Some Specific Differential Identities in 3-prime Near-rings

Abdelkarim Boua and Samir Mouhssine

ABSTRACT: In this paper we investigate 3-prime near-rings with left generalized semiderivations satisfying certain differential identities. Consequently, some well-known results existing in literature have been generalized. We also show how the constraints placed on the hypothesis of various results are really not redundant.

Key Words: 3-prime near-ring, generalized semiderivations, semiderivations, right multipliers, semigroup ideals, commutativity theorems.

Contents

1 Introduction

2 Some preliminaries 3
3 Some results for right multipliers and semigroup ideals 4
4 Some results for left generalized semiderivations $\quad 6$

1. Introduction

Throughout this paper, \mathcal{N} will be a zero-symmetric left near-ring with multiplicative center $Z(\mathcal{N})$, and usually \mathcal{N} will be 3 -prime, that is, if for $x, y \in \mathcal{N}$ will have the property that, $x \mathcal{N} y=\{0\}$ implies $x=0$ or $y=0$. Note that \mathcal{N} is a zero-symmetric if $0 x=0$ for all $x \in \mathcal{N}$, (recall that left distributive yields $x 0=0$). Recalling that \mathcal{N} is called 2-torsion free if $2 x=0$ implies $x=0$ for all $x \in \mathcal{N}$. A nonempty subset U of \mathcal{N} is called semigroup left ideal (resp. semigroup right ideal) if $\mathcal{N} U \subseteq U$ (resp. $U \mathcal{N} \subseteq U$) and if U is both a semigroup left ideal and a semigroup right ideal, it will be called a semigroup ideal. Let α and β be maps from \mathcal{N} to \mathcal{N}. Granted $x, y \in \mathcal{N}$, we write $[x, y]_{(\alpha, \beta)}=\beta(x) \alpha(y)-\alpha(y) \beta(x)$ and $(x \circ y)_{(\alpha, \beta)}=\beta(x) \alpha(y)+\alpha(y) \beta(x)$, in particular $[x, y]_{\left(I_{\mathfrak{N}}, I_{\mathfrak{N}}\right)}=[x, y]$ and $(x \circ y)_{\left(I_{\mathcal{N}}, I_{\mathcal{N}}\right)}=x \circ y$ in the usual sense, where $I_{\mathcal{N}}$ is the identity map of \mathcal{N}. An additive mapping $H: \mathcal{N} \rightarrow \mathcal{N}$ is said to be a right (resp. left) multiplier if $H(x y)=x H(y)($ resp. $H(x y)=H(x) y)$ holds for all $x, y \in \mathcal{N} . H$ is said to be a multiplier if it is both left as well as right multiplier.

In (2013), A. Boua and al. [4] have introduced the notion of semiderivation of a near-ring \mathcal{N} in the following way :

Definition 1.1. An additive mapping $d: \mathcal{N} \rightarrow \mathcal{N}$ is called semiderivation if there exists an additive map $g: \mathcal{N} \rightarrow \mathcal{N}$ such that $d(x y)=d(x) g(y)+x d(y)=d(x) y+g(x) d(y)$ and $d(g(x))=g(d(x))$ for all $x, y \in \mathcal{N}$.

The notions of left generalized semiderivation and right generalized semiderivation are introduced as follows:

Definition 1.2. Let \mathcal{N} be a near-ring and d be a semiderivation associated with an additive mapping g of \mathcal{N}. An additive mapping $F: \mathcal{N} \longrightarrow \mathcal{N}$ is called a left generalized semiderivation associated with d if it satisfies $F(x y)=d(x) g(y)+x F(y)=d(x) y+g(x) F(y)$ and $F(g(x))=g(F(x))$ for all $x, y \in \mathcal{N}$.

Definition 1.3. Let \mathcal{N} be a near-ring and d be a semiderivation associated of \mathcal{N} with an additive mapping g. An additive mapping $F: \mathcal{N} \longrightarrow \mathcal{N}$ is called a right generalized semiderivation associated with d if it satisfies $F(x y)=F(x) g(y)+x d(y)=F(x) y+g(x) d(y)$ and $F(g(x))=g(F(x))$ for all $x, y \in \mathcal{N}$.

2010 Mathematics Subject Classification: 16N60, 16W25, 16 Y30.
Submitted March 03, 2022. Published August 02, 2022

Definition 1.4. Let \mathcal{N} be a near-ring and d be a semiderivation of \mathcal{N} associated with an additive mapping g. An additive mapping $F: \mathcal{N} \longrightarrow \mathcal{N}$ is called a generalized semiderivation associated with d if it is both a left as well as a right generalized semiderivation associated with d.

Example 1.5. Let S be a left zero-symmetric near-ring, and

$$
\mathcal{N}=\left\{\left.\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, 0 \in S\right\}
$$

We define the maps $d, g, F: \mathcal{N} \longrightarrow \mathcal{N}$ as follow:

$$
d\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), g\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)
$$

and

$$
F\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & b \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

It is straightforward to check that \mathcal{N} is a zero-symmetric left near-ring, d is a semiderivation of \mathcal{N} associated with g, and F is a left generalized semiderivation associated with d, but F is not a right generalized semiderivation associated with d on \mathcal{N}.

Example 1.6. Let S be a left zero-symmetric near-ring, and

$$
\mathcal{N}=\left\{\left.\left(\begin{array}{ccc}
0 & 0 & 0 \\
a & 0 & b \\
c & 0 & 0
\end{array}\right) \right\rvert\, a, b, c, 0 \in S\right\}
$$

Let us consider the maps $d, g, F: \mathcal{N} \longrightarrow \mathcal{N}$ given by:

$$
d\left(\begin{array}{lll}
0 & 0 & 0 \\
a & 0 & b \\
c & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
a & 0 & b \\
0 & 0 & 0
\end{array}\right), g\left(\begin{array}{lll}
0 & 0 & 0 \\
a & 0 & b \\
c & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
c & 0 & 0
\end{array}\right)
$$

and

$$
F\left(\begin{array}{lll}
0 & 0 & 0 \\
a & 0 & b \\
c & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & b \\
c & 0 & 0
\end{array}\right)
$$

It is easy to see that \mathcal{N} is a zero-symmetric left near-ring, d is a semiderivation associated with g of \mathcal{N}, and F is a right generalized semiderivation associated with d, but F is not a left generalized semiderivation associated with d on \mathcal{N}.
Example 1.7. Let $\mathcal{N}=\left\{\left.\left(\begin{array}{ccc}0 & 0 & a \\ 0 & 0 & b \\ 0 & 0 & 0\end{array}\right) \right\rvert\, a, b, 0 \in S\right\}$, where S is a left zero-symmetric near-ring. Define the maps $d, g, F: \mathcal{N} \longrightarrow \mathcal{N}$ by:

$$
d\left(\begin{array}{lll}
0 & 0 & a \\
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & b \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right), g\left(\begin{array}{lll}
0 & 0 & a \\
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & b \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right)
$$

and

$$
F\left(\begin{array}{ccc}
0 & 0 & a \\
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)
$$

Clearly, \mathcal{N} is zero-symmetric left near-ring, d is a semiderivation of \mathcal{N} associated with g, and F is a generalized semiderivation associated with d on \mathcal{N}.

The presence of certain various types of derivations and the link between rings and near-rings commutativity has piqued the interest of researchers. Many authors, including [4], [6], [8] and others, have recently obtained the commutativity of prime rings and near-rings using generalized semiderivations satisfying specified polynomial and differential constants.

In 2015, M. Ashraf and M. A. Siddeeque [2] proved that a 3-prime near-ring must be commutative ring if it admits a left generalized derivation F associated with a nonzero derivation, satisfies one of the following properties: $(i) F([x, y])=0, \quad(i i) F([x, y])= \pm[x, y], \quad(i i i) F(x \circ y)=0, \quad(i v) F(x \circ y)=$ $\pm(x \circ y),(v) F([x, y])= \pm(x \circ y),(v i) F(x \circ y)= \pm[x, y]$ for all x, y in a nonzero semigroup ideal U. In this paper, we generalize the above-mentioned results. More precisely, we study the following theorem on commutativity of 3-prime near-rings involving left generalized semiderivations F, right multipliers H, β and an automorphism α, that satisfies the following conditions:
(i) $F\left([x, y]_{(\alpha, \beta)}\right)=0$,
(ii) $F\left((x \circ y)_{(\alpha, \beta)}\right)=0$
(iii) $F\left([x, y]_{(\alpha, \beta)}\right)=H\left([x, y]_{(\alpha, \beta)}\right)$,
(iv) $F\left((x \circ y)_{(\alpha, \beta)}\right)=H\left((x \circ y)_{(\alpha, \beta)}\right)$,
(v) $F\left([x, y]_{(\alpha, \beta)}\right)=H\left((x \circ y)_{(\alpha, \beta)}\right)$,
(vi) $F\left((x \circ y)_{(\alpha, \beta)}\right)=H\left([x, y]_{(\alpha, \beta)}\right)$,
for all $x, y \in U$.

2. Some preliminaries

Lemma 2.1. [3, Lemma 1.2 (i), Lemma 1.2 (iii), Lemma 1.3 (iii)] Let \mathcal{N} be a 3-prime near-ring.
(i) If $z \in Z(\mathcal{N}) \backslash\{0\}$, then z is not a zero divisor.
(ii) If $z \in Z(\mathcal{N}) \backslash\{0\}$ and $z x \in Z(\mathcal{N})$, then $x \in Z(\mathcal{N})$.
(iii) If z centralizes a nonzero semigroup right ideal, then $z \in Z(\mathcal{N})$.

Lemma 2.2. [3, Lemma 1.3 (i)] Let \mathcal{N} be a 3-prime near-ring. If U is a nonzero semigroup right ideal (resp. semigroup left ideal) and x is an element of \mathcal{N} such that $U x=\{0\}$ (resp. $x U=\{0\}$), then $x=0$.

Lemma 2.3. [3, Lemma 1.4 (i)] Let \mathcal{N} be a 3-prime near-ring, and U a nonzero semigroup ideal of \mathcal{N}. If $x, y \in \mathcal{N}$, and $x U y=\{0\}$, then $x=0$ or $y=0$.

Lemma 2.4. [3, Lemma 1.5] Let \mathcal{N} be a 3-prime near-ring. If $Z(\mathcal{N})$ contains a nonzero semigroup left ideal or a nonzero semigroup right ideal of \mathcal{N}, then \mathcal{N} is a commutative ring.

Lemma 2.5. [1, Lemma 2.4] Let \mathcal{N} be a 3 -prime near-ring and U be a nonzero semigroup ideal of \mathcal{N}. If \mathcal{N} admits a nonzero semiderivation d associated with a map g, then $d(U) \neq\{0\}$.

Lemma 2.6. [6, Theorems 1] Let \mathcal{N} be a 3-prime near-ring, U a nonzero semigroup ideal of \mathcal{N}, and d be a nonzero semiderivation associated with an automorphism g of \mathcal{N}. Then the following conditions are equivalent:
(i) $d(U) \subseteq Z(\mathcal{N})$
(ii) \mathcal{N} is a commutative ring.

Lemma 2.7. Let \mathcal{N} be a near-ring and d be a nonzero semiderivation associated with an additive map g of \mathcal{N}. If \mathcal{N} admits an additive mapping F, then the following statements are equivalent:
(i) $F(x y)=d(x) g(y)+x F(y)=d(x) y+g(x) F(y)$ for all $x, y \in \mathcal{N}$.
(ii) $F(x y)=x F(y)+d(x) g(y)=g(x) F(y)+d(x) y$ for all $x, y \in \mathcal{N}$.

Proof. $(i) \Rightarrow(i i)$ Assume that $F(x y)=d(x) g(y)+x F(y)$ for all $x, y \in \mathcal{N}$. Thus $F(x(y+y))=d(x) g(y+$ $y)+x F(y+y)$ for all $x, y \in \mathcal{N}$. So $F(x(y+y))=d(x) g(y)+d(x) g(y)+x F(y)+x F(y)$ for all $x, y \in \mathcal{N}$. On the other hand, we have $F(x(y+y))=F(x y)+F(x y)=d(x) g(y)+x F(y)+d(x) g(y)+x F(y)$ for all $x, y \in \mathcal{N}$.
Comparing the two equations, we find that $d(x) g(y)+x F(y)=x F(y)+d(x) g(y)$ for all $x, y \in \mathcal{N}$. Similarly, we can prove that $d(x) y+g(x) F(y)=g(x) F(y)+d(x) y$ for all $x, y \in \mathcal{N}$. Hence $F(x y)=$ $x F(y)+d(x) g(y)=g(x) F(y)+d(x) y$ for all $x, y \in \mathcal{N}$.
$(i i) \Rightarrow(i)$ We obtain the proof by employing the identical techniques as those given in $(i) \Rightarrow(i i)$.
We can show the following result in a similar way:
Lemma 2.8. Let \mathcal{N} be a near-ring and d be a nonzero semiderivation associated with an additive map g of \mathcal{N}. If \mathcal{N} admits an additive mapping F, then the following statements are equivalent:
(i) $F(x y)=F(x) g(y)+x d(y)=F(x) y+g(x) d(y)$ for all $x, y \in \mathcal{N}$.
(ii) $F(x y)=x d(y)+F(x) g(y)=g(x) d(y)+F(x) y$ for all $x, y \in \mathcal{N}$.

Lemma 2.9. Let \mathcal{N} be a near-ring and d be a nonzero semiderivation associated with an additive map g of \mathcal{N}. If F is a left generalized semiderivation associated with a semiderivation d, then \mathcal{N} satisfies the following partial distributive laws:
(i) $(d(x) g(y)+x F(y)) z=d(x) g(y) z+x F(y) z$ for all $x, y, z \in \mathcal{N}$.
(ii) $(d(x) y+g(x) F(y)) z=d(x) y z+g(x) F(y) z$ for all $x, y, z \in \mathcal{N}$.

Proof. From the computation of $F(x(y z))$ and $F((x y) z)$, we obtain the required results.

Similary we can prove the next result:
Lemma 2.10. Let \mathcal{N} be a near-ring and d be a nonzero semiderivation associated with an additive map g of \mathcal{N}. If \mathcal{F} is a right generalized semiderivation associated with a semiderivation d, then \mathcal{N} satisfies the following partial distributive laws:

$$
\begin{align*}
& \text { (i) }(F(x) g(y)+x d(y)) z=F(x) g(y) z+x d(y) z \text { for all } x, y, z \in \mathcal{N} \text {. } \tag{i}\\
& \text { (ii) }(F(x) y+g(x) d(y)) z=F(x) y z+g(x) d(y) z \text { for all } x, y, z \in \mathcal{N} \text {. }
\end{align*}
$$

Lemma 2.11. Let \mathcal{N} be a near-ring. If d is a semiderivation associated with epimorphism g of \mathcal{N}, then $d(Z(\mathcal{N})) \subseteq Z(\mathcal{N})$.

Proof. Let $z \in Z(\mathcal{N})$, we have $d(z x)=d(x z)$, for all $x \in \mathcal{N}$. Using Lemma 2.7 and the definition of d, we get $d(z x)=d(z) g(x)+z d(x)=d(x z)=g(x) d(z)+d(x) z$ for all $x \in \mathcal{N}$. Thus $d(z) g(x)=g(x) d(z)$ for all $x \in \mathcal{N}$. Since g is an epimorphism of \mathcal{N}, it follows that $x d(z)=d(z) x$ for all $x \in \mathcal{N}$. So, $d(z) \in Z(\mathcal{N})$ for all $z \in Z(\mathcal{N})$. Hence $d(Z(\mathcal{N})) \subseteq Z(\mathcal{N})$.

3. Some results for right multipliers and semigroup ideals

In this section, it is assumed that α is an automorphism of the near-ring \mathcal{N}.
Lemma 3.1. Let \mathcal{N} be a 3-prime near-ring and U be a nonzero right semigroup ideal of \mathcal{N}. If H is a nonzero right multiplier of \mathcal{N}, then $H(U) \neq\{0\}$. Moreover, if $H(U) \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.

Proof. Assume that $H(x)=0$ for all $x \in U$. Taking $x t$ instead of x, where $t \in \mathcal{N}$, in the last expression, we get $U H(t)=\{0\}$ for all $t \in \mathcal{N}$. By Lemma 2.2 we get $H=0$; a contradiction.
Now, suppose that $H(x) \in Z(\mathcal{N})$ for all $x \in U$. Substituting $u x$ for x in the last expression, we get $u H(x) \in Z(\mathcal{N})$ for all $x, u \in U$. By Lemma 2.1 (ii), we obtain $U \subseteq Z(\mathcal{N})$ or $H(U)=\{0\}$. Since $H(U) \neq\{0\}$, we have $U \subseteq Z(\mathcal{N})$, so by using Lemma 2.4, we conclude that \mathcal{N} is a commutative ring.

Theorem 3.2. Let \mathcal{N} be a 3 -prime near-ring and U be a nonzero semigroup ideal of \mathcal{N}. If \mathcal{N} admits a nonzero right multiplier β, then the following assertions are equivalent:
(i) $[x, y]_{(\alpha, \beta)} \in Z(\mathcal{N})$ for all $x, y \in U$.
(ii) \mathcal{N} is a commutative ring.

Proof. The implication $(i i) \Rightarrow(i)$ is obvious.
$(i) \Rightarrow(i i)$ Assume that $[x, y]_{(\alpha, \beta)} \in Z(\mathcal{N})$ for all $x, y \in U$. Substituting $\alpha(y) x$ for x in the last expression we get $\alpha(y)[x, y]_{(\alpha, \beta)} \in Z(\mathcal{N})$ for all $x, y \in U$. Using Lemma 2.1 (ii), we obtain $[x, y]_{(\alpha, \beta)}=[\beta(x), \alpha(y)]=0$ or $\alpha(y) \in Z(\mathcal{N})$ for all $x, y \in U$. Thus, $[x, y]_{(\alpha, \beta)}=0$ for all $x, y \in U$. Which can be rewritten as $[\beta(x), \alpha(y)]=0$ for all $x, y \in U$. By Lemma 2.1 (iii), we get $\beta(U) \subseteq Z(\mathcal{N})$. Applying Lemma 3.1, we conclude that \mathcal{N} is a commutative ring.

Theorem 3.3. Let \mathcal{N} be a 3-prime near-ring and U be a nonzero semigroup ideal of \mathcal{N}. If \mathcal{N} admits a nonzero right multiplier β, then the following assertions are equivalent:
(i) $(x \circ y)_{(\alpha, \beta)}=0$ for all $x, y \in U$.
(ii) \mathcal{N} is a commutative ring with $2 \mathcal{N}=\{0\}$.

Proof. Clearly $(i i) \Rightarrow(i)$.
$(i) \Rightarrow$ (ii) Assume that

$$
\begin{equation*}
(x \circ y)_{(\alpha, \beta)}=0 \text { for all } x, y \in U \tag{3.1}
\end{equation*}
$$

That is $\beta(x) \alpha(y)=-\alpha(y) \beta(x)$ for all $x, y \in U$. Substituting $\alpha^{-1}(t) y$ for y in the last relation, we obtain $\beta(x) t \alpha(y)=-t \alpha(y) \beta(x)=t \alpha(y) \beta(-x)=t(\beta(-x)) \alpha(y)$ for all $t, x, y \in U$, which implies $[\beta(-x), t] \alpha(U)=$ $\{0\}$ for all $t, x \in U$. So by Lemma 2.3 and Lemma 2.1 (iii), it follows that $\beta(-U) \subseteq Z(\mathcal{N})$. By using the fact that $-U$ is a nonzero semigroup right ideal and Lemma 3.1, we have \mathcal{N} is a commutative ring.
So, (3.1) becomes $\beta(x) \alpha(y+y)=0$ for all $x, y \in U$. Replacing y by $y \alpha^{-1}(t)$ in the last equation, where $t \in \mathcal{N}$, we get $\beta(x) \alpha(y)(t+t)=0$ for all $x, y \in U, t \in \mathcal{N}$. Which gives $\beta(x) \alpha(U)(t+t)=\{0\}$ for all $x \in U, t \in \mathcal{N}$. Since $\beta(U) \neq\{0\}$, by using Lemma 2.3, we conclude that $2 \mathcal{N}=\{0\}$.

Corollary 3.4. Let \mathcal{N} be a 3 -prime near-ring and U be a nonzero semigroup ideal of \mathcal{N}, then the following assertions are equivalent:
(i) $x \circ y=0$ for all $x, y \in U$.
(ii) \mathcal{N} is a commutative ring with $2 \mathcal{N}=\{0\}$.

Theorem 3.5. Let \mathcal{N} be a 2-torsion free 3 -prime near-ring and U be a nonzero semigroup ideal of \mathcal{N}. If \mathcal{N} admits a nonzero right multiplier β, then the following assertions are equivalent:
(i) $(x \circ y)_{(\alpha, \beta)} \in Z(\mathcal{N})$ for all $x, y \in U$.
(ii) \mathcal{N} is a commutative ring.

Proof. It is easy to check that $(i i) \Rightarrow(i)$.
$(i) \Rightarrow(i i)$ Assume that $(x \circ y)_{(\alpha, \beta)} \in Z(\mathcal{N})$ for all $x, y \in U$. Substituting $\alpha(y) x$ for x in the last expression we get $\alpha(y)(x \circ y)_{(\alpha, \beta)} \in Z(\mathcal{N})$ for all $x, y \in U$. So, by Lemma 2.1 (ii), we obtain

$$
\begin{equation*}
(x \circ y)_{(\alpha, \beta)}=0 \text { or } \alpha(y) \in Z(\mathcal{N}) \text { for all } x, y \in U \tag{3.2}
\end{equation*}
$$

Suppose that $Z(\mathcal{N}) \cap U=\{0\}$, then (3.2) becomes $(x \circ y)_{(\alpha, \beta)}=0$ for all $x, y \in U$. Thus by Theorem 3.3, we get \mathcal{N} is a commutative ring with $2 \mathcal{N}=\{0\}$; a contradiction.
Hence $Z(\mathcal{N}) \cap U \neq\{0\}$. Let $z \in Z(\mathcal{N}) \cap U \backslash\{0\}$. From $(t \circ z)_{(\alpha, \beta)} \in Z(\mathcal{N})$ for all $t \in U$, it follows that $\beta(t+t) \alpha(z) \in Z(\mathcal{N})$ for all $t \in U$. By Lemma 2.1 (ii), we obtain

$$
\begin{equation*}
\beta(t+t) \in Z(\mathcal{N}) \text { for all } t \in U \tag{3.3}
\end{equation*}
$$

Replacing t by $u t$ in (3.3), we arrive at

$$
u \beta(t+t) \in Z(\mathcal{N}) \text { for all } t, u \in U
$$

Using Lemma 2.1 (iii), we have $2 \beta(t)=0$ for all $t \in U$ or $U \subseteq Z(\mathcal{N})$. If $2 \beta(t)=0$ for all $t \in U$, then by using the 2 -torsion freeness of \mathcal{N}, we obtain $\beta(U)=\{0\}$; a contradiction. Hence $U \subseteq Z(\mathcal{N})$, so, we conclude that \mathcal{N} is a commutative ring according to Lemma 2.4.

4. Some results for left generalized semiderivations

In this section, it is assumed that α is an automorphism and that d is a semiderivation associated with an automorphism g of the near-ring \mathcal{N}.

Lemma 4.1. Let \mathcal{N} be a 3-prime near-ring, U a nonzero semigroup right ideal of \mathcal{N}, and β be a right multiplier of \mathcal{N}. If \mathcal{N} admits a left generalized semiderivation F associated with a nonzero semiderivation d of \mathcal{N}, such that $F(\beta(U))=\{0\}$, then $d=0$ or $\beta=0$.

Proof. Assume that $F(\beta(x))=0$ for all $x \in U$. Taking $x y$ in place of x in the last expression and using the definition of F, we get $d(x) \beta(y)=0$ for all $x, y \in U$. Replacing y by $t y$ in the above equation, we find $d(x) t \beta(y)=0$ for all $x, y, t \in U$, which gives $d(x) U \beta(y)=\{0\}$ for all $x, y \in U$. By Lemma 2.3, it follows that $\beta(U)=\{0\}$ or $d(U)=\{0\}$. Hence, according to Lemma 2.5 and Lemma 3.1, we have $\beta=0$ or $d=0$.

Theorem 4.2. Let \mathcal{N} be a 3 -prime near-ring, U a nonzero semigroup ideal of \mathcal{N}, and β be a nonzero right multiplier of \mathcal{N}. If \mathcal{N} admits a left generalized semiderivation F associated with a nonzero semiderivation d of \mathcal{N}, then the following assertions are equivalent:
(i) $F\left([x, y]_{(\alpha, \beta)}\right)=0$ for all $x, y \in U$.
(ii) \mathcal{N} is a commutative ring.

Proof. It is easy to see that $(i i) \Rightarrow(i)$.
$(i) \Rightarrow$ (ii) Assume that

$$
\begin{equation*}
F\left([x, y]_{(\alpha, \beta)}\right)=0 \text { for all } x, y \in U \tag{4.1}
\end{equation*}
$$

Replacing y by $\alpha^{-1}(\beta(x)) y$ in (4.1), we get $F\left(\beta(x)[x, y]_{(\alpha, \beta)}\right)=0$ for all $x, y \in U$. Previous equation implies that

$$
\begin{equation*}
d(\beta(x)) g\left([x, y]_{(\alpha, \beta)}\right)=0 \text { for all } x, y \in U \tag{4.2}
\end{equation*}
$$

That is,

$$
\begin{equation*}
d(\beta(x)) g(\beta(x)) g(\alpha(y))=d(\beta(x)) g(\alpha(y)) g(\beta(x)) \text { for all } x, y \in U \tag{4.3}
\end{equation*}
$$

Putting ty in place of y in (4.3), and using it, we get

$$
\begin{aligned}
d(\beta(x)) g(\beta(x)) g(\alpha(t)) g(\alpha(y)) & =d(\beta(x)) g(\alpha(t)) g(\alpha(y)) g(\beta(x)) \\
& =d(\beta(x)) g(\alpha(t)) g(\beta(x)) g(\alpha(y)) \text { for all } x, y, t \in U
\end{aligned}
$$

Which means that $d(\beta(x)) g \circ \alpha(U) g([\alpha(y), \beta(x)])=\{0\}$ for all $x, y \in U$. As a result of Lemma 2.1 (ii) and Lemma 2.1 (iii), we obtain

$$
\begin{equation*}
d(\beta(x))=0 \text { or } \beta(x) \in Z(\mathcal{N}) \text { for all } x \in U \tag{4.4}
\end{equation*}
$$

Consider the case where $d(Z(\mathcal{N}))=\{0\}$. Thus, $d(\beta(U))=\{0\}$ is implied by (4.4). By Lemma 4.1, we get $d=0$ or $\beta=0$, which is a contradiction.
Therefore $d(Z(\mathcal{N})) \neq\{0\}$. Let $z \in Z(\mathcal{N}) \backslash\{0\}$ such that $d(\alpha(z)) \neq 0$. Taking $z y$ instead of y in (4.1), we arrive at $F\left(\alpha(z)[x, y]_{(\alpha, \beta)}\right)=0$ for all $x, y \in U$, implying $d(\alpha(z)) g\left([x, y]_{(\alpha, \beta)}\right)=0$ for all $x, y \in U$. By Lemma 2.11, we have $d(\alpha(z)) \in Z(\mathcal{N}) \backslash\{0\}$, which implies that $[x, y]_{(\alpha, \beta)}=0$ for all $x, y \in U$. According to Theorem 3.2, we conclude that \mathcal{N} is a commutative ring.

Theorem 4.3. Let \mathcal{N} be a 3-prime near-ring, U a nonzero semigroup ideal of \mathcal{N}, and H, β are nonzero right multipliers of \mathcal{N}. If \mathcal{N} admits a left generalized semiderivation F associated with a nonzero semiderivation d of \mathcal{N}, then the following assertions are equivalent:
(i) $F\left([x, y]_{(\alpha, \beta)}\right)=H\left([x, y]_{(\alpha, \beta)}\right)$ for all $x, y \in U$.
(ii) \mathcal{N} is a commutative ring.

Proof. The implication $(i i) \Rightarrow(i)$ is obvious.
(i) \Rightarrow (ii) Assume that

$$
\begin{equation*}
F\left([x, y]_{(\alpha, \beta)}\right)=H\left([x, y]_{(\alpha, \beta)}\right) \text { for all } x, y \in U \tag{4.5}
\end{equation*}
$$

Taking $\alpha^{-1}(\beta(x)) y$ instead of y in (4.5), we get

$$
F\left(\beta(x)[x, y]_{(\alpha, \beta)}\right)=H\left(\beta(x)[x, y]_{(\alpha, \beta)}\right) \text { for all } x, y \in U
$$

That gives

$$
\begin{equation*}
d(\beta(x)) g\left([x, y]_{(\alpha, \beta)}\right)=0 \text { for all } x, y \in U \tag{4.6}
\end{equation*}
$$

which is identical with the equation (4.2) of Theorem 4.2 . We may now conclude that \mathcal{N} is a commutative ring by arguing in the same way as in Theorem 4.2.

Corollary 4.4. [2, Theorem 1] Let \mathcal{N} be a 3-prime near-ring and U be a nonzero semigroup ideal of \mathcal{N}. If \mathcal{N} admits a left generalized derivation (F, d) satisfying either of the following identities $(i) F([x, y])=0$, for all $x, y \in U$ or $(i i) F([x, y])= \pm[x, y]$ for all $x, y \in U$, then \mathcal{N} is a commutative ring.

Theorem 4.5. Let \mathcal{N} be a 3 -prime near-ring, U a nonzero semigroup ideal of \mathcal{N}, and β be a nonzero right multiplier of \mathcal{N}. If \mathcal{N} admits a left generalized semiderivation F associated with a nonzero semiderivation d of \mathcal{N}, then the following assertions are equivalent:
(i) $F\left((x \circ y)_{(\alpha, \beta)}\right)=0$ for all $x, y \in U$.
(ii) \mathcal{N} is a commutative ring with $2 \mathcal{N}=\{0\}$.

Proof. Clearly $(i i) \Rightarrow(i)$.
(i) \Rightarrow (ii) Assume that

$$
\begin{equation*}
F\left((x \circ y)_{(\alpha, \beta)}\right)=0 \text { for all } x, y \in U \tag{4.7}
\end{equation*}
$$

Putting $\alpha^{-1}(\beta(x)) y$ instead of y in (4.7), we arrive at $F\left(\beta(x)(x \circ y)_{(\alpha, \beta)}\right)=0$ for all $x, y \in U$, which gives,

$$
\begin{equation*}
d(\beta(x)) g\left((x \circ y)_{(\alpha, \beta)}\right)=0 \text { for all } x, y \in U \tag{4.8}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
d(\beta(x)) g(\beta(x)) g(\alpha(y))=-d(\beta(x)) g(\alpha(y)) g(\beta(x)) \text { for all } x, y \in U \tag{4.9}
\end{equation*}
$$

Taking $y t$ in place of y in (4.9), and using it, we get

$$
\begin{aligned}
-d(\beta(x)) g(\alpha(y)) g(\alpha(t)) g(\beta(x)) & =d(\beta(x)) g(\beta(x)) g(\alpha(y)) g(\alpha(t)) \\
& =d(\beta(x)) g(\alpha(y)) g(\beta(-x)) g(\alpha(t)) \text { for all } t, x, y \in U
\end{aligned}
$$

Which means that $d(\beta(x)) g \circ \alpha(U) g([\beta(-x), \alpha(t)])=\{0\}$ for all $x, t \in U$. Consequently, by Lemma 2.3 and Lemma 2.1 (iii), we find

$$
\begin{equation*}
d(\beta(x))=0 \text { or } \beta(-x) \in Z(\mathcal{N}) \text { for all } x \in U \tag{4.10}
\end{equation*}
$$

Suppose that $d(Z(\mathcal{N}))=\{0\}$. Then (4.10) gives $d(\beta(-U))=\{0\}$. In light of Lemma 4.1 we obtain $d=0$ or $\beta=0$; a contradiction. Therefore $d(Z(\mathcal{N})) \neq\{0\}$.
Let $z \in Z(\mathcal{N}) \backslash\{0\}$ such that $d(\alpha(z)) \neq 0$. Replacing y by $z y$ in (4.7), we get $F\left(\alpha(z)(x \circ y)_{(\alpha, \beta)}\right)=0$ for all $x, y \in U$, which implies that $d(\alpha(z)) g\left((x \circ y)_{(\alpha, \beta)}\right)=0$ for all $x, y \in U$. Using Lemma 2.11, we have $d(\alpha(z)) \in Z(\mathcal{N}) \backslash\{0\}$, which gives $(x \circ y)_{(\alpha, \beta)}=0$ for all $x, y \in U$. Hence, \mathcal{N} is a commutative ring with $2 \mathcal{N}=\{0\}$, by Theorem 3.3.

Theorem 4.6. Let \mathcal{N} be a 3-prime near-ring, U a nonzero semigroup ideal of \mathcal{N}, and H, β are nonzero right multipliers of \mathcal{N}. If \mathcal{N} admits a left generalized semiderivation F associated with a semiderivation d of \mathcal{N}, then the following assertions are equivalent:
(i) $F\left((x \circ y)_{(\alpha, \beta)}\right)=H\left((x \circ y)_{(\alpha, \beta)}\right)$ for all $x, y \in U$.
(ii) \mathcal{N} is a commutative ring with $2 \mathcal{N}=\{0\}$.

Proof. It is easy to check that $(i i) \Rightarrow(i)$.
$(i) \Rightarrow$ (ii) Suppose that

$$
\begin{equation*}
F\left((x \circ y)_{(\alpha, \beta)}\right)=H\left((x \circ y)_{(\alpha, \beta)}\right) \text { for all } x, y \in U \tag{4.11}
\end{equation*}
$$

Replacing y by $\alpha^{-1}(\beta(x)) y$ in (4.11), we arrive at

$$
F\left(\beta(x)(x \circ y)_{(\alpha, \beta)}\right)=H\left(\beta(x)(x \circ y)_{(\alpha, \beta)}\right) \text { for all } x, y \in U
$$

Which yields

$$
d(\beta(x)) g\left((x \circ y)_{(\alpha, \beta)}\right)=0 \text { for all } x, y \in U
$$

Since this equation is identical with (4.8) of Theorem 4.5, by arguing in the same way as in Theorem 4.5, we may conclude that \mathcal{N} is a commutative ring with $2 \mathcal{N}=\{0\}$.

Corollary 4.7. [2, Theorem 2] Let \mathcal{N} be a 3-prime near-ring and U be a nonzero semigroup ideal of \mathcal{N}. If \mathcal{N} admits a left generalized derivation (F, d) satisfying either of the following identities $(i) F(x \circ y)=0$, for all $x, y \in U$ or $(i i) F(x \circ y)= \pm(x \circ y)$ for all $x, y \in U$, then \mathcal{N} is a commutative ring.
Theorem 4.8. Let \mathcal{N} be a 3-prime near-ring, U a nonzero semigroup ideal of \mathcal{N}, and H, β are nonzero right multipliers of \mathcal{N}. If \mathcal{N} admits a left generalized semiderivation F associated with semiderivation d of \mathcal{N}, then the following assertions are equivalent:
(i) $F\left([x, y]_{(\alpha, \beta)}\right)=H\left((x \circ y)_{(\alpha, \beta)}\right)$ for all $x, y \in U$.
(ii) \mathcal{N} is a commutative ring with $2 \mathcal{N}=\{0\}$.

Proof. It is easy to see that $(i i) \Rightarrow(i)$.
$(i) \Rightarrow$ (ii) Assume that

$$
\begin{equation*}
F\left([x, y]_{(\alpha, \beta)}\right)=H\left((x \circ y)_{(\alpha, \beta)}\right) \text { for all } x, y \in U \tag{4.12}
\end{equation*}
$$

Substituting $\alpha^{-1}(\beta(x)) y$ for y in (4.12), we obtain $F\left(\beta(x)[x, y]_{(\alpha, \beta)}\right)=H\left(\beta(x)(x \circ y)_{(\alpha, \beta)}\right)$ for all $x, y \in U$, from which it follows easily that

$$
d(\beta(x)) g\left([x, y]_{(\alpha, \beta)}\right)=0 \text { for all } x, y \in U
$$

This is the same as the equation (4.2) of Theorem 4.2. By arguing similarly to Theorem 4.2, we obtain that \mathcal{N} is a commutative ring.
Consequently, (4.12) becomes $H(\alpha(y)+\alpha(y)) \beta(x)=0$ for all $x, y \in U$. Putting tuy in place of y and $v x$ in place of x in last equation, we get $\alpha(t+t) \alpha(u) H(\alpha(y)) v \beta(x)=0$ for all $u, v, x, y \in U, t \in \mathcal{N}$. Which means that $\alpha(t+t) \alpha(U) H(\alpha(y)) U \beta(x)=\{0\}$ for all $x, y \in U, t \in \mathcal{N}$. According to Lemma 2.3 and Lemma 3.1, we conclude that $2 \mathcal{N}=\{0\}$.

Corollary 4.9. [2, Theorem 3] Let \mathcal{N} be a 3-prime near-ring and U be a nonzero semigroup ideal of \mathcal{N}. If \mathcal{N} admits a left generalized derivation (F, d) satisfying $F([x, y])= \pm(x \circ y)$ for all $x, y \in U$, then \mathcal{N} is a commutative ring.

Theorem 4.10. Let \mathcal{N} be a 3-prime near-ring, U a nonzero semigroup ideal, and H, β are nonzero right multipliers of \mathcal{N}. If \mathcal{N} admits a left generalized semiderivation F associated with a nonzero semiderivation d of \mathcal{N}, then the following assertions are equivalent:
(i) $F\left((x \circ y)_{(\alpha, \beta)}\right)=H\left([x, y]_{(\alpha, \beta)}\right)$ for all $x, y \in U$.
(ii) \mathcal{N} is a commutative ring with $2 \mathcal{N}=\{0\}$.

Proof. The implication $(i i) \Rightarrow(i)$ is obvious.
$(i) \Rightarrow(i i)$ Assume that

$$
\begin{equation*}
F\left((x \circ y)_{(\alpha, \beta)}\right)=H\left([x, y]_{(\alpha, \beta)}\right) \text { for all } x, y \in U \tag{4.13}
\end{equation*}
$$

Putting $\alpha^{-1}(\beta(x)) y$ in place of y in (4.13), we find $F\left(\beta(x)(x \circ y)_{(\alpha, \beta)}\right)=H\left(\beta(x)[x, y]_{(\alpha, \beta)}\right)$ for all $x, y \in U$. This implies

$$
d(\beta(x)) g\left((x \circ y)_{(\alpha, \beta)}\right)=0 \text { for all } x, y \in U
$$

This is the same as equation (4.8) of Theorem 4.5. By arguing in the same way as in Theorem 4.5, we can prove that \mathcal{N} is a commutative ring with $2 \mathcal{N}=\{0\}$.

Corollary 4.11. [2, Theorem 4] Let \mathcal{N} be a 3-prime near-ring, U a nonzero semigroup ideal of \mathcal{N}. If \mathcal{N} admits a left generalized derivation (F, d) satisfying $F(x \circ y)= \pm[x, y]$ for all $x, y \in U$, then \mathcal{N} is a commutative ring.

The following example shows that the condition of 3 -primeness of \mathcal{N} imposed on the assumptions of the above theorems is not redundant.

Example 4.12. Let S be a left zero-symmetric near-ring and

$$
\mathcal{N}=\left\{\left.\left(\begin{array}{ccc}
0 & 0 & a \\
0 & 0 & b \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, 0 \in S\right\}
$$

If we set

$$
U=\left\{\left.\left(\begin{array}{ccc}
0 & 0 & u \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\, u, 0 \in S\right\}
$$

then it is easy to check that \mathcal{N} is a left zero-symmetric near-ring and U is a nonzero semigroup ideal of \mathcal{N}. Define the maps $\alpha=g, d, F, \beta, H: \mathcal{N} \longrightarrow \mathcal{N}$ by:

$$
\begin{aligned}
g\left(\begin{array}{lll}
0 & 0 & a \\
0 & 0 & b \\
0 & 0 & 0
\end{array}\right) & =\left(\begin{array}{ccc}
0 & 0 & b \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right), d\left(\begin{array}{ccc}
0 & 0 & a \\
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & b \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right), \\
F\left(\begin{array}{lll}
0 & 0 & a \\
0 & 0 & b \\
0 & 0 & 0
\end{array}\right) & =\left(\begin{array}{lll}
0 & 0 & a \\
0 & 0 & b \\
0 & 0 & 0
\end{array}\right), \beta\left(\begin{array}{lll}
0 & 0 & a \\
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & a \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

and

$$
H\left(\begin{array}{lll}
0 & 0 & a \\
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right)
$$

Clearly d is a semiderivation associated with g, F is a left generalized semiderivation associated with d, H and β are nonzero right multipliers satisfying the conditions:
(i) $F\left([x, y]_{(\alpha, \beta)}\right)=0$,
(ii) $F\left((x \circ y)_{(\alpha, \beta)}\right)=0$
(iii) $F\left([x, y]_{(\alpha, \beta)}\right)=H\left([x, y]_{(\alpha, \beta)}\right)$,
(iv) $F\left((x \circ y)_{(\alpha, \beta)}\right)=H\left((x \circ y)_{(\alpha, \beta)}\right)$,
(v) $F\left([x, y]_{(\alpha, \beta)}\right)=H\left((x \circ y)_{(\alpha, \beta)}\right)$,
(vi) $F\left((x \circ y)_{(\alpha, \beta)}\right)=H\left([x, y]_{(\alpha, \beta)}\right)$,
for all $x, y \in U$, but \mathcal{N} is not a commutative ring.
Theorem 4.13. Let \mathcal{N} be a 3-prime near-ring, U a nonzero semigroup ideal of \mathcal{N}, and β be a nonzero right multiplier of \mathcal{N}. If \mathcal{N} admits a left generalized semiderivation F associated with a nonzero semiderivation d of \mathcal{N}, such that $d(Z(\mathcal{N})) \neq\{0\}$, then the following assertions are equivalent:
(i) $F\left([x, y]_{(\alpha, \beta)}\right) \in Z(\mathcal{N})$ for all $x, y \in U$.
(ii) \mathcal{N} is a commutative ring.

Proof. Clearly $(i i) \Rightarrow(i)$.
(i) \Rightarrow (ii) Assume that

$$
\begin{equation*}
F\left([x, y]_{(\alpha, \beta)}\right) \in Z(\mathcal{N}) \text { for all } x, y \in U \tag{4.14}
\end{equation*}
$$

If $Z(\mathcal{N})=\{0\}$, it follows that $F\left([x, y]_{(\alpha, \beta)}\right)=0$ for all $x, y \in U$. In view of Theorem 4.6, we obtain \mathcal{N} is a commutative ring. So $\mathcal{N}=Z(\mathcal{N})=\{0\}$; a contradiction.
Thus $Z(\mathcal{N}) \neq\{0\}$. Let $z \in Z(\mathcal{N}) \backslash\{0\}$ such that $d(\alpha(z)) \neq 0$. Replacing y by $z y$ in (4.14), we get

$$
\begin{equation*}
d(\alpha(z)) g\left([x, y]_{(\alpha, \beta)}\right)+z F\left([x, y]_{(\alpha, \beta)}\right) \in Z(\mathcal{N}) \text { for all } x, y \in U \tag{4.15}
\end{equation*}
$$

which together with (4.14) gives

$$
\begin{equation*}
d(\alpha(z)) g\left([x, y]_{(\alpha, \beta)}\right) \in Z(\mathcal{N}) \text { for all } x, y \in U \tag{4.16}
\end{equation*}
$$

Due to $d(\alpha(z)) \in Z(\mathcal{N})$, by using Lemma 2.1 (ii), we find

$$
\begin{equation*}
[x, y]_{(\alpha, \beta)} \in Z(\mathcal{N}) \text { for all } x, y \in U \tag{4.17}
\end{equation*}
$$

Hence, by Theorem 3.2, \mathcal{N} is a commutative ring.

Corollary 4.14. [2, Theorem 6] Let \mathcal{N} be a 3-prime near-ring and U be a nonzero semigroup ideal of \mathcal{N}. Let (F, d) be a left generalized derivation of \mathcal{N} such that $d(Z(\mathcal{N})) \neq\{0\}$ and $F([x, y]) \in Z(\mathcal{N})$ for all $x, y \in U$, then \mathcal{N} is a commutative ring.

The restriction of $d(Z(\mathcal{N})) \neq\{0\}$ imposed on the hypothesis of the Theorem 4.13 is not redundant in the situation of arbitrary near-rings, as shown in the following example:
Example 4.15. Let

$$
\mathcal{R}=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c, 0 \in \mathbb{Z}\right\}
$$

It is easy to see that \mathcal{R} is prime ring with the center $Z=\left\{\left.\left(\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right) \right\rvert\, 0, x \in \mathbb{Z}\right\}$. Also it can be verified that $U=\left\{\left.\left(\begin{array}{cc}p & n \\ 0 & t\end{array}\right) \right\rvert\, p, n, t, 0 \in 2 \mathbb{Z}\right\}$ is a nonzero semigroup ideal of \mathcal{R}, where $2 \mathbb{Z}$ denotes the set of even integers. Define $\alpha=g, \beta, d, F: \mathcal{R} \rightarrow \mathcal{R}$ as following,

$$
\begin{aligned}
g\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) & =\left(\begin{array}{cc}
a & a+b-c \\
0 & c
\end{array}\right), \beta\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right) \\
d\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) & =\left(\begin{array}{cc}
0 & c-a \\
0 & 0
\end{array}\right) \text { and } F\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)=\left(\begin{array}{cc}
0 & c+a \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

It can be easily proved that d is a semiderivation associated with g, F is a left generalized semiderivation associated with d of \mathcal{R}, and β is a nonzero right miltiplier satisfying the conditions, $d(Z(\mathcal{N}))=\{0\}$ and $F\left([x, y]_{(\alpha, \beta)}\right) \in Z(\mathcal{N})$ for all $x, y \in U$. However \mathcal{R} is not a commutative ring.

References

1. Ali A., Boua A. and Ali F., Semigroup ideals and generalized semiderivations of prime near rings, Bol. Soc. Paran. Mat., (3s.) v. 37 (4), 25-45 (2019).
2. Ashraf M. and Siddeeque M. A, Generalized derivation on semigroup ideals and commutativity of prime near-rings, Rend. Sem. Mat. Univ. Pol. Torino Vol. 73/2, 3-4, 217 - 225 (2015).
3. Bell H.E., On derivations in near-rings II, In: Near-Rings, Near-Fields and KLoops (Hamburg, 1995), Math. Appl. 426, Kluwer Acad. Publ., Dordrecht, 1997.
4. Boua, A. and Oukhtite, L., Semiderivations satisfying certain algebraic identities on prime near-rings, Asian-Eur. J. Math., 6(3), 1350050, 8p (2013).
5. Boua, A., Oukhtite, L. and Raji, A., Semigruop ideals with semiderivations in 3-prime near-rings, Palest. J. Math., 3, 438-444 (2014).
6. Boua A., Raji A., Asma A. and Farhat A., On generalized semiderivations of prime near rings, Int. J. Math. Math. Sci., Article ID 867923, 7p (2015).
7. Boua A., Oukhtite L. and Raji L., On generalized semiderivations in 3-prime near-rings, Asian Eur. J. Math. Vol. 09, No. 02, 1650036 (2016).
8. Gölbaşi Ö. and Koç E., On semigroup ideals of prime near-rings with generalized semiderivation, Palest. J. Math., Vol. $7(1), 243-250$ (2018).

Abdelkarim Boua,
University Sidi Mohammed Ben Abdellah,
Polydisciplinary Faculty,
Department of Mathematics,
LSI, Taza,
Morocco.
E-mail address: abdelkarimboua@yahoo.fr or karimoun2006@yahoo.fr
and
Samir Mouhssine,
University Sidi Mohammed Ben Abdellah,
Polydisciplinary Faculty,
Department of Mathematics,
LSI, Taza,
Morocco.
E-mail address: samirfes27@gmail.com or samir.mouhssine@usmba.ac.ma

