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1. Introduction

Over the past few decades, one of the most significant and active areas of research in mathematics
has been the study of convergence of sequences. The theory of statistical convergence was developed by
Zygmund [27] and originally published in his monograph in Warsaw, which is a generalization of classical
convergence. Steinhaus [26] and Fast [12] essentially presented the concept of statistical convergence,
and Schoenberg [25] later independently reintroduced it. Many mathematicians have utilized statistical
convergence as a tool to tackle several open problems in the fields of sequence spaces, summability
theory, and some other applications. Over the past several decades, statistical convergence has been
explored in a variety of fields and under a variety of names, including Banach spaces, measure theory,
Fourier analysis, number theory, ergodic theory, cone metric space, trigonometric series, time scale, and
topological space. To generalize this idea, Mursaleen [17] proposed the notion of λ−statistical convergence
by using the sequence λ = (λn). Some other applications and generalizations on λ−statistical convergence
and statistical convergence are available in [3,8,9,10,13,15,21].

The concept of a modulus function was developed by Nakano [18]. By using the modulus functions
some authors have introduced and established several sequence spaces such as Ruckle [22], Maddox [16],
Ghosh and Srivastava [14], Altin and Et [2], Savas and Patterson [24], Candan [6], Prakash et al. [20],
and some others.

Aizpuru et al. [1] have used an unbounded modulus function to characterize another density concept.
As a result, they established a new idea of nonmatrix convergence, which is intermediate between ordinary
convergence and statistical convergence and coincides with the statistical convergence of the identity
modulus.

2. Definitions and Preliminaries

In this section, we provide some definitions that are required for the study.

Definition 2.1. [23] Let H ⊂ N. Then, a number δ (H) is called a natural density of H and is defined
by

δ (H) = lim
n→∞

1

n
|{h ≤ n : h ∈ H}| ,
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in the case the limit exists, where |{h ≤ n : h ∈ H}| is the number of elements of H which are less than
or equal to n.

Definition 2.2. [23] A sequence (xk) of numbers is said to be statistically convergent (or S−convergent)
to the number l if

lim
n→∞

1

n
|{k ≤ n : |xk − l| ≥ ε}| = 0

for each ε > 0. In this case, we write S − lim xk = l or xk → l (S) and S denotes the set of all
S−convergent sequences.

In the study, λ = (λn) denotes a non-decreasing sequence of positive numbers tending to ∞ such that
λ1 = 1 and λn+1 ≤ λn + 1. We write In to denote the closed and bounded interval [n − λn + 1, n] . Also,
we write Λ to denote the set of all such sequences λ = (λn).

Definition 2.3. [17] Let λ = (λn) ∈ Λ. Then, a sequence (xk) of numbers is said to be λ−statistically
convergent (or Sλ−convergent) to the number l if for every ε > 0,

lim
n→∞

1

λn

|{k ∈ In : |xk − l| ≥ ε}| = 0.

We write Sλ − lim xk = l or xk → l (Sλ) in this case.

In the case λn = n for each n ∈ N, Sλ−convergence reduces to S−convergence.

Definition 2.4. [1] A function f : [0, ∞) → [0, ∞) is called a modulus function (or modulus) if

1. f(x) = 0 ⇔ x = 0,

2. f(x + y) ≤ f(x) + f(y) for every x, y ∈ [0, ∞) ,

3. f is increasing,

4. f is continuous from the right at 0.

From these properties, it is clear that a modulus function must be continuous everywhere on [0, ∞) .
A modulus function may be bounded or unbounded. For instance, f (x) = xa where a ∈ (0 , 1] is an
unbounded modulus, but f(x) = x

x+1 is a bounded modulus.

Definition 2.5. [1] Let f be an unbounded modulus function. Then, it is said that the sequence (xk) of
numbers is f−statistically convergent (or Sf−convergent) to the number l if

lim
n→∞

1

f (n)
f (|{k ≤ n : |xk − l| ≥ ε}|) = 0

for every ε > 0. We write Sf − lim xk = l or xk → S (l) in this case. Throughout the study, Sf denotes
the set of all statistically convergent sequences. And, we write S instead of Sf in case f (x) = x.

Definition 2.6. [5] Let f be an unbounded modulus function. Then, it is said that the sequence (xk) of
numbers is f−statistically bounded (or Sf −bounded) if there is M > 0 such that

lim
n→∞

1

f (n)
f (|{k ≤ n : |xk| ≥ M}|) = 0.

Throughout the study, Sf (b) denotes the set of all f−statistically bounded sequences.



λf−Statistical Convergence and λf−Statistical Boundedness 3

3. Main Results

In this section, we give the main results of the paper. We focus on giving the relations between the
sets of λf−statistically convergent and λf−statistically bounded sequences.

Definition 3.1. Let f be an unbounded modulus, λ = (λn) ∈ Λ and H ⊂ N. Then, a number δf
λ (H) is

named a λf−density (or δf
λ−density) of the set H and is defined by

δf
λ (H) = lim

n→∞

1

f (λn)
f (|{k ∈ In : k ∈ H}|) ,

in the case this limit exists.

It should be noted that in the case f(x) = x, the concepts of δf
λ−density and δλ−density coincide.

And, in the case f(x) = x and (λn) = (n), the concepts of δf
λ−density and δ−density coincide.

Remark 3.2. It is not necessary for the equality δf
λ (H) + δf

λ (N\H) = 1 to remain true, in general, even
though for a natural density it is always true. The example below illustrates this fact.

Example 3.3. Let us take f (x) = log (x + 1), λ = (λn) = (n) and H = {2n : n ∈ N}. Then, δf
λ (H) +

δf
λ (N\H) 6= 1. Indeed, since f is an unbounded modulus and λn

2 − 1 ≤ |{k ∈ In : k ∈ H}| ≤ λn

2 for each
n ∈ N, we may write

1

f (λn)
f

(

λn

2
− 1

)

≤
1

f (λn)
f (|{k ∈ In : k ∈ H}|) ≤

1

f (λn)
f

(

λn

2

)

or
1

log (n + 1)
log

(n

2

)

≤
1

f (λn)
f (|{k ∈ In : k ∈ H}|) ≤

1

log (n + 1)
log

(n

2
+ 1

)

.

By taking the limits as n → ∞ in the above inequality, we get that

1 ≤ lim
n→∞

1

f (λn)
f (|{k ∈ In : k ∈ H}|) ≤ 1.

Thus, δf
λ (H) = 1. Furthermore, by using the fact λn+1

2 − 1 ≤ |{k ∈ In : k ∈ N\H}| ≤ λn+1
2 for each

n ∈ N, we have δf
λ (N\H) = 1. Therefore, δf

λ (H) + δf
λ (N\H) = 2.

Theorem 3.4. Let λ ∈ Λ and H ⊂ N. If δf
λ (H) = 0, then δλ (H) = 0 for any unbounded modulus f .

Proof. Suppose δf
λ (H) = 0, then

lim
n→∞

1

f (λn)
f (|{k ∈ In : k ∈ H}|) = 0.

So, for any t ∈ N, there is N ∈ N such that for all n ≥ N ,

f (|{k ∈ In : k ∈ H}|) ≤
1

t
f (λn) ≤

1

t
tf

(

1

t
λn

)

= f

(

1

t
λn

)

.

Since f is a modulus function, we have

|{k ∈ In : k ∈ H}| ≤
1

t
λn.

Therefore, δλ (H) = 0. �

Remark 3.5. The converse of Theorem 3.4 does not have to be true, in general. For example, if we take
f (x) = log (x + 1), (λn) = (n) and H =

{

n2 : n ∈ N
}

, then δλ (H) = 0 but δf
λ (H) = 1

2 .
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Remark 3.6. The δf
λ−density of any finite subset of N is zero. Indeed, if H is any finite subset of N,

then the set {k ∈ In : k ∈ H} will be finite. So that for any unbounded modulus f and for each λ ∈ Λ, we
have

δf
λ(H) = lim

n→∞

1

f (λn)
f (|{k ∈ In : k ∈ H}|) = 0.

Definition 3.7. Let f be an unbounded modulus function and λ = (λn) ∈ Λ. Then, the sequence (xk) of

numbers is said to be λf−statistically convergent (or Sf
λ−convergent) to the number l if for every ε > 0,

δf
λ ({k ∈ N : |xk − l| ≥ ε}) = 0, i.e.,

lim
n→∞

1

f (λn)
f (|{k ∈ In : |xk − l| ≥ ε}|) = 0,

where f (λn) denotes the nth term of the sequence (f (λn)), that is, (f (λn)) = (f (λ1) , f (λ2) , f (λ3) , ...).

In this case, we write Sf
λ − lim xk = l or xk → l

(

Sf
λ

)

.

Throughout the study, the set of all Sf
λ−convergent sequences will be denoted by Sf

λ , that is,

Sf
λ =

{

(xk) : ∀ε > 0, lim
n→∞

1

f (λn)
f (|{k ∈ In : |xk − l| ≥ ε}|) = 0 for some number l

}

.

In case l = 0, we write Sf
λ,0 to denote the set of all Sf

λ−null sequences. It is obvious to note that every

Sf
λ−null sequence is Sf

λ−convergent sequence, that is, Sf
λ,0 ⊂ Sf

λ for every unbounded modulus function
f and for each λ ∈ Λ.

It should be noted that the concepts of Sf
λ−convergence and Sλ−convergence will be identical in

the case f (x) = x. The concepts of Sf
λ−convergence and Sf −convergence will be identical in the case

(λn) = (n). Also, the concepts of Sf
λ−convergence and S−convergence will be identical in the case

f (x) = x and (λn) = (n).

Theorem 3.8. Suppose (xk) and (yk) are sequences of numbers.

1. If xk → x0

(

Sf
λ

)

, then zxk → zx0

(

Sf
λ

)

for any z ∈ C.

2. If xk → x0

(

Sf
λ

)

and yk → y0

(

Sf
λ

)

, then (xk + yk) → (x0 + y0)
(

Sf
λ

)

.

Proof. 1. In case z = 0, it is clear. We assume that z 6= 0. Then, for every ε > 0, we may write

1

f (λn)
f (|{k ∈ In : |zxk − zx0| ≥ ε}|) =

1

f (λn)
f

(∣

∣

∣

∣

{

k ∈ In : |xk − x0| ≥
ε

|z|

}∣

∣

∣

∣

)

.

Since xk → x0

(

Sf
λ

)

, we have

lim
n→∞

1

f (λn)
f (|{k ∈ In : |zxk − zx0| ≥ ε}|) = 0.

Therefore, zxk → zx0

(

Sf
λ

)

.

2. Suppose xk → x0

(

Sf
λ

)

and yk → y0

(

Sf
λ

)

. Then,

1

f (λn)
f (|{k ∈ In : |(xk + yk) − (x0 + y0)| ≥ ε}|)

≤
1

f (λn)
f

(∣

∣

∣

{

k ∈ In : |xk − x0| ≥
ε

2

}∣

∣

∣

)

+
1

f (λn)
f

(∣

∣

∣

{

k ∈ In : |yk − y0| ≥
ε

2

}∣

∣

∣

)
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for every ε > 0. Since xk → x0

(

Sf
λ

)

and yk → y0

(

Sf
λ

)

, we get

lim
n→∞

1

f (λn)
f (|{k ∈ In : |(xk + yk) − (x0 + y0)| ≥ ε}|) = 0.

Therefore, (xk + yk) → (x0 + y0)
(

Sf
λ

)

. �

Theorem 3.9. Every convergent sequence is λf−statistically convergent, that is, c ⊂ Sf
λ for every

unbounded modulus f and for each λ ∈ Λ.

Proof. Suppose (xk) ∈ c and xk → l. Then, for every ε > 0, there is N ∈ N such that

|xk − l| < ε for all k > N.

So that the set {k ∈ In : |xk − l| ≥ ε} is finite. By using Remark 3.6, we get

lim
n→∞

1

f (λn)
f (|{k ∈ In : |xk − l| ≥ ε}|) = 0.

Therefore, (xk) ∈ Sf
λ . �

Remark 3.10. The converse of the above theorem does not have to be true, in general. This fact can be
illustrated in the following example.

Example 3.11. Let us take the modulus f(x) = xa, where 0 < a ≤ 1 and λ = (λn) = (n) . Define the
sequence (xk) as

xk =

{

k if k = m3

0 if k 6= m3
m ∈ N.

Then, xk → 0
(

Sf
λ

)

. However, (xk) is not convergent.

Theorem 3.12. Every λf−statistically convergent sequence is λ−statistically convergent to the same
limit, that is, Sf

λ ⊂ Sλ for any unbounded modulus f and for each λ ∈ Λ.

Proof. Suppose (xk) ∈ Sf
λ and xk → l

(

Sf
λ

)

. For every ε > 0,

lim
n→∞

1

f (λn)
f (|{k ∈ In : |xk − l| ≥ ε}|) = 0. (3.1)

By using (3.1) and Theorem 3.4, we get

lim
n→∞

1

λn

|{k ∈ In : |xk − l| ≥ ε}| = 0.

Therefore, xk → l (Sλ) and thus Sf
λ ⊂ Sλ. �

Remark 3.13. The converse of Theorem 3.12 is not true, in general. This fact can be illustrated in the
following example.
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Example 3.14. Let f(x) = log (x + 1) and λ = (λn) = (n) . Define the sequence (xk) as in Example 3.11.
Then, for every ε > 0, we have

lim
n→∞

1

λn

|{k ∈ In : |xk| ≥ ε}| ≤ lim
n→∞

1

λn

3

√

λn = 0.

So that xk → 0 (Sλ) and thus (xk) ∈ Sλ. However, for every ε > 0, we have

lim
n→∞

1

f (λn)
f (|{k ∈ In : |xk| ≥ ε}|) ≥ lim

n→∞

1

f (λn)
f

(

3

√

λn − 1
)

=
1

3
.

So that xk 9 0
(

Sf
λ

)

and thus (xk) /∈ Sf
λ .

We get the following result by taking (λn) = (n) from Theorem 3.12, which is the second part of
Theorem 2.16 of [4] in case α = 1.

Corollary 3.15. Every f−statistically convergent sequence is statistically convergent to the same limit,
that is, Sf ⊂ S for any unbounded modulus f .

Theorem 3.16. For any unbounded modulus f and for each λ ∈ Λ, we have Sλ ⊂ Sf
λ if lim

n→∞

inf f(λn)
λn

>

0.

Proof. Suppose (xk) ∈ Sλ and xk → l (Sλ). Then, for every ε > 0, we have

1

λn

|{k ∈ In : |xk − l| ≥ ε}| ≥
1

λn

1

f (1)
f (|{k ∈ In : |xk − l| ≥ ε}|)

=
f (λn)

λn

1

f (1)

f (|{k ∈ In : |xk − l| ≥ ε}|)

f (λn)
.

Since lim
n→∞

inf f(λn)
λn

> 0, by taking the limits as n → ∞ in the above inequality, we get xk → l (Sλ)

implies xk → l
(

Sf
λ

)

. �

We get the following result from Theorem 3.16 by taking (λn) = (n).

Corollary 3.17. For any unbounded modulus f , we have S ⊂ Sf if lim
n→∞

inf f(n)
n

> 0.

From Theorem 3.12 and Theorem 3.16, we get the following result.

Corollary 3.18. For any unbounded modulus f and for each λ ∈ Λ, we have Sλ = Sf
λ if lim

n→∞

inf f(λn)
λn

>

0.

Theorem 3.19. For every unbounded modulus f and for each λ ∈ Λ, we have Sf
λ ⊂ S; although the

converse is not true, in general.

Proof. Since Sf
λ ⊂ Sλ by Theorem 3.12 and Sλ ⊂ S by Theorem 2.7 of [7], so that Sf

λ ⊂ S. For
the converse part, recall the sequence (xk) in Example 3.2, the sequence is S−convergent but it is not

Sf
λ−convergent if we take f(x) = log (x + 1) and (λn) = (n). �

Theorem 3.20. Let f be an unbounded modulus and λ ∈ Λ. If lim
n→∞

inf f(λn)
n

> 0, then S ⊂ Sf
λ .

Proof. Suppose (xk) ∈ S and xk → l (S) . Then, for every ε > 0, we have

{k ≤ n : |xk − l| ≥ ε} ⊃ {k ∈ In : |xk − l| ≥ ε} .

Since f is a modulus, we may write
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1

n
|{k ≤ n : |xk − l| ≥ ε}| ≥

1

n
|{k ∈ In : |xk − l| ≥ ε}|

≥
1

n

1

f(1)
f (|{k ∈ In : |xk − l| ≥ ε}|)

=
f (λn)

n

1

f(1)

f (|{k ∈ In : |xk − l| ≥ ε}|)

f (λn)
.

By taking the limits as n → ∞ in the above inequality, we obtain that (xk) ∈ S implies (xk) ∈ Sf
λ since

lim
n→∞

inf f(λn)
n

> 0. �

From Theorem 3.19 and Theorem 3.20, we get the following result.

Corollary 3.21. Let f be an unbounded modulus and λ ∈ Λ. If lim
n→∞

inf f(λn)
n

> 0, then S = Sf
λ .

Definition 3.22. Let f be an unbounded modulus and λ = (λn) ∈ Λ. Then, the sequence (xk) of numbers

is said to be λf−statistically bounded (or Sf
λ−bounded) if δf

λ ({k ∈ N : |xk| ≥ M}) = 0 for some M > 0,
i.e.,

lim
n→∞

1

f (λn)
f (|{k ∈ In : |xk| ≥ M}|) = 0.

Throughout the study, the set of all Sf
λ−bounded sequences will be denoted by Sf

λ (b), that is,

Sf
λ(b) =

{

(xk) : lim
n→∞

1

f (λn)
f (|{k ∈ In : |xk| ≥ M}|) = 0 for some M > 0

}

.

In the case f(x) = x, λf−statistical boundedness reduces to λ−statistical boundedness, that is,

Sf
λ (b) = Sλ(b). In the case (λn) = (n), λf−statistical boundedness reduces to f−statistical boundedness,

that is, Sf
λ (b) = Sf (b). Also, in the case f (x) = x and (λn) = (n), λf−statistical boundedness reduces

to statistical boundedness, that is, Sf
λ (b) = S(b).

Theorem 3.23. Every Sf
λ−convergent sequence is Sf

λ−bounded for any unbounded modulus f and for

each λ ∈ Λ, that is, Sf
λ ⊂ Sf

λ (b); although the converse is not true, in general

Proof. Suppose (xk) ∈ Sf
λ and xk → l

(

Sf
λ

)

. Since f is a modulus and for every ε > 0

{k ∈ In : |xk − l| ≥ ε} ⊃ {k ∈ In : |xk| > |l| + ε} ,

so that
1

f (λn)
f (|{k ∈ In : |xk − l| ≥ ε}|) ≥

1

f (λn)
f (|{k ∈ In : |xk| > |l| + ε}|) .

By taking the limits on both sides in the above inequality as n → ∞, we obtain that (xk) ∈ Sf
λ implies

(xk) ∈ Sf
λ (b). For the converse part, let us take f(x) = xa, 0 < a ≤ 1, λ = (λn) = (n) and (xk) =

(1, 2, 1, 2, ...), then (xk) ∈ Sf
λ (b), but (xk) /∈ Sf

λ . This completes the proof. �

We get the following result by taking f (x) = x from Theorem 3.23.

Corollary 3.24. Every Sλ−convergent sequence is Sλ (b) −bounded for each λ ∈ Λ, that is, Sλ ( Sλ (b) .

We get the following result by taking (λn) = (n) from Theorem 3.23.

Corollary 3.25. Every Sf −convergent sequence is Sf (b) −bounded for any unbounded modulus f , that
is, Sf ( Sf (b) .
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Theorem 3.26. Every λf−statistically bounded sequence is λ−statistically bounded for any unbounded
modulus f and for each λ ∈ Λ, that is, Sf

λ (b) ⊂ Sλ (b); although the converse is not true, in general.

Proof. Suppose (xk) ∈ Sf
λ (b) . Then, there is M > 0 such that

lim
n→∞

1

f (λn)
f (|{k ∈ In : |xk| ≥ M}|) = 0. (3.2)

From (3.2) and Theorem 3.4, we get

lim
n→∞

1

λn

|{k ∈ In : |xk| ≥ M}| = 0.

Therefore, (xk) ∈ Sf
λ (b) implies (xk) ∈ Sλ (b). For the converse part, let us take f (x) = log (x + 1),

λ = (λn) = (n) and (xk) = (1, 0, 0, 4, 0, 0, 0, 0, 9, ...). Then, for any number M > 0, we have

{k ∈ N : |xk| > M} = {1, 4, 9, ...}

a finite subset of N. Since δf
λ ({1, 4, 9, ...}) = 1

2 6= 0 and δλ ({1, 4, 9, ...}) = 0, then (xk) /∈ Sf
λ (b) and

(xk) ∈ Sλ (b). As a result, Sf
λ (b) ( Sλ (b) . �

From Theorem 3.26, we get the following result by taking (λn) = (n).

Corollary 3.27. Every f−statistically bounded sequence is statistically bounded, that is, Sf (b) ( S (b) .

Theorem 3.28. For any unbounded modulus f and for each λ ∈ Λ, we have Sλ (b) ⊂ Sf
λ (b) if

lim
n→∞

inf f(λn)
λn

> 0.

Proof. Suppose (xk) ∈ Sλ (b). Then, there is M > 0 such that

lim
n→∞

1

λn

|{k ∈ In : |xk| ≥ M}| = 0.

Since f is a modulus, we have

1

λn

|{k ∈ In : |xk| ≥ M}| ≥
1

λn

1

f(1)
f (|{k ∈ In : |xk| ≥ M}|)

≥
f(λn)

λn

1

f(1)

f (|{k ∈ In : |xk| ≥ M}|)

f(λn)
.

By taking the limits on both sides in the above inequality as n → ∞, we get that (xk) ∈ Sλ (b) implies

(xk) ∈ Sf
λ (b). �

From Theorem 3.26 and Theorem 3.28, we obtain the following result.

Corollary 3.29. For any unbounded modulus f and for each λ ∈ Λ, we have Sλ (b) = Sf
λ (b) if

lim
n→∞

inf f(λn)
λn

> 0.

Theorem 3.30. For any unbounded modulus f and for each λ ∈ Λ, we have Sf (b) ⊂ Sf
λ (b) if

lim
n→∞

inf f(λn)
f(n) > 0.

Proof. Suppose (xk) ∈ Sf (b). Then, there is M > 0 such that

lim
n→∞

1

f (n)
f (|{k ≤ n : |xk| ≥ M}|) = 0. (3.3)
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In general, we have
{k ≤ n : |xk| ≥ M} ⊃ {k ∈ In : |xk| ≥ M} .

Since f is a modulus, we may write

1

f (n)
f (|{k ≤ n : |xk| ≥ M}|) ≥

1

f (n)
f (|{k ∈ In : |xk| ≥ M}|)

=
f (λn)

f (n)

1

f (λn)
f (|{k ∈ In : |xk| ≥ M}|) .

Since lim
n→∞

inf f(λn)
f(n) > 0, taking the limits as n → ∞ in the above inequality and using (3.3), we obtain

that (xk) ∈ Sf (b) implies (xk) ∈ Sf
λ (b) .

�

We get the following result by taking f(x) = x from Theorem 3.30.

Corollary 3.31. For each λ ∈ Λ, we have S (b) ⊂ Sλ (b) if lim
n→∞

inf λn

n
> 0.

4. Conclusion

In this paper, we have introduced a new version of density by applying to the notion of modulus
functions under some conditions. With the help of this density, new types of statistical convergence and
statistical boundedness were introduced. There is a significant opportunity that new discoveries and
generalizations can be presented in this field using these concepts. Also, this research paper will be a
valuable resource for researchers conducting relevant research in related areas as well as for studies that
will be conducted in connected fields in the future.
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