On Symmetric Generalized bi-semiderivations of Prime Rings

Faiza Shujat

Abstract

In the present note, we inaugrate the idea of symmetric generalized bi-semiderivation on rings and prove some classical commutativity results for generalized bi-semiderivation. Moreover, our main objective is to extend the main theorem in [7] for biderivation to the case of symmetric generalized bi-semiderivation on prime ring.

Key Words: Prime ring, homomorphism, bi-derivation, generalized bi-semiderivation.

Contents

1 Introduction

2 Main results

1. Introduction

The idea of symmetric bi-derivations inaugrated by Maksa [3]. A mapping $D: R \times R \rightarrow R$ is said to be symmetric if $D(a, b)=D(b, a)$ for all $a, b \in R$. A mapping $D: R \times R \rightarrow R$ is called biadditive if it is additive in both slots. Now we introduce the concept of symmetric biderivations as follows: A biadditive mapping $D: R \times R \longrightarrow R$ is called a biderivation if for every $a \in R$, the map $b \mapsto D(a, b)$ as well as for every $b \in R$, the map $a \mapsto D(a, b)$ is a derivation of R. For ideational reading in the related matter one can turn to [3]. For a symmetric biadditive mapping D, a map $h: R \rightarrow R$ defined as $h(a)=D(a, a)$, for every a in R is called the trace of D.

Bergen [5] defined the concept of semiderivations of a ring R. An additive mapping $f: R \longrightarrow R$ is called a semiderivation if there exists a function $g: R \longrightarrow R$ such that $f(a b)=f(a) g(b)+a f(b)=$ $f(a) b+g(a) f(b)$ and $f(g(a))=g(f(a))$ for each $a, b \in R$. In case g is an identity map of R; then all semiderivations associated with g are merely ordinary derivations. On the other hand, if g is a homomorphism of R such that $g \neq 1$; then $f=g-1$ is a semiderivation which is not a derivation. In case R is prime and $f \neq 0$; it has been shown by Chang [6] that g must necessarily be a ring endomorphism. Let f be a semiderivation of R, associated with an endomorphism g. The additive map F on R is a generalized semiderivation of R if $F(a b)=F(a) b+g(a) f(b)=F(a) g(b)+a f(b)$ and $F(g)=g(F)$, for every a, b in R. Of course any semiderivation is a generalized semiderivation. Moreover, if g is the identity map of R, then all generalized semiderivations associated with g are merely generalized derivations of R. The most natural example of generalized semiderivation, we consider a semiderivation f on a ring R associated with a function g and define the two map as $F(a)=f(a)-a$ and $H(a)=f(a)+a, a$ in R. With such construction the map F and H are generalized semiderivations on R with associated function g.

Following [8], a symmetric bi-additive function $\vartheta: R \times R \longrightarrow R$ is called a symmetric bi-semiderivation associated with a function $f: R \longrightarrow R$ (or simply a symmetric bi-semiderivation of a ring R) if

$$
\begin{aligned}
& \vartheta(a b, c)=\vartheta(a, c) f(b)+a \vartheta(b, c)=\vartheta(a, c) b+f(a) \vartheta(b, c) \\
& \vartheta(a, b c)=\vartheta(a, b) f(c)+b \vartheta(a, c)=\vartheta(a, b) c+f(b) \vartheta(a, c)
\end{aligned}
$$

and $\vartheta(f)=f(\vartheta)$ for all $a, b, c \in R$.

[^0]Example 1.1. Consider R is a commutative ring and $S=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & 0\end{array}\right) \right\rvert\, a, b \in R\right\}$ will be a ring under matrix addition and multiplication. Define $\vartheta=S \times S \longrightarrow S$ such that $\vartheta\left(\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}c & d \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}0 & b d \\ 0 & 0\end{array}\right)$ and $f: S \longrightarrow S$ by $f\left(\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right)$. Then ϑ represents bi-semiderivation on S with associated function f.

Motivated by the above explanation, we introduce the concept of generalized bi-semiderivation on ring as follows: Consider the maps $\delta, \vartheta: R \times R \longrightarrow R$ and $f: R \longrightarrow R$. Now define if for every $a \in R$, $b \mapsto \delta(a, b)$ and for every $b \in R, a \mapsto \delta(a, b)$ are generalized semi-derivation of R with associated function ϑ, f (defined as above), and satisfying $\delta(f)=f(\delta)$, then δ will be called generalized bi-semiderivation on R. More precisely, we say that δ, ϑ, f satisfying the following:

1. $\delta(a b, c)=\delta(a, c) f(b)+a \vartheta(b, c)=\delta(a, c) b+f(a) \vartheta(b, c)$
2. $\delta(a, b c)=\delta(a, b) f(c)+b \vartheta(a, c)=\delta(a, b) c+f(b) \vartheta(a, c)$
3. $f(\delta)=\delta(f)$ for every $a, b, c \in R$.

Example 1.2. Consider the set $R=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in 2 \mathbb{Z}_{8}\right\}$. Then R represents a ring under matrix addition and matrix multiplication. Define $\delta, \vartheta: R \times R \longrightarrow R$ such that

$$
\begin{gathered}
\delta\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),\left(\begin{array}{ll}
e & k \\
g & h
\end{array}\right)\right)=\left(\begin{array}{cc}
0 & b k \\
c g & 0
\end{array}\right), \\
\vartheta\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),\left(\begin{array}{ll}
e & k \\
g & h
\end{array}\right)\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & d h
\end{array}\right)
\end{gathered}
$$

and $f: R \longrightarrow R$ by $f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$. Therefore, δ is a generalized bi-semiderivation with associated function ϑ and f on R. In above defined concept of generalized bi-semiderivation, we have the following observations:

1. δ will be considered as bi-semiderivation, if we assume $\delta=\vartheta$.
2. If we consider f an identity map, then δ acting as generalized biderivation on R with associated map ϑ.
3. If we take f an identity map and $\delta=\vartheta$, then δ acting as biderivation.
4. Construct a new function $\digamma(a, x)=\delta(a, x)$ and $f=$ identity, for some fixed a and for all x in R, then \digamma behaves as generalized derivation with associated derivation $\vartheta(a, x)$.

It is obvious that the definition of generalized bi-semiderivations unifies the notions of bi-semiderivation and generalized bi-derivation and covers the concepts of derivations, generalized derivations, left (right) centralizers, and semiderivations. In this paper, we prove some theorems on symmetric generalized bisemiderivation of a ring that is the extension of Vukman's results which states that: Let R be a prime ring of characteristic not two and three. If D_{1}, D_{2} are the symmetric biderivations of R with trace h_{1}, h_{2}, respectively, such that $h_{1}(a) h_{2}(a)=0$ for every a in R, then either $D_{1}=0$ or $D_{2}=0$. In this note, we obtain some commutativity results associated with symmetric generalized bi-semiderivations in the setting of prime ring, that is the extension of some theorems proved in [2]. For more related literature reader can look inside $[1,3,5,7,8]$ and the references therein.

2. Main results

Throughout we consider f a surjective function on a prime ring R. Next, we use the characteristic restriction without mentioning it, wherever, it is needed. To prove our main theorems, we need the following lemmas.

Lemma 2.1. Let δ be a generalized bi-semiderivation with associated bi-semiderivation ϑ and associated function f on R. If $\delta \neq 0$, then f acting as a homomorphism on R.

Proof: We have by the definition of δ,

$$
\delta(u(a+b), c)=\delta(u, c) f(a+b)+u \vartheta((a+b), c)=\delta(u, c) f(a+b)+u \vartheta(a, c)+u \vartheta(b, c)
$$

Reword the left hand side of above equation as

$$
\begin{gathered}
\delta(u a+u b, c)=\delta(u a, c)+\delta(u b, c)=\delta(u, c) f(a)+u \vartheta(a, c)+\delta(u, c) f(b)+u \vartheta(b, c) \\
=\delta(u, c)\{f(a)+f(b)\}+u \vartheta(a, c)+u \vartheta(b, c)
\end{gathered}
$$

Now comparing the above two expansion of $\delta(u(a+b), c)$ to find

$$
\delta(u, c) f(a+b)=\delta(u, c)\{f(a)+f(b)\}
$$

and hence we can conclude $f(a+b)=f(a)+f(b)$. Since $\delta \neq 0$ is a generalized bi-semiderivation, we have

$$
\delta(w(a b), c)=\delta(w, c) f(a b)+w D(a b, c) f(a b)+w D(a, c) f(b)+w a D(b, c)
$$

Also we express above relation as

$$
\begin{gathered}
\delta(w a b, c)=\delta(w a, c) f(b)+w a D(b, c) \\
\delta(w, c) f(a) f(b)+w D(a, c) f(b)+w a D(b, c)
\end{gathered}
$$

Compare the right hand side of above two expansion of δ, we arrive at $\delta(w, c) f(a b)=\delta(w, c) f(a) f(b)$, for all $a, b, c \in R$. This implies that

$$
\delta(w, c)\{f(a b)-f(a) f(b\}=0
$$

Given that $\delta \neq 0$, and hence we find $f(a b)-f(a) f(b)=0$. That is $f(a b)=f(a) f(b)$. This completes the proof.

Lemma 2.2. Let δ be a generalized bi-semiderivation with associated bi-semiderivation ϑ and associated function f on R. If for $0 \neq \gamma \in R$, such that $\gamma \delta(u, v)=0$, then $\vartheta=0$.

Proof: Since $\gamma \delta(u, v)=0$, for all $u, v \in R$, we have by replacing u by $u w, 0=\gamma \delta(u w, v)=\gamma \delta(u, v) f(w)+$ $\gamma u \vartheta(w, v)=\gamma u \vartheta(w, v)$. It is given that $\gamma \neq 0$, primeness implies that $\vartheta(w, v)=0$ for all $w, v \in R$.

Theorem 2.3. Let R be a prime ring of characteristic not two and three. If δ is a symmetric generalized bi-semiderivation on R with associated bi-semiderivation ϑ and associated map f such that $\delta(r, r) \subseteq Z(R)$, then either R is commutative or $\vartheta=0$.

Proof: Since $\delta(r, r) \subseteq Z(R)$, we have

$$
\begin{equation*}
[\delta(r, r), s]=0 \text { for every } r, s \in R \tag{2.1}
\end{equation*}
$$

Linearizing the above equation in r, we find

$$
\begin{equation*}
[\delta(r, r), s]+[\delta(p, p), s]+2[\delta(r, p), s]=0 \text { for every } r, p, s \in R \tag{2.2}
\end{equation*}
$$

Using characteristic condition of R and (2.1), we obtain

$$
\begin{equation*}
[\delta(r, p), s]=0 \text { for every } r, p, s \in R \tag{2.3}
\end{equation*}
$$

Put $r t$ for r in (2.3) to get

$$
\begin{equation*}
\delta(r, p)[f(t), s]+r[\vartheta(t, p), s]+[r, s] \vartheta(t, p)=0 \text { for every } r, p, t, s \in R \tag{2.4}
\end{equation*}
$$

Substituting $r s$ for r in (2.4) and use (2.4), we arrive at

$$
\begin{equation*}
\delta(s, p) f(r)[f(t), s]+s \vartheta(r, p)[f(t), s]-s \delta(r, p)[f(t), s]=0 \text { for every } r, p, t, s \in R \tag{2.5}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\{\delta(s, p) f(r)+s \vartheta(r, p)-s \delta(r, p)\}[f(t), s]=0 \text { for every } r, p, t, s \in R \tag{2.6}
\end{equation*}
$$

Particulary, we can get

$$
\begin{equation*}
s \vartheta(s, p)[t, s]=0 \text { for every } p, t, s \in R \tag{2.7}
\end{equation*}
$$

From the above equation we can make the subsets $K=\{s \in R, \vartheta(s, p)=0$, for all $p \in R\}$ and $J=\{[t, s]=0$, for every $s, t \in R\}$. Clearly $(K,+)$ and $(J,+)$ are additive subgroups of R. Since a group cannot be the union of two proper subgroups. Hence primeness yields that either $J=0$ or $K=0$. If $J=0$, then R is commutative. In the second case we get $\vartheta=0$.

Theorem 2.4. Let R be a prime ring of characteristic not two and three, δ_{1}, δ_{2} be generalized bisemiderivation having associated bi-semiderivation $\vartheta_{1}, \vartheta_{2}$ and associated functions f_{1}, f_{2} on R respectively. If $\delta_{1}(p, p) \delta_{2}(p, p)=0$, for all $p \in R$, then one of the following conditions hold:

1. R is commutative
2. $\vartheta_{1}=0$
3. $\vartheta_{2}=0$.

Proof: Given that

$$
\begin{equation*}
\delta_{1}(p, p) \delta_{2}(p, p)=0 \text { for every } p \in R \tag{2.8}
\end{equation*}
$$

Linearize the equation (2.8) and reuse (2.8) to find

$$
\begin{align*}
\delta_{1}(p, p) \delta_{2}(t, t) & +2 \delta_{1}(p, p) \delta_{2}(p, t)+\delta_{1}(t, t) \delta_{2}(p, p)+2 \delta_{1}(t, t) \delta_{2}(p, t) \\
& +2 \delta_{1}(p, t) \delta_{2}(p, t)+2 \delta_{1}(p, t) \delta_{2}(t, t) \tag{2.9}\\
& +4 \delta_{1}(p, t) \delta_{2}(p, t)=0 \text { for all } p, t \in R
\end{align*}
$$

Putting $-t$ in place of t in (2.9) and subtracting from (2.9), we obtain

$$
\begin{equation*}
\delta_{1}(p, p) \delta_{2}(p, t)+\delta_{1}(t, t) \delta_{2}(p, t)+2 \delta_{1}(p, t) \delta_{2}(t, t)=0 \text { for every } p, t \in R \tag{2.10}
\end{equation*}
$$

Again linearize (2.10) in p and compare with (2.10) to get

$$
\begin{equation*}
\delta_{1}(z, z) \delta_{2}(p, t)+2 \delta_{1}(p, z) \delta_{2}(p, t)+\delta_{1}(p, p) \delta_{2}(z, t)+2 \delta_{1}(p, z) \delta_{2}(z, t)=0 \text { for every } p, t, z \in R \tag{2.11}
\end{equation*}
$$

Put $-z$ in place of z in (2.11) and adding resulting equation with (2.11) to find

$$
\begin{equation*}
\delta_{1}(z, z) \delta_{2}(p, t)+2 \delta_{1}(p, z) \delta_{2}(z, t)=0 \text { for every } p, t, z \in R \tag{2.12}
\end{equation*}
$$

Substitute $t r$ for t in (2.12) and apply (2.12) to obtain

$$
\begin{equation*}
\delta_{1}(z, z) t \vartheta_{2}(p, r)+2 \delta_{1}(p, z) t \vartheta_{2}(z, r)=0 \text { for every } p, t, z, r \in R \tag{2.13}
\end{equation*}
$$

In particular, we can write

$$
\begin{equation*}
3 \delta_{1}(z, z) t \vartheta_{2}(z, r)=0 \text { for every } t, z, r \in R \tag{2.14}
\end{equation*}
$$

Since R is not of characteristic 3 , we have

$$
\begin{equation*}
\delta_{1}(z, z) t \vartheta_{2}(z, r)=0 \text { for every } t, z, r \in R \tag{2.15}
\end{equation*}
$$

By primeness arguments, above equation splits into two cases like left hand side as first case and right hand side as second case. A simple computation with application of Theorem 2.3 in first case together with second case come to an end the proof.

Theorem 2.5. Let R be a prime ring of characteristic not two and three, δ be a generalized bi-semiderivation having associated bi-semiderivation ϑ and associated functions f on R. If $[\delta(b, b), \vartheta(c, c)]=0$, for all $b, c \in R$, then either R is commutative or $\vartheta=0$.

Proof: It is given that

$$
\begin{equation*}
[\delta(b, b), \vartheta(c, c)]=0 \text { for every } b, c \in R \tag{2.16}
\end{equation*}
$$

Linearize (2.16) to get

$$
\begin{equation*}
[\delta(b, b), \vartheta(c, c)]+[\delta(b, b), \vartheta(u, u)]+2[\delta(b, b), \vartheta(c, u)]=0 \text { for every } b, c, u \in R . \tag{2.17}
\end{equation*}
$$

In view of (2.16) and using characteristic condition, (2.17) takes the form

$$
\begin{equation*}
[\delta(b, b), \vartheta(c, u)]=0 \text { for every } b, c, u \in R \tag{2.18}
\end{equation*}
$$

Putting $u r$ in place of u in (2.18), we obtain

$$
\begin{equation*}
\vartheta(c, u)[\delta(b, b), f(r)]+[\delta(b, b), u] \vartheta(c, r)=0 \text { for every } b, c, u, r \in R \tag{2.19}
\end{equation*}
$$

Particularly replace $f(r)$ by $\vartheta(p, p)$ in (2.19) to find

$$
\begin{equation*}
[\delta(b, b), u] \vartheta(c, r)=0 \text { for every } b, c, u, r \in R \tag{2.20}
\end{equation*}
$$

We can rewrite the above equation as $[\delta(b, b), u] R \vartheta(c, r)=0$ for every $b, c, u, r \in R$. Primeness of R yields that either $[\delta(b, b), u]=0$ or $\vartheta(c, r)=0$ for all $b, c, u, r \in R$. If we take the part $[\delta(b, b), u]=0$ for all $b, u \in R$, then we can conclude by theorem 2.3.

References

1. F. Shujat, Symmetric generalized biderivations of prime rings, Bol. Soc. Paran. Mat. 39(4)(2021), 65-72.
2. F. Shujat, Commuting symmetric bi-semiderivations on rings, Adv. in Maths: Sci. J. 10 (9) (2021), 3233-3240
3. G. Maksa, A remark on symmetric biadditive functions having non-negative diagonalization, Glasnik. Mat. 15 (35) (1980), 279-282.
4. I. N. Herstein, A note on derivations II, Canad. Math. Bull. 22 (1979), 509-511.
5. J. Bergen, Derivations in Prime Rings, Canad. Math. Bull. 26 (1983), 267-270.
6. J. C. Chang, On semiderivations of prime rings, Chinese J. Math. 12 (1984), 255-262.
7. J. Vukman, Two results concerning symmetric biderivations on prime rings, Aequat. Math. 40 (1990), $181-189$.
8. H. Yazrali and D. Yilmaz, On symmetric bi-semiderivation on prime rings, preprint (2020).
9. N. Rehman and A. Z. Ansari, On lie ideals with symmetric bi-additive maps in rings, Palestine J. Math. 2 (2013), 14-21.
[^1]
[^0]: 2010 Mathematics Subject Classification: 16U80, 16N60, 16W25.
 Submitted April 16, 2022. Published December 16, 2022

[^1]: Faiza Shujat,
 Department of Mathematics,
 Faculty of Science, Taibah University, Madinah
 Saudi Arabia.
 E-mail address: faiza.shujat@gmail.com, fullahkhan@taibahu.edu.sa

