Derivation Alternator Rings with $S(a, b, c)=0$

Dr. P. Sarada Devi, Dr. K. Hari Babu, Dr. Y. Suresh Kumar

Abstract

In this paper, we discuss about the derivation alternator rings which are nonassociative but not $(-1,1)$ rings. By assuming some additional conditions, we prove that derivation alternator rings are $(-1,1)$ rings. Here we validate a semiprime derivation alternator ring with commutators in the left nucleus satisfies the identity $S(a, b, c)=0$. By using this we show that a semiprime derivation alternator ring with commutators in the left nucleus is a $(-1,1)$ ring.

Key Words: $(-1,1)$ rings, derivation alternator rings, nonassociative rings, semiprime rings.

Contents

1 Introduction

2 Preliminaries 1
3 Main Results 3

1. Introduction

Hentzel [3] studied about derivation alternator rings. Thedy [6] proved that the rings R satisfying the identifies $((R, R), R, R)=0,((a, b, a), b)=0$ for all a, b in R, and also $(R,(R, R), R)=0$ or $(R, R,(R, R))=0$. The main solution is that prime rings following these identities are also commutative or associative. Kleinfeld [4] proved the same result by considering the rings with (a, b, a) and commutators in the left nucleus. In [1] the rings with $((R, R), R, R)=0$ and $((a, b, a), R)=0$ have been studied. Here we validate that semiprime derivation alternator ring with commutators in the left nucleus is a $(-1,1)$ ring.

2. Preliminaries

A 2-divisible nonassociative ring is said to be a derivation alternator ring if it satisfies the following properties [3]

$$
\begin{gather*}
(a, a, a)=0 \tag{2.1}\\
(b c, a, a)=b(c, a, a)+(b, a, a) c \tag{2.2}
\end{gather*}
$$

and

$$
\begin{equation*}
(a, a, b c)=b(a, a, c)+(a, a, b) c \tag{2.3}
\end{equation*}
$$

A $(-1,1)$ ring is a nonassociative ring in which the right alternative law $[2](a, b, b)=0$, i.e., $(a, b, c)+$ $(a, c, b)=0$ and $(a, b, c)+(b, c, a)+(c, a, b)=0$ hold. The left nucleus N_{l} of a ring R is defined as $N_{l}=$ $n \in R /(n, R, R)=0$. Throughout this paper, R denotes a derivation alternator ring with commutators in the left nucleus. That is,

$$
\begin{equation*}
((R, R), R, R)=0 \tag{2.4}
\end{equation*}
$$

Using (2), (3) and linearized (1) that such rings also satisfy

$$
\begin{equation*}
(a, b c, a)=b(a, c, a)+(a, b, a) c \tag{2.5}
\end{equation*}
$$

By using Teichmuller identity [2]

$$
\begin{equation*}
(d a, b, c)^{\smile}(d, a b, c)+(d, a, b c)=d(a, b, c)+(d, a, b) c \tag{2.6}
\end{equation*}
$$

[^0]As in [3] the identity (6) along with (5),(3) and (1) gives

$$
\begin{aligned}
& \left(a^{2}, b, a\right)=(a, a b, a)^{\smile}(a, a, b a)+a(a, b, a)+(a, a, b) a \\
& a(a, b, a)^{\smile}(a, a, b) a+a(a, b, a)+(a, a, b) a \\
& =2 a(a, b, a)
\end{aligned}
$$

Thus we have proved

$$
\begin{equation*}
\left(a^{2}, b, a\right)=2 a(a, b, a) \tag{2.7}
\end{equation*}
$$

Also we know that (7) becomes

$$
\begin{equation*}
\left(a, b, a^{2}\right)=2(a, b, a) a \tag{2.8}
\end{equation*}
$$

In [5] the properties of flexile derivation alternator rings have been studied. It is shown that a derivation alternator ring follows the flexible law,

$$
\begin{equation*}
(a, b, a)=0 \tag{2.9}
\end{equation*}
$$

The following properties hold in an arbitrary ring: [2]

$$
\begin{gather*}
(a b, c)^{\smile} a(b, c)^{\smile}(a, c) b=(a, b, c)+(b, a, c)^{\smile}(a, c, b) \tag{2.10}\\
(a b, c)+(b c, a)+(c a, b)=S(a, b, c) \tag{2.11}
\end{gather*}
$$

and

$$
\begin{equation*}
((a, b), c)+((b, c), a)+((c, a), b)=S(a, b, c)^{\wedge} S(a, c, b) \tag{2.12}
\end{equation*}
$$

where $S(a, b, c)=(a, b, c)+(b, c, a)+(c, a, b)$.

$$
\begin{equation*}
\text { Using }(R, R) \subseteq N_{l} \text { in the identity (11), we get } S(a, b, c) \subseteq N_{l} \tag{2.13}
\end{equation*}
$$

Moreover, in all ring we have the identity

$$
\begin{equation*}
(a, b, c)=a(b, c)+(a, c) b+S(a, b, c)^{\smile}(a, c, b)^{\smile}(b, c, a) . \tag{2.14}
\end{equation*}
$$

A linearization of (9) implies $(a, b, c)+(c, b, a)=0$. Then connecting this with (14), (13) and (4) we obtain

$$
\begin{equation*}
a(b, c)+(a, c) b \subseteq N_{l} \tag{2.15}
\end{equation*}
$$

Assume that $n \in N_{l}$. Then with $d=n$ in (6), we obtain ($\left.n a, b, c\right)=n(a, b, c)$. Combining this with (4) leads

$$
\begin{equation*}
(n a, b, c)=n(a, b, c)=(a n, b, c) \tag{2.16}
\end{equation*}
$$

A combination of (15) and (16) yields

$$
\begin{equation*}
(b, c)(a, r, s)=-(a, c)(b, r, s) \tag{2.17}
\end{equation*}
$$

If we substitute a commutator v for b and using (8), we get

$$
\begin{equation*}
(v, c)(a, r, s)=0 \tag{2.18}
\end{equation*}
$$

If we linearize $(a, a, a)=0$, we get

$$
\begin{equation*}
S(a, b, a)+S(a, c, b)=0 \tag{2.19}
\end{equation*}
$$

By multiplying (12) and (19) with (p, q, r) and using (18) we obtain,
$S(a, b, c)(p, q, r)^{\llcorner } S(a, c, b)(p, q, r)=0$
$S(a, b, c)(p, q, r)+S(a, c, b)(p, q, r)=0$
By adding the above two equations, we have $2 S(a, b, c)(p, q, r)=0$. Since R is 2-divisible,

$$
\begin{equation*}
S(a, b, c)(p, q, r)=0 \tag{2.20}
\end{equation*}
$$

3. Main Results

Lemma 3.1. Let $T=t \in N_{l} / t(R, R, R)=0$. Then T is an ideal of R and $T(R, R, R)=0$.
Proof. By substituting t for n in (16), we get

$$
(t a, b, c)=t(a, b, c)=(a t, b, c)=0
$$

Thus $t R \in N_{l}$ and $R t \in N_{l}$. First note that $t d .(a, b, c)=t . d(a, b, c)$. But (6) multiplied on left by t yields $t \cdot d(a, b, c)=-t .(d, a, b) c=-t(d, a, b) c=0$. Thus $t w \cdot(a, b, c)=0$. However (17) yields wt. $(a, b, c)=0$. Thus, T is an ideal of R and obviously $T(R, R, R)=0$.
Let A be the associator ideal of R. We know that A is the set of all finite sums of associators and right multiples of associators. We know that R is semiprime, if the only ideal of R which squares to zero is the zero ideal.

Lemma 3.2. In a semiprime derivation alternator ring R with commutators in the left nucleus $S(a, b, c)=$ 0 .

Proof. By using lemma (1) and equation (6) we establish readily that T. $A=0$.
But then $T \cap A$ is an ideal of R which squares to zero. Since R is semiprime, then $T \cap A=0$.
From (13) and (20), we obtain $S(a, b, c) \in T$.
Also

$$
\begin{equation*}
S(a, b, c) \text { is in } A \tag{3.1}
\end{equation*}
$$

Thus $S(a, b, c)=0$. Let I be the ideal generated by $\{(b, a, a) / a, b \in R\}$ and we know that the linear span I of the alternators is an ideal.

Theorem 3.3. A semiprime derivation alternator ring R with commutators in the left nucleus is a (-1,1) ring.
Proof. Since $(a, b, a)=0$, from (7) we have $\left(a a^{2}, b, a\right)=0$.
This means that by definition a flexible derivation alternator ring is non-commutative Jordan, and noncommutative Jordan rings satisfy

$$
\begin{equation*}
\left(b, a^{2}, c\right)=a o(b, a, c) . \tag{3.2}
\end{equation*}
$$

Next from the identity (6)

$$
\begin{equation*}
\left(a^{2}, b, c\right)^{\cup}(a, a b, c)+(a, a, b c)=a(a, b, c)+(a, a, b) c \tag{3.3}
\end{equation*}
$$

Likewise (6) implies

$$
\begin{equation*}
(c b, a, a)^{\smile}(c, b a, a)+\left(c, b, a^{2}\right)=c(b, a, a)+(c, b, a) a \tag{3.4}
\end{equation*}
$$

By taking this into our previous equation leads to $2\left(a^{2}, b, c\right)^{\smile} a o(a, b, c)=0$. Since R is 2 -divisible, we have

$$
\begin{equation*}
\left(a^{2}, b, c\right)=a o(a, b, c) \tag{3.5}
\end{equation*}
$$

Flexibility and (25) imply

$$
\begin{equation*}
\left(b, c, a^{2}\right)=a o(b, c, a) \tag{3.6}
\end{equation*}
$$

Linearzing (1) and using (9), we get $(b, a, a)+(a, a, b)=0$.
This implies that $(b, a, a)=-(a, a, b)$.
Then $((b, a, a), a, a)=-((a, a, b), a, a)=((a, a, a), a, b)=0$.
Applying (25), we write
$0=\left(\left(b^{2}, a, a\right), a, a\right)=(b o(b, a, a), a, a)$
$=b o((b, a, a), a, a)+(b, a, a) o(b, a, a)$
$=2(b, a, a)^{2}$.
Since R is 2 -divisible, we get that $(b, a, a)^{2}=0$. Since I is an ideal and R is semiprime, we have $(b, a, a)=0$.
From lemma (2) and $(b, a, a)=0, R$ is a ($-1,1$) ring.

References

1. Hentzel, I. R., Kleinfeld, E. and Smith, H. F. "On rings in the join of associative and commutative", J. Algebra, Vol. 149, No. 2 (1992), 528-537.
2. Hentzel,I. R. "The characterization of (-1,1) rings"J.Algebra 30(1974),236-258.
3. Hentzel. I. R., Hogben, L. and Smith H. F. "Flexible derivation alternator rings", Com. in. algebra, 8 (20) (1980), 1997-2014.
4. Kleinfeld, E. "Rings with (x,y,x) and commutators in the left nucleus", Comm. in. Algebra, 16 (10), (1988), 2023-2029.
5. Kleinfeld, E. "Generalization of alternative rings I", J. Algebra, 18 (1971), 304-325.
6. Thedy, A. "On rings with commutators in the nucleus", Math. Z. 119 (1971), 213-218.

Dr. P. Sarada Devi,
Department of Mathematics,
Geethanjali College of Engineering And Technology (Autonomous),
India.
E-mail address: Sarada.chakireddy@gmail.com
and
Dr. K Hari Babu,
Department of Mathematics,
Koneru Lakshmaiah Education Foundation,
R.V.S Nagar, Moinabad-Chilkur Rd, Near AP Police Academy,

Aziznagar, Hyderabad, Telangana 500075.
India.
E-mail address: mathematicshari@gmail.com
and
Dr. Y. Suresh Kumar,
Department of Mathematics,
Koneru Lakshmaiah Education Foundation,
R.V.S Nagar, Moinabad-Chilkur Rd, Near AP Police Academy,

Aziznagar, Hyderabad, Telangana 500075.
India.
E-mail address: suresh.mscf@gmail.com

[^0]: 2010 Mathematics Subject Classification: 35B40, 35L70.
 Submitted September 10, 2022. Published October 13, 2022

