

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 2024 (42)** : 1–6. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.63878

A Generalization of the Regular Function Modulo n

Basem Alkhamaiseh

ABSTRACT: A new generalization for von Neumann regular elements modulo n (regular elements modulo n) will be defined and studied. Also we survey general properties of the multiplicative function V(n,m) which counts the number of n-regular elements in the ring \mathbb{Z}_m .

Key Words: n-regular elements, n-regular elements modulo m, Von Neumann regular function modulo n, summatory function.

Contents

1 Introduction

2	<i>n</i> -regular elements of a ring	1
3	n -regular elements of the ring \mathbb{Z}_m	2
4	Sum of <i>n</i> -regular elements modulo <i>m</i>	3
5	The summatory function $F_n(m)$	5
6	Conclusions	6

1. Introduction

Throughout this article, all rings will be assumed to be commutative and have unity 1. An element $a \in R$ is called von Neumann regular element if there exists $x \in R$ such that $a^2x = a$. A ring R is called von Neumann regular ring if all its elements are von Neumann regular elements. Von Neumann regular rings (elements) were studied extensively in the literature, see [2], [3] and [5]. In [2], Alkam et al. constructed a number theoretic function V(n) that counts the number of von Neumann regular elements in the ring of integers modulo n, \mathbb{Z}_n , and studied it with algebraic tools. Other articles have looked at the function V(n) using number-theoretic techniques, see [4].

And erson et al. expanded the concept of a von Neumann regular element of a ring R to the concept of (m, n)-von Neumann regular element in [6]. The *n*-regular elements of the ring R are defined in this article, followed by the function V(n,m), which counts the number of *n*-regular elements in the ring \mathbb{Z}_m . Several properties of the function V(n,m) are discussed throughout the article. Finally, we introduce the generalization $F_n(m)$ of the function F(m), then we relate it with the divisor function $\sigma(m)$.

2. *n*-regular elements of a ring

The *n*-regular elements of a ring R are defined in this section. Anderson et al. introduced the concept of an (m, n)-von Neumann regular element of a ring R in [6].

Definition 2.1. Let R be a ring and let m, n be two positive integers. An element $a \in R$ is said to be (m, n)-von Neumann regular element (in short (m, n) - vnr) if there exists $b \in R$ such that $a^m b = a^n$.

This article will focus on a special case of this definition, namely when m = n + 1, and we will call to the (n + 1, n) - vnr element as the *n*-regular element. Each von Neumann regular element is clearly an *n*-regular element. Note: In [6], the term "*n*-regular" has been defined in a way that differs from ours.

Example 2.2. In \mathbb{Z}_4 , 2 is not a regular element, while 2 is a 2-regular element.

1

²⁰¹⁰ Mathematics Subject Classification: Primary: 11A25, Secondary: 16E50 Submitted June 07, 2022. Published September 01, 2022

B. Alkhamaiseh

3. *n*-regular elements of the ring \mathbb{Z}_m

The arithmetic function V(m), which counts the number of von Neumann regular elements in the ring \mathbb{Z}_m , was examined by Alkam et al. in [2] and To'th in [4]. In this section, we will generalize the function V(m) to the function V(n,m) which counts the number of *n*-regular elements in the ring \mathbb{Z}_m . Since each von Neumann regular element is an *n*-regular element, $V(m) \leq V(n,m)$.

The following definition separates the nilpotent elements of R, Nil(R), into subsets each of certain nilpotincy.

Definition 3.1. Let R be a ring and let n be a positive integer. Then $Nil_n(R) = \{x \in R : x^n = 0\}$. It is clear that $Nil(R) = \bigcup_{n \in \mathbb{N}} Nil_n(R)$.

Lemma 3.2. Let R be a local ring with maximal ideal M. Then the set of n-regular elements of R is $U(R) \bigcup Nil_n(R)$.

Proof. Suppose that a is an n-regular element of the local ring R. Then there exists $b \in R$ such that $a^{n+1}b = a^n$. Hence either $a^n \in M$ or $a^n \notin M$. If $a^n \in M$, then $a \in M$ and a must be in $Nil_n(R)$. If $a^n \notin M$, then $a \in U(R)$. It is clear that U(R) and $Nil_n(R)$ are subsets of the n-regular elements. \Box

Note that, if $x \in Nil_n(R)$, then $x^k = 0$ for any $k \ge n$.

The proof of the following theorem is straightforward by using Lemma [3.2] although we include the proof for the sake of completeness.

Theorem 3.3. Let $\{R_{\alpha}\}_{\alpha \in \Lambda}$ be a family of commutative local rings and let n be a positive integer. Then the element $(x_{\alpha})_{\alpha \in \Lambda} \in \{R_{\alpha}\}_{\alpha \in \Lambda}$ is an n-regular element if and only if for each $\alpha \in \Lambda$ either $x_{\alpha} \in U(R_{\alpha})$ or $x_{\alpha} \in Nil_n(R_{\alpha})$.

Proof. $(x_{\alpha})_{\alpha \in \Lambda}$ is *n*-regular element iff there is $(y_{\alpha})_{\alpha \in \Lambda}$ such that $(x_{\alpha})_{\alpha \in \Lambda}^{n+1}(y_{\alpha})_{\alpha \in \Lambda} = (x_{\alpha})_{\alpha \in \Lambda}^{n}$ iff $(x_{\alpha}^{n+1})_{\alpha \in \Lambda}(y_{\alpha})_{\alpha \in \Lambda} = (x_{\alpha}^{n})_{\alpha \in \Lambda}$ iff $(x_{\alpha}^{n+1}y_{\alpha})_{\alpha \in \Lambda} = (x_{\alpha}^{n})_{\alpha \in \Lambda}$ iff $x_{\alpha}^{n+1}y_{\alpha} = x_{\alpha}^{n}$ for each $\alpha \in \Lambda$ iff x_{α} is *n*-regular element in R_{α} for each $\alpha \in \Lambda$ iff for each $\alpha \in \Lambda$ either $x_{\alpha} \in U(R_{\alpha})$ or $x_{\alpha} \in Nil_{n}(R_{\alpha})$.

It is known that for any prime number p and any positive integer α , $Nil(\mathbb{Z}_{p^{\alpha}}) = \langle \overline{p} \rangle = \overline{p}\mathbb{Z}_{p^{\alpha}} \cong \mathbb{Z}_{p^{\alpha-1}}$. Similarly, $\langle \overline{p}^2 \rangle = \overline{p} \langle \overline{p} \rangle \cong \overline{p}\mathbb{Z}_{p^{\alpha-1}} \cong \mathbb{Z}_{p^{\alpha-2}}$. In general, for any integer k such that $1 \leq k \leq \alpha$, $\langle \overline{p}^k \rangle \cong \mathbb{Z}_{p^{\alpha-k}}$. Now, We can use Lemma [3.2] to prove the following lemma

Lemma 3.4. Let n be a positive integer. Then for any prime number p and any positive integer α , $V(n, p^{\alpha}) = \phi(p^{\alpha}) + p^{\alpha - \lceil \frac{\alpha}{n} \rceil}$.

Proof. Since $\mathbb{Z}_{p^{\alpha}}$ is a local ring with maximal ideal $Nil(\mathbb{Z}_{p^{\alpha}}) = \langle \overline{p} \rangle$, $V(n, p^{\alpha}) = |U(\mathbb{Z}_{p^{\alpha}})| + |Nil_n(\mathbb{Z}_{p^{\alpha}})| = \phi(p^{\alpha}) + |\langle \overline{p}^{\lceil \frac{\alpha}{n} \rceil} \rangle| = \phi(p^{\alpha}) + p^{\alpha - \lceil \frac{\alpha}{n} \rceil}$.

The following result is based on Lemma [3.4], where it highlights some special cases for n.

Corollary 3.5. Let n be a positive integer. Then for any prime number p and any positive integer $\alpha \leq n$, $V(n, p^{\alpha}) = p^{\alpha}$.

It is a well known fact that if the standard prime factorization of the positive integer m is $m = \prod_{i=1}^{t} p_i^{\alpha_i}$, then $\mathbb{Z}_m \cong \prod_{i=1}^{t} \mathbb{Z}_{p_i^{\alpha_i}}$. Hence by Theorem [3.3], we deduce that $V(n,m) = \prod_{i=1}^{t} V(n, p_i^{\alpha_i})$. Thus, V(n,m) is multiplicative function with respect to m(that is, if m_1 and m_2 are relatively prime, then $V(n, m_1 m_2) = V(n, m_1)V(n, m_2)$).

Some properties of the multiplicative function V(n, m) are presented here. To prove the following theorem, we use some of the conclusions from [2] and [4]. Recall that, if a|b and $gcd(a, \frac{b}{a}) = 1$, then a is said to be a unitary divisor of b, denoted by a||b.

Theorem 3.6. Let n be a positive integer and let m be a positive integer with the standard prime factorization $m = \prod_{i=1}^{t} p_i^{\alpha_i}$, also let $k = \prod_{i=1}^{t} p_i^{\lceil \frac{\alpha_i}{n} \rceil}$. Then

- 1. If $n \ge \max\{\alpha_i\}_{i=1}^t$, then V(n,m) = m.
- 2. If $n \leq \min\{\alpha_i\}_{i=1}^t$, then $V(n,m) = \prod_{i=1}^t [\phi(p_i^{\alpha_i}) + p_i^{\alpha_i \lceil \frac{\alpha_i}{n} \rceil}]$. As a special case, $V(m) = V(1,m) = \prod_{i=1}^t [\phi(p_i^{\alpha_i}) + 1]$.
- 3. $V(n,m) = \frac{m}{k}V(k)$.
- 4. $V(n,m) = \sum_{d||k} \frac{m}{k} \phi(d).$
- 5. V(n,m) is increasing with respect to both n and m (that is, if $n_1 \leq n_2$, then $V(n_1,m) \leq V(n_2,m)$, and if $m_1 \leq m_2$, then $V(n,m_1) \leq V(n,m_2)$).
- 6. $\frac{V(n,m)}{\phi(m)} = \sum_{d||k} \frac{1}{\phi(d)}.$

Proof. Since V(n, m) is multiplicative in m, we can deduce (1) and (2) using Lemma [3.4]. To prove (3),

$$\begin{split} V(n,m) &= \prod_{i=1}^{t} [\phi(p_i^{\alpha_i}) + p_i^{\alpha_i - \lceil \frac{\alpha_i}{n} \rceil}] \\ &= \prod_{i=1}^{t} [(p_i^{\alpha_i} - p_i^{\alpha_i - 1}) + p_i^{\alpha_i - \lceil \frac{\alpha_i}{n} \rceil}] \\ &= \prod_{i=1}^{t} p_i^{\alpha_i - \lceil \frac{\alpha_i}{n} \rceil} [(p_i^{\lceil \frac{\alpha_i}{n} \rceil} - p_i^{\lceil \frac{\alpha_i}{n} \rceil - 1}) + 1] \\ &= \frac{m}{k} V(k). \end{split}$$

To prove (4), you can use (3) and the property $V(k) = \sum_{d||k} \phi(d)$ that is found in [2] and [4].

The proof of (5) is straightforward.

To prove (6), combine (3) and the fact, if $m = \prod_{i=1}^{t} p_i^{\alpha_i}$ and $n = \prod_{i=1}^{t} p_i^{\beta_i}$ are positive integers, then $\frac{\phi(m)}{\phi(n)} = \frac{m}{n}$, as well as the property $\frac{V(k)}{\phi(k)} = \sum_{d||k} \frac{1}{\phi(d)}$ that is found in [2] and [4].

$$\Box$$

Example 3.7. Take $m = 2^4 \cdot 3^3$ and n = 3, then $k = 2^2 \cdot 3$ and $\phi(m) = 144$. Thus, V(k) = 9 and $V(3,m) = 324 = \frac{2^4 \cdot 3^3}{2^2 \cdot 3} \cdot 9$. Also, the values of d such that d||k are 1, 3, 4 and 12. So, $\sum_{d||k} \frac{1}{\phi(d)} = \frac{1}{1} + \frac{1}{2} + \frac{1}{4} = \frac{9}{4} = \frac{324}{144}$.

4. Sum of *n*-regular elements modulo *m*

In this section, we will use the number-theoretic consideration to prove some results concerning the *n*-regular elements modulo *m*. Firstly, consider $Reg(n,m) = \{a \in \mathbb{Z} : 1 \le a \le m, a \text{ is } n - regular \pmod{m}\}$ denotes the set of all *n*-regular elements modulo *m*. Then V(n,m) = |Reg(n,m)|.

Theorem 4.1.
$$V(n,m) = \sum_{\substack{d \mid |m \\ t \mid |k \\ common prime \\ divisors}} \frac{d}{t} \phi(\frac{m}{d})$$

B. Alkhamaiseh

Proof. Let
$$y_i = \frac{p_i^{\alpha_i}}{p_i^{\lceil \frac{\alpha_i}{n} \rceil} \phi(p_i^{\alpha_i})}, 1 \le i \le t$$
, and $y = \prod_{i=1}^t y_i = \frac{m}{k\phi(m)}$. Then

$$\phi(m)[y + \sum_{1 \le i \le t} \frac{y}{y_i} + \sum_{1 \le i < j \le t} \frac{y}{y_i y_j} + \dots + \frac{y}{\prod_{i=1}^t y_i}] = \prod_{i=1}^t \phi(p_i^{\alpha})(y_i + 1)$$

$$= \prod_{i=1}^t V(n, p_i^{\alpha})$$

$$= V(n, m).$$

Tóth in [4] gave a formula for the sum of regular elements (mod m), $S(m) = \frac{m(V(m)+1)}{2}$, Tóth's formula was analogous to the formula $\sum_{\substack{1 \le a \le m \\ gcd(a,m)=1}} a = \frac{m\phi(m)}{2}$.

The following theorem gives a formula for S(n,m), which is analogous to $S(m) = \frac{m(V(m)+1)}{2}$. **Theorem 4.2.** For the positive integers n and m, $S(n,m) = \frac{m(V(n,m)+1)}{2}$.

$$\begin{split} & \text{Proof. } S(n,m) = \sum_{\substack{a \in \text{Reg}(n,m)}} a \\ &= \sum_{\substack{a \in \text{Reg}(n,m)}} \sum_{\substack{a \in \text{Reg}(n,m)}} a \\ &= \sum_{\substack{d \mid m \\ t \mid k}} \sum_{\substack{(a,m) = d \\ (a,k) = t}} a \\ &= \sum_{\substack{d \mid m \\ t \mid k}} \sum_{\substack{j=1 \\ (a,k) = t}} j d \\ &= \sum_{\substack{d \mid m \\ t \mid k}} t \sum_{\substack{i=1 \\ (a,k) = t}} j \left(\sum_{\substack{j=1 \\ (j,\frac{m}{d}) = 1 \\ (a,k) = t}} j \right) \\ &= k(1+2+3+\ldots+\frac{m}{k}) + \sum_{\substack{d \mid m \\ t \mid k \\ d < m \\ t < k}} t \sum_{\substack{i=1 \\ t \mid k}} t \left(\frac{m}{2d} \phi(\frac{m}{d}) \right) \\ &= k(\frac{m}{k}+1) \frac{m}{2k} + \sum_{\substack{d \mid m \\ t \mid k \\ d < m \\ t < k}} \sum_{\substack{i=1 \\ t \mid k \\ d < m \\ t < k}} t i \left(\frac{m}{2d} \phi(\frac{m}{d}) \right) \\ &= \frac{m}{2} \left(\frac{m}{k}+1 \right) + \sum_{\substack{d \mid m \\ t \mid k \\ d < m \\ t < k}} \sum_{\substack{i=1 \\ t \mid k \\ d < m \\ t < k}} \phi(\frac{m}{d}) \\ &= \frac{m}{2} \left(\frac{m}{k}+1 \right) + \sum_{\substack{d \mid m \\ t \mid k \\ d < m \\ t < k}} \sum_{\substack{i=1 \\ t \mid k \\ d < m \\ t < k}} \phi(\frac{m}{d}) \\ & \end{pmatrix} \end{split}$$

$$= \frac{m}{2} \left(1 + \sum_{\substack{d \mid |m \\ t \mid |k}} \phi(\frac{m}{d}) \frac{d}{t} \right)$$
$$= \frac{m}{2} \left(1 + V(n,m) \right)$$

Example 4.3. For m = 16, n = 3, V(n,m) = 12 and $R(n,m) = \{1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16\}$. Then $\sum_{a \in Reg(n,m)} a = 104 = \frac{16}{2}(1+12)$.

5. The summatory function $F_n(m)$

The summatory function $F(m) = \sum_{d|m} V(d)$ is calculated in [2]. In this section, we will calculate $F_n(m)$, the generalized form of the summatory function F(m). Let $F_n(m) = \sum_{d|m} V(n,d)$. Since V(n,m) is multiplicative concerning m, $F_n(m)$ is also multiplicative concerning m, hence $F_n(m)$ is completely characterized by its values on powers of primes. Recall that the functions $\sigma(n)$ and $\sigma_k(n)$ are defined as the sum, or the sum of k-th powers, of the divisors of n respictively.

Theorem 5.1. Let p be a prime number and let α and n be positive integers. Then

1. If $\alpha \leq n$, then $F_n(p^{\alpha}) = \sigma(p^{\alpha})$.

•

2. If $\alpha > n$, then $F_n(p^{\alpha}) = p^{\alpha} + 1 + \sigma(p^{n-1})\sigma_{n-1}(p^{q-1}) + p^{q(n-1)}\sigma(p^{r-1})$, where q, r are the quotient and remainder when we divide α by n.

Proof. 1. In Corollary [3.5] if $\alpha \leq n$, then $V(n, p^{\alpha}) = p^{\alpha}$. Hence, the result is clear.

2. If
$$\alpha > n$$
, then $F_n(p^{\alpha}) = \sum_{d \mid p^{\alpha}} V(n, d)$

$$= \sum_{k=0}^{\alpha} V(n, p^k)$$

$$= \sum_{k=0}^{\alpha} \phi(p^k) + p^{k - \lceil \frac{k}{n} \rceil}$$

$$= p^{\alpha} + 1 + \sum_{k=1}^{\alpha} p^{k - \lceil \frac{k}{n} \rceil} + \sum_{k=n+1}^{2n} p^{k - \lceil \frac{k}{n} \rceil} + \sum_{k=2n+1}^{3n} p^{k - \lceil \frac{k}{n} \rceil} + \dots + \sum_{k=(q-1)n+1}^{qn} p^{k - \lceil \frac{k}{n} \rceil} + \sum_{k=qn+1}^{\alpha} p^{k - \lceil \frac{k}{n} \rceil}$$

$$= p^{\alpha} + 1 + \sum_{k=1}^{n} p^{k-1} + \sum_{k=n+1}^{2n} p^{k-2} + \sum_{k=2n+1}^{3n} p^{k-3} + \dots + \sum_{k=(q-1)n+1}^{qn} p^{k-q} + \sum_{k=qn+1}^{\alpha} p^{k-(q+1)}$$

$$= p^{\alpha} + 1 + \left(\sum_{k=0}^{n-1} p^k\right) \left[1 + p^{n-1} + p^{2(n-1)} + \dots + p^{(q-1)(n-1)}\right] + p^{q(n-1)} \sum_{k=0}^{r-1} p^k$$

$$= p^{\alpha} + 1 + \sigma(p^{n-1})\sigma_{n-1}(p^{q-1}) + p^{q(n-1)}\sigma(p^{r-1}).$$

5

B. Alkhamaiseh

6. Conclusions

This article defines the *n*-regular elements of the ring R, as well as the function V(n,m), which counts the number of *n*-regular elements in the ring \mathbb{Z}_m . Throughout the article, we have established that the set of *n*-regular elements of the ring R is $U(R) \bigcup Nil_n(R)$. Also, we show that the function V(n,m) is multiplicative. The sum of the *n*-regular elements modulo m is calculated using number theoretic considerations. Also, we introduce the summatory function $F_n(m) = \sum_{d|m} V(n,d)$ and we find

the relationship between $F_n(m)$ and the divisor function $\sigma(m)$.

References

- 1. Anderson, D. F. and Badawi A., On (m, n)-closed ideals of commutative rings, Journal of Algebra and Its Applications, 16(1), 1750013, (2017).
- 2. Alkam O., and Osba E.A., On the regular elements in Z_n , Turkish Journal of Mathematics, 32(1), 31-39, (2008).
- Osba E.A., Henriksen M. and Alkam O., Combining local and von Neumann regular rings, Communications in Algebra, 32, 2639-2653, (2004).
- 4. Tóth L., Regular integers modulo n, Annales Univ. Sci. Budapest., Sect. Comp., 29, 263-275, (2008).
- 5. Anderson D.F. and Badawi A., Von Neumann Regular and Related Elements in Commutative Rings, Algebra colloquium 19(spec01), 1017-1040, (2012).
- Anderson D.F., Badawi A. and Fahid B., Weakly (m, n)-closed ideals and (m, n)-von Neumann regular rings, Journal of the Korean Mathematical Society, 55(5), 1031-1043, (2018).

B. Alkhamaiseh, Department of Mathematics, Yarmouk University, Jordan. E-mail address: basem.m@yu.edu.jo