV(u) = sup
ε>0

1

ε

∫

R

|u(x + ε) − u(x)|dx.

We first split the computational domain into uniform cells. Cj = [xj− 1
2
; xj+ 1

2
] of length ∆x, where

xj+ 1
2

= (j + 1
2 )∆x are the cell interfaces and xj = j∆x are the cell centers.

The computed solution is realized in terms of its cell averages, as with all finite-volume methods
[10,13]

ρn
j =

1

∆x

∫ x
j+ 1

2

x
j−

1
2

ρ(tn, x)dx. (3.2)

They are assumed to be known at a given time tn, and are then evolved through time using the explicit
conservative formula below:

ρn+1
j − ρn

j

∆t
=

Fj−
1
2

− Fj+ 1
2

∆x
, (3.3)

where Fj± 1
2

is the numerical flux at the interface xj± 1
2
.

The NT scheme [19] is based on the staggered Lax-Friedrich method. By alternating the numerical
solution on an original and a staggered grid, it avoids solving Riemann issues at cell interfaces. Further-
more, the NT scheme reconstructs the piecewise constant solution obtained at the preceding time-step
(3.2) using a piecewise linear reconstruction:

ρ̃n(x) = ρn
j + σn

j (x − xj), x ∈ Cj , (3.4)

where the slope σn
j is an approximation to the derivative ∂ρ

∂x
⌋x=xi

in the interval Cj . In the following, we
will assume that the approximate slopes σj satisfy

σn
j ≃

∂ρ

∂x
⌋x=xi

+ o(∆x),

this leads to a numerical solution accurate to the second-order in space. The predictor-corrector time
discretization ensures second-order temporal accuracy. On the staggered cells, the solution at time tn+1

is computed as follows:

ρn+1
j+ 1

2

=
ρn

j + ρn
j+1

2
+

∆x

8

(

σn
j − σn

j+1

)

− λ
(

F (ρ
n+ 1

2

j+1 , U
n+ 1

2

j+1 ) − F (ρ
n+ 1

2

j , U
n+ 1

2

j )
)

, λ =
∆t

∆x
. (3.5)

The values ρ
n+ 1

2

j and U
n+ 1

2

j are obtained from ρn
j and Un

j respectively by Eqs (3.7), (3.10) described
below. We refer to [12] for a complete description of the one-dimensional NT scheme.

3.2. Unstaggered central schemes reconstruction

We shall now design our new central unstaggered numerical scheme while maintaining all the char-
acteristics of the original NT scheme. This new scheme proceeds in two steps. First, we assume the
numerical solution for ρn

i at time tn is known, that is,

ρn
i =

1

∆x

∫ x
i+ 1

2

x
i−

1
2

ρ(tn, x)dx. (3.6)

We define the ghost staggered cells Gi+ 1
2

= [xi, xi+1] and use Nessyahu and Tadmor’s formula (3.5) to

get a solution estimate ρn+1
i+ 1

2

at time tn+1 on the ghost cells Gi+ 1
2

as follows:

ρn+1
j+ 1

2

=
ρn

j + ρn
j+1

2
+

∆x

8

(

σn
j − σn

j+1

)

− λ
(

F (ρ
n+ 1

2

j+1 , U
n+ 1

2

j+1 ) − F (ρ
n+ 1

2

j , U
n+ 1

2

j )
)

. (3.7)
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In Eq. (3.7), the values ρ
n+ 1

2

i and U
n+ 1

2

i at the intermediate time are estimated values defined by an
intermediary predictor step that uses a first-order Taylor expansion and the original equation (3.5) as
follows:

ρ
n+ 1

2

j =ρn
j −

∆t

2
∂xF (ρ(tn, xj), U(tn, xj)), (3.8)

U
n+ 1

2

j =Un
j +

∆t

2
Ut(t

n, xj), (3.9)

where the flux derivative ∂xF (ρ(tn, xj), U(tn, xj)) in Eq. (3.8) and the slope of the reconstruction in Eq.
(3.4) are computed with nonlinear limiters needed to ensure the nonoscillatory nature of the reconstruction
(3.7). In this work we have used generalized minmod (mm) limiter family [6,21] as follows:

∂xF (ρ(tn, xj), U(tn, xj)) = mm

(

θmm

(

F (ρn
j , Un

j ) − F (ρn
j−1, Un

j−1)

∆x
,

F (ρn
j+1, Un

j+1) − F (ρn
j , Un

j )

∆x

)

,

F (ρn
j+1, Un

j+1) − F (ρn
j−1, Un

j−1)

2∆x

)

σn
j = mm

(

θmm

(

ρn
j − ρn

j−1

∆x
,

ρn
j+1 − ρn

j

∆x

)

,
ρn

j+1 − ρn
j−1

2∆x

)

,

where θ ∈ [1, 2] is a parameter and the minmod function is defined by

minmod(a,b) =

{

sgn(a). min(|a|, |b|) if a.b > 0,
0 otherwise.

In Eq. (3.9), if η = N∆x for some N ∈ N, then we can compute the terms by using the mid-point and
the composite trapezoidal rules [6] as follows:

U (tn, xj) =

∫ xj+η

xj

ρ (tn, y) κη (y − xj) dy

≈

∫ x
j+ 1

2

xj

ρ̃n(y)κη(y − xj)dy +

∫ xj+N

x
j+N−

1
2

ρ̃n(y)κη(y − xj)dy

+

N−1
∑

k=1

∫ x
j+k+ 1

2

x
j+k−

1
2

ρ̃n(y)κη(y − xj)dy

=
[

κη(0)ρn
j + κη(∆x

2 )(ρn
j + σj

∆x
2 )
]

∆x
4

+
[

κη(xN )ρn
j+N + κη(xN− 1

2
)
(

ρn
j+N − σj+N

∆x
2

)

]

∆x
4

+

N−1
∑

k=1

∆xκη(k∆x)ρn
j+k,

(3.10)
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and

Ut(t
n, xj) =

∫ xj+η

xj

ρt(t
n, y)κη(y − xj)dy

= −

∫ xj+η

xj

Fy (ρ(tn, y), U(tn, y)) κη(y − xj)dy

= − [κη (y − xj) F (ρ (tn, y), U(tn, y))]
xj+η

xj

+

∫ xj+η

xj

κ′
η(y − xj)F (ρ(tn, y), U(tn, y)) dy

= κη (0) F
(

ρn
j , Un

j

)

− κη (xN ) F
(

ρn
j+N , Un

j+N

)

+
[

κ′
η(0)F

(

ρn
j , Un

j

)

+ κ′
η (η) F

(

ρn
j+N , Un

j+N

)]

∆x
2

+

N
∑

k=1

∆xκ′
η(xk)F

(

ρn
j+k, Un

j+k

)

.

(3.11)

The second step of the proposed UCS approach is to return the updated solution achieved on the ghost
staggered cells to the original grid. We first define the piecewise linear reconstructions of the ghost cell
values ρ̃i+ 1

2
since the numerical solution is defined using piecewise linear reconstructions of the piecewise

constant solution defined at the center of the cells Ci and Gi+ 1
2
.

ρ̃i+ 1
2
(x, tn+1) = ρn+1

i+ 1
2

+ δn+1
i+ 1

2

(x − xi+ 1
2
), x ∈ [xi, xi+1] (3.12)

where δn+1
i+ 1

2

is an approximate slope associated with the piecewise linear reconstruction in the ghost cell

Gi+ 1
2
, it is chosen as:

δn+1
i+ 1

2

= mm

(

θmm

(

ρn
j+ 1

2

− ρn
j−

1
2

∆x
,
ρn

j+ 3
2

− ρn
j+ 1

2

∆x

)

,
ρn

j+ 3
2

− ρn
j−

1
2

2∆x

)

, θ ∈ [1, 2], (3.13)

we then define the solution values ρn+1
i at time tn+1 as follows:

ρn+1
i = αρ̃i− 1

2

(

tn+1, (1 − β)xi− 1
2

+ βxi

)

+ (1 − α)ρ̃i+ 1
2

(

tn+1, (1 − β)xi+ 1
2

+ βxi

)

, α ∈ [0, 1], β ∈ [0, 1].

(3.14)
So with the help of (3.12), Eq. (3.14) is rewritten as

ρn+1
i = αρn+1

i− 1
2

+ (1 − α)ρn+1
i+ 1

2

+ β
∆x

2

(

αδn+1
i− 1

2

− (1 − α)δn+1
i+ 1

2

)

. (3.15)

As we shall see in numerical tests, for all α best results are obtained when β = 0.25. The resulting
scheme is second-order accurate both in time and space and possesses the same stability condition as
the original NT. In summary, the utilization of the proposed UCS scheme to approach the solution of
nonlocal conservation law (3.1) suggests the following algorithm:

1. Given ρn
j for j ∈ N, approximation of the cell averages of ρ(t; x) at tn.

2. Compute Un
j and its derivative Un

t using (3.10) and (3.11).

3. Compute the staggered cell averages ρn+1
j+ 1

2

at time tn+1 on the ghost cells using Eq. (3.7).

4. Compute the solution at time tn+1 on the original and unique grid using Eq. (3.15)
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4. Numerical Results

In this section, we solve (3.1) numerically within the domain [0, T ] × [−1; 1]. We illustrate this with

several numerical examples. Then we set f(ρ) = ρ2

2 and v(ρ) = vmax

(

1 −
(

ρ
ρmax

)n)

with n ∈ {1, 2}

(maximum velocity and maximum density equal to 1). Taking hypotheses (2.3) into account, we fix
η = 0.1 and choose the kernel function as κη(x) = 2

η
(1 − x

η
). In all of the tests, the solution was based

on a uniform grid of 400 cells, with a time step determined by

λ <
1

2λmax
, λmax := max

ρ∈[0,ρmax]
|
dF (ρ, U)

dρ
|.

Similar to this, the choice of the limiter in the numerical computation of gradients can have a substantial
impact on the quality of the numerical resolution in central schemes as well as other numerical approaches.
In this investigation, we chose the generalized minmod limiter with θ = 2.

Consider two different initial conditions for the initial value problem (3.1). The first is the smooth
function, which is as follows:

ρ0(x) = 0.5 + 0.4 sin(x). (4.1)

The discontinuous one is,

ρ0(x) =

{

0.8, if x > 0,
0.2, if x < 0.

(4.2)

4.1. The efficiency of the UCS

In this subsection, we numerically examine the effectiveness of the suggested approach, by comparing
the UCS scheme’s solution for a number of various values of the parameters α and β: We fix the parameter
α in each of our three tests and compute the solution at time T = 0.5. We set ∆x = 0.005 and compute
the solutions using UCS schemes with the following different parameter values β = 0.1, 0.25, 0.5, 0.75.
The results are displayed in Figs. 1-6 are compared to a reference solution computed with a UCS scheme
and ∆x = 0.000625. Compared to the reference solution, we observe that UCS with β = 0.25 is more
accurate than others. Also, when β = 0.25, the non-oscillatory nature of our scheme can be seen in all
figures.

Test case 1: α = 0.5
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Figure 1: Solutions of (3.1), (4.1) computed by the UCS scheme using, v(ρ) = 1 − ρ(left) and v(ρ) =
1 − ρ2(right).
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Figure 2: Solutions of (3.1), (4.2) computed by the UCS scheme using v(ρ) = 1−ρ (left) and v(ρ) = 1−ρ2

(right).

Test case 2: α = 0.25
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Figure 3: Solutions of (3.1), (4.1) computed by the UCS scheme using v(ρ) = 1−ρ (left) and v(ρ) = 1−ρ2

(right).
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Figure 4: Solutions of (3.1), (4.2) computed by the UCS scheme using v(ρ) = 1−ρ (left) and v(ρ) = 1−ρ2

(right).

Test case 3: α = 0.75
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Figure 5: Solutions of (3.1), (4.2) computed by the UCS scheme using v(ρ) = 1−ρ (left) and v(ρ) = 1−ρ2

(right).
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Figure 6: Solutions of (3.1), (4.1) computed by the UCS scheme using v(ρ) = 1−ρ (left) and v(ρ) = 1−ρ2

(right).

4.2. Comparaison to the NT original

This test aims to validate our method, by comparing some of the numerical results obtained using
the UCS method with the results obtained using the original Nessyahu–Tadmor scheme. We compute
the solution up to time T = 1, with parameters α = 0.5, β = 0.25 and θ = 2. We set ∆x = 0.005 and
compute the solutions with both UCS and NT schemes. The results are displayed in Figs.7 and 8. We
observe that the numerical solutions obtained with the UCS scheme are in good agreement with those
obtained with the NT scheme.
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Figure 7: Comparison of numerical solutions of (3.1), (4.1) computed by the UCS scheme and the NT
scheme using v(ρ) = 1 − ρ (left) and v(ρ) = 1 − ρ2 (right).
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Figure 8: Comparison of numerical solutions of (3.1), (4.2) computed by the UCS scheme and the NT
scheme using v(ρ) = 1 − ρ (left) and v(ρ) = 1 − ρ2 (right).

4.3. Accuracy test

This test aims to numerically verify if the proposed unstaggered central schemes are indeed second-
order accurate; here we use a problem in the domain [-1,1] with initial conditions (4.1) and (4.2) and
periodic boundary conditions.

The order of convergence is computed for different numbers of space cells as

γ(∆x) = log2

(

e(∆x)

e(∆x
2 )

)

,

where e(∆x) denotes the L1 error which is computed as

e(∆x) = ‖ρ∆x(T, x) − ρ ∆x
2

(T, x)‖L1 .

Tables 1, 2, and 3 summarize the L1 errors and order of convergence for the UCS and NT schemes up to
T = 0.5. With both discontinuous (4.2) and smooth initial conditions (4.1), the UCS scheme does not
make significant differences in the order of convergence in comparison to the NT scheme regarding the
L1 error. It is clear that the suggested approaches maintain second-order accuracy.

Table 1: Convergence orders and L1-errors for UCS schemes at final time T = 0.5 with smooth initial
condition ρ0(x) = 0.5 + 0.4 sin(x) and v(ρ) = 1 − ρ .

UCS

β = 0.25 β = 0.5
α = 0.5 α = 0.25 α = 0.75 α = 0.5

N.cells L1error γ(∆x) L1error γ(∆x) L1error γ(∆x) L1error γ(∆x)
100 8.8940e-05 - 8.5607e-05 - 7.8711e-05 - 7.2917e-05 -
200 2.2358e-05 1.99 1.9985e-05 2.09 2.0174e-05 1.96 1.8986e-05 1.94
400 6.2496e-06 1.84 5.8683e-06 1.76 5.5307e-06 1.86 5.3836e-06 1.81
800 1.5936e-06 1.97 1.5718e-06 1.90 1.3539e-06 2.03 1.3374e-06 2.00
1600 4.0312e-07 1.98 4.1124e-07 1.93 3.2893e-07 2.04 3.3603e-07 1.99
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Table 2: Convergence orders and L1-errors for UCS schemes at final time T = 0.5 with smooth initial
condition ρ0(x) = 0.5 + 0.4 sin(x) and v(ρ) = 1 − ρ2 .

UCS

β = 0.25 β = 0.5
α = 0.5 α = 0.25 α = 0.75 α = 0.5

N.cells L1error γ(∆x) L1error γ(∆x) L1error γ(∆x) L1error γ(∆x)
100 8.8649e-05 - 8.1080e-05 - 8.1560e-05 - 7.4116e-05 -
200 2.1650e-05 2.03 2.0496e-05 1.98 1.9666e-05 2.05 1.8608e-05 1.99
400 6.1587e-06 1.81 8.1040e-06 1.33 5.3171e-06 1.88 5.6372e-06 1.72
800 1.5472e-06 1.99 2.0365e-06 1.99 1.2915e-06 2.04 1.4372e-06 1.97
1600 3.5984e-07 2.10 5.2777e-07 1.94 3.0541e-07 2.08 3.6425e-07 1.98

Table 3: Convergence orders and L1-errors for NT scheme at final time T = 0.5 with smooth initial
condition ρ0(x) = 0.5 + 0.4 sin(x), v(ρ) = 1 − ρ and v(ρ) = 1 − ρ2.

NT

v(ρ) = 1 − ρ v(ρ) = 1 − ρ2

N.cells L1error γ(∆x) L1error γ(∆x)
100 8.2209e-05 - 7.1458e-05 -
200 1.7759e-05 2.21 1.8287e-05 1.96
400 4.3342e-06 2.03 4.3590e-06 2.06
800 1.0755e-06 2.01 1.0827e-06 2.00
1600 2.6678e-07 2.01 2.7443e-06 1.98

5. Conclusion

In this study, we have constructed an unstaggered central scheme for nonlocal conservation law equa-
tions. The proposed approach is based on Nessyahu-Tadmor’s method, which yields numerical solutions
on one grid, implicitly using ghost cells to prevent Riemann’s problems at cell interfaces. The derived
scheme computes a numerical solution in two phases. Moreover, since the numerical approach does not
involve any characteristic field decomposition, it will significantly shorten computation times compared
to methods that use approximate or exact Riemann-problem solvers. The suggested scheme is secon-
dorder accurate in both space and time due to ordering two’s piecewise linear interpolants and temporal
quadrature rules. For central schemes, it’s common to consider a variety of limiter choices. In most cases,
the generalized limiter typically produces the best results. In addition, the numerical experiments we
looked at in this paper showed that β = 0.25 produces the best results by capturing discontinuities well,
while our results for β > 0.5 and β < 0.25 are less satisfactory. We used both the UCS approach and the
original Nessyahu and Tadmor central scheme to overcome nonlocal traffic flow concerns. Our numerical
results show that the suggested method can effectively handle nonlocal traffic flow models, proving that
it should be expected to realize high accuracy and ease within the central scheme family.
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