A Generalization of the Regular Function Modulo n

Basem Alkhamaiseh

ABSTRACT: A new generalization for von Neumann regular elements modulo n (regular elements modulo n) will be defined and studied. Also we survey general properties of the multiplicative function $V(n, m)$ which counts the number of n-regular elements in the ring \mathbb{Z}_{m}.

Key Words: n-regular elements, n-regular elements modulo m, Von Neumann regular function modulo n, summatory function.

Contents

1 Introduction

$2 n$-regular elements of a ring 1
$3 n$-regular elements of the ring $\mathbb{Z}_{m} \quad 2$
4 Sum of n-regular elements modulo m 3
5 The summatory function $F_{n}(m) \quad 5$
6 Conclusions 6

1. Introduction

Throughout this article, all rings will be assumed to be commutative and have unity 1 . An element $a \in R$ is called von Neumann regular element if there exists $x \in R$ such that $a^{2} x=a$. A ring R is called von Neumann regular ring if all its elements are von Neumann regular elements. Von Neumann regular rings (elements) were studied extensively in the literature, see [2], [3] and [5]. In [2], Alkam et al. constructed a number theoretic function $V(n)$ that counts the number of von Neumann regular elements in the ring of integers modulo n, \mathbb{Z}_{n}, and studied it with algebraic tools. Other articles have looked at the function $V(n)$ using number-theoretic techniques, see [4].
Anderson et al. expanded the concept of a von Neumann regular element of a ring R to the concept of (m, n)-von Neumann regular element in [6]. The n-regular elements of the ring R are defined in this article, followed by the function $V(n, m)$, which counts the number of n-regular elements in the ring \mathbb{Z}_{m}. Several properties of the function $V(n, m)$ are discussed throughout the article. Finally, we introduce the generalization $F_{n}(m)$ of the function $F(m)$, then we relate it with the divisor function $\sigma(m)$.

2. n-regular elements of a ring

The n-regular elements of a ring R are defined in this section. Anderson et al. introduced the concept of an (m, n)-von Neumann regular element of a ring R in [6].

Definition 2.1. Let R be a ring and let m, n be two positive integers. An element $a \in R$ is said to be (m, n)-von Neumann regular element (in short $(m, n)-v n r$) if there exists $b \in R$ such that $a^{m} b=a^{n}$.

This article will focus on a special case of this definition, namely when $m=n+1$, and we will call to the $(n+1, n)-v n r$ element as the n-regular element. Each von Neumann regular element is clearly an n-regular element. Note: In [6], the term " n-regular" has been defined in a way that differs from ours.

Example 2.2. In \mathbb{Z}_{4}, 2 is not a regular element, while 2 is a 2-regular element.

3. n-regular elements of the ring \mathbb{Z}_{m}

The arithmetic function $V(m)$, which counts the number of von Neumann regular elements in the ring \mathbb{Z}_{m}, was examined by Alkam et al. in [2] and To'th in [4]. In this section, we will generalize the function $V(m)$ to the function $V(n, m)$ which counts the number of n-regular elements in the ring \mathbb{Z}_{m}. Since each von Neumann regular element is an n-regular element, $V(m) \leq V(n, m)$.
The following definition separates the nilpotent elements of $R, \operatorname{Nil}(R)$, into subsets each of certain nilpotincy.

Definition 3.1. Let R be a ring and let n be a positive integer. Then $N i l_{n}(R)=\left\{x \in R: x^{n}=0\right\}$.
It is clear that $\operatorname{Nil}(R)=\bigcup_{n \in \mathbb{N}} \operatorname{Nil}_{n}(R)$.
Lemma 3.2. Let R be a local ring with maximal ideal M. Then the set of n-regular elements of R is $U(R) \bigcup N i l_{n}(R)$.

Proof. Suppose that a is an n-regular element of the local ring R. Then there exists $b \in R$ such that $a^{n+1} b=a^{n}$. Hence either $a^{n} \in M$ or $a^{n} \notin M$. If $a^{n} \in M$, then $a \in M$ and a must be in $N i l_{n}(R)$. If $a^{n} \notin M$, then $a \in U(R)$. It is clear that $U(R)$ and $N i l_{n}(R)$ are subsets of the n-regular elements.

Note that, if $x \in \operatorname{Nil}_{n}(R)$, then $x^{k}=0$ for any $k \geq n$.
The proof of the following theorem is straightforward by using Lemma [3.2] although we include the proof for the sake of completeness.

Theorem 3.3. Let $\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}$ be a family of commutative local rings and let n be a positive integer. Then the element $\left(x_{\alpha}\right)_{\alpha \in \Lambda} \in\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}$ is an n-regular element if and only if for each $\alpha \in \Lambda$ either $x_{\alpha} \in U\left(R_{\alpha}\right)$ or $x_{\alpha} \in N i l_{n}\left(R_{\alpha}\right)$.

Proof. $\left(x_{\alpha}\right)_{\alpha \in \Lambda}$ is n-regular element iff
there is $\left(y_{\alpha}\right)_{\alpha \in \Lambda}$ such that $\left(x_{\alpha}\right)_{\alpha \in \Lambda}^{n+1}\left(y_{\alpha}\right)_{\alpha \in \Lambda}=\left(x_{\alpha}\right)_{\alpha \in \Lambda}^{n}$ iff
$\left(x_{\alpha}^{n+1}\right)_{\alpha \in \Lambda}\left(y_{\alpha}\right)_{\alpha \in \Lambda}=\left(x_{\alpha}^{n}\right)_{\alpha \in \Lambda}$ iff
$\left(x_{\alpha}^{n+1} y_{\alpha}\right)_{\alpha \in \Lambda}=\left(x_{\alpha}^{n}\right)_{\alpha \in \Lambda}$ iff
$x_{\alpha}^{n+1} y_{\alpha}=x_{\alpha}^{n}$ for each $\alpha \in \Lambda$ iff
x_{α} is n-regular element in R_{α} for each $\alpha \in \Lambda$ iff
for each $\alpha \in \Lambda$ either $x_{\alpha} \in U\left(R_{\alpha}\right)$ or $x_{\alpha} \in \operatorname{Nil}_{n}\left(R_{\alpha}\right)$.

It is known that for any prime number p and any positive integer $\alpha, \operatorname{Nil}\left(\mathbb{Z}_{p^{\alpha}}\right)=\langle\bar{p}\rangle=\bar{p} \mathbb{Z}_{p^{\alpha}} \cong \mathbb{Z}_{p^{\alpha-1}}$. Similarly, $\left\langle\bar{p}^{2}\right\rangle=\bar{p}\langle\bar{p}\rangle \cong \bar{p} \mathbb{Z}_{p^{\alpha-1}} \cong \mathbb{Z}_{p^{\alpha-2}}$. In general, for any integer k such that $1 \leq k \leq \alpha,\left\langle\bar{p}^{k}\right\rangle \cong \mathbb{Z}_{p^{\alpha-k}}$.

Now, We can use Lemma [3.2] to prove the following lemma
Lemma 3.4. Let n be a positive integer. Then for any prime number p and any positive integer α, $V\left(n, p^{\alpha}\right)=\phi\left(p^{\alpha}\right)+p^{\alpha-\left\lceil\frac{\alpha}{n}\right\rceil}$.

Proof. Since $\mathbb{Z}_{p^{\alpha}}$ is a local ring with maximal ideal $N i l\left(\mathbb{Z}_{p^{\alpha}}\right)=\langle\bar{p}\rangle, V\left(n, p^{\alpha}\right)=\left|U\left(\mathbb{Z}_{p^{\alpha}}\right)\right|+\left|N i l_{n}\left(\mathbb{Z}_{p^{\alpha}}\right)\right|=$ $\phi\left(p^{\alpha}\right)+\left|\left\langle\bar{p}^{\left\lceil\frac{\alpha}{n}\right\rceil}\right\rangle\right|=\phi\left(p^{\alpha}\right)+p^{\alpha-\left\lceil\frac{\alpha}{n}\right\rceil}$.

The following result is based on Lemma [3.4], where it highlights some special cases for n.
Corollary 3.5. Let n be a positive integer. Then for any prime number p and any positive integer $\alpha \leq n$, $V\left(n, p^{\alpha}\right)=p^{\alpha}$.

It is a well known fact that if the standard prime factorization of the positive integer m is $m=$ $\prod_{i=1}^{t} p_{i}^{\alpha_{i}}$, then $\mathbb{Z}_{m} \cong \prod_{i=1}^{t} \mathbb{Z}_{p_{i}{ }_{i}}$. Hence by Theorem [3.3], we deduce that $V(n, m)=\prod_{i=1}^{t} V\left(n, p_{i}^{\alpha_{i}}\right)$. Thus, $V(n, m)$ is multiplicative function with respect to m (that is, if m_{1} and m_{2} are relatively prime, then $\left.V\left(n, m_{1} m_{2}\right)=V\left(n, m_{1}\right) V\left(n, m_{2}\right)\right)$.
Some properties of the multiplicative function $V(n, m)$ are presented here. To prove the following theorem, we use some of the conclusions from [2] and [4]. Recall that, if $a \mid b$ and $\operatorname{gcd}\left(a, \frac{b}{a}\right)=1$, then a is said to be a unitary divisor of b, denoted by $a \| b$.

Theorem 3.6. Let n be a positive integer and let m be a positive integer with the standard prime factorization $m=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}$, also let $k=\prod_{i=1}^{t} p_{i}^{\left\lceil\frac{\alpha_{i}}{n}\right\rceil}$. Then

1. If $n \geq \max \left\{\alpha_{i}\right\}_{i=1}^{t}$, then $V(n, m)=m$.
2. If $n \leq \min \left\{\alpha_{i}\right\}_{i=1}^{t}$, then $V(n, m)=\prod_{i=1}^{t}\left[\phi\left(p_{i}^{\alpha_{i}}\right)+p_{i}^{\alpha_{i}-\left\lceil\frac{\alpha_{i}}{n}\right\rceil}\right]$. As a special case, $V(m)=V(1, m)=$ $\prod_{i=1}^{t}\left[\phi\left(p_{i}^{\alpha_{i}}\right)+1\right]$.
3. $V(n, m)=\frac{m}{k} V(k)$.
4. $V(n, m)=\sum_{d \| k} \frac{m}{k} \phi(d)$.
5. $V(n, m)$ is increasing with respect to both n and m (that is, if $n_{1} \leq n_{2}$, then $V\left(n_{1}, m\right) \leq V\left(n_{2}, m\right)$, and if $m_{1} \leq m_{2}$, then $\left.V\left(n, m_{1}\right) \leq V\left(n, m_{2}\right)\right)$.
6. $\frac{V(n, m)}{\phi(m)}=\sum_{d \| k} \frac{1}{\phi(d)}$.

Proof. Since $V(n, m)$ is multiplicative in m, we can deduce (1) and (2) using Lemma [3.4]. To prove (3),

$$
\begin{aligned}
V(n, m) & =\prod_{i=1}^{t}\left[\phi\left(p_{i}^{\alpha_{i}}\right)+p_{i}^{\alpha_{i}-\left\lceil\frac{\alpha_{i}}{n}\right\rceil}\right] \\
& =\prod_{i=1}^{t}\left[\left(p_{i}^{\alpha_{i}}-p_{i}^{\alpha_{i}-1}\right)+p_{i}^{\alpha_{i}-\left\lceil\frac{\alpha_{i}}{n}\right\rceil}\right] \\
& =\prod_{i=1}^{t} p_{i}^{\alpha_{i}-\left\lceil\frac{\alpha_{i}}{n}\right\rceil}\left[\left(p_{i}^{\left\lceil\frac{\alpha_{i}}{n}\right\rceil}-p_{i}^{\left\lceil\frac{\alpha_{i}}{n}\right\rceil-1}\right)+1\right] \\
& =\frac{m}{k} V(k)
\end{aligned}
$$

To prove (4), you can use (3) and the property $V(k)=\sum_{d \| \mid k} \phi(d)$ that is found in [2] and [4].
The proof of (5) is straightforward.
To prove (6), combine (3) and the fact, if $m=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}$ and $n=\prod_{i=1}^{t} p_{i}^{\beta_{i}}$ are positive integers, then $\frac{\phi(m)}{\phi(n)}=\frac{m}{n}$, as well as the property $\frac{V(k)}{\phi(k)}=\sum_{d \| k} \frac{1}{\phi(d)}$ that is found in [2] and [4].

Example 3.7. Take $m=2^{4} .3^{3}$ and $n=3$, then $k=2^{2} .3$ and $\phi(m)=144$. Thus, $V(k)=9$ and $V(3, m)=324=\frac{2^{4} \cdot 3^{3}}{2^{2} \cdot 3} .9$.
Also, the values of $\stackrel{d}{d}^{2}$ such that $d \| k$ are 1, 3, 4 and 12. So, $\sum_{d \| k} \frac{1}{\phi(d)}=\frac{1}{1}+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}=\frac{9}{4}=\frac{324}{144}$.

4. Sum of n-regular elements modulo m

In this section, we will use the number-theoretic consideration to prove some results concerning the n regular elements modulo m. Firstly, consider $\operatorname{Reg}(n, m)=\{a \in \mathbb{Z}: 1 \leq a \leq m$, ais $n-\operatorname{regular}(\bmod m)\}$ denotes the set of all n-regular elements modulo m. Then $V(n, m)=|\operatorname{Reg}(n, m)|$.

Theorem 4.1. $V(n, m)=\sum_{\substack{d\|m \\ t\| k \\ d \| \text { and } t \text { have } \\ \text { commion prime } \\ \text { divisors }}} \frac{d}{t} \phi\left(\frac{m}{d}\right)$

Proof. Let $y_{i}=\frac{p_{i}^{\alpha_{i}}}{p_{i}^{\left[\frac{\alpha_{i}}{n}\right]} \phi\left(p_{i}^{\alpha_{i}}\right)}, 1 \leq i \leq t$, and $y=\prod_{i=1}^{t} y_{i}=\frac{m}{k \phi(m)}$. Then

$$
\begin{aligned}
\phi(m)\left[y+\sum_{1 \leq i \leq t} \frac{y}{y_{i}}+\sum_{1 \leq i<j \leq t} \frac{y}{y_{i} y_{j}}+\cdots+\frac{y}{\prod_{i=1}^{t} y_{i}}\right] & =\prod_{i=1}^{t} \phi\left(p_{i}^{\alpha}\right)\left(y_{i}+1\right) \\
& =\prod_{i=1}^{t} V\left(n, p_{i}^{\alpha}\right) \\
& =V(n, m) .
\end{aligned}
$$

Tóth in [4] gave a formula for the sum of regular elements ($\bmod m), S(m)=\frac{m(V(m)+1)}{2}$, Tóth's formula was analogous to the formula $\sum_{\substack{1 \leq a \leq m \\ g c d(a, m)=1}} a=\frac{m \phi(m)}{2}$.

The following theorem gives a formula for $S(n, m)$, which is analogous to $S(m)=\frac{m(V(m)+1)}{2}$.
Theorem 4.2. For the positive integers n and $m, S(n, m)=\frac{m(V(n, m)+1)}{2}$.
Proof. $S(n, m)=\sum_{a \in \operatorname{Reg}(n, m)} a$

$$
=k\left(\frac{m}{k}+1\right) \frac{m}{2 k}+\sum_{\substack{d\|m \\ t\| k \\ d<m \\ t<k}} \sum_{i=1}^{\frac{d}{t}} t i\left(\frac{m}{2 d} \phi\left(\frac{m}{d}\right)\right)
$$

$$
=\frac{m}{2}\left(\frac{m}{k}+1\right)+\sum_{\substack{d \|| | m \\ \text { tlk } \\ d<m \\ t<k}} \sum_{i=1}^{\frac{d}{t}} d\left(\frac{m}{2 d} \phi\left(\frac{m}{d}\right)\right)
$$

$$
=\frac{m}{2}\binom{t<k}{\left(\frac{m}{k}+1\right)+\sum_{\substack{d\|m \\ t\| k \\ d<m \\ t<k}} \sum_{i=1}^{\frac{d}{t}} \phi\left(\frac{m}{d}\right)}
$$

$$
\begin{aligned}
& =\sum_{\substack{d \| m\\
}} \sum_{(a, m)=d} a \\
& =\sum_{\substack{\left.d\|m \\
t\| k \\
t \| \frac{(a}{d}, \frac{m}{d}\right)=1 \\
(a, k)=t}}^{t \| k}(a, k)=t \\
& =\sum_{\substack{d\|m \\
t\| k k \\
t\left(j, \frac{m}{a}=1 \\
(a, k)=t\right.}} \sum_{\substack{m \\
\frac{m}{d}}} j d \\
& =\sum_{\substack{d\|m \\
t\| k}} t \sum_{i=1}^{\frac{d}{t}} i\left(\sum_{\substack{j=1 \\
\left(j, \frac{m}{d}\right)=1 \\
(a, k)=t}}^{\frac{m}{d}} j\right) \\
& =k\left(1+2+3+\ldots+\frac{m}{k}\right)+\sum_{\substack{d\||\| k \\
t| l \mid \\
d<m \\
t<k}} t \sum_{i=1}^{\frac{d}{t}} i\left(\frac{m}{2 d} \phi\left(\frac{m}{d}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{m}{2}\left(1+\sum_{\substack{d\|m \\
t\| k}} \phi\left(\frac{m}{d}\right) \frac{d}{t}\right) \\
& =\frac{m}{2}(1+V(n, m))
\end{aligned}
$$

Example 4.3. For $m=16, n=3, V(n, m)=12$ and $R(n, m)=\{1,3,4,5,7,8,9,11,12,13,15,16\}$. Then $\sum_{a \in \operatorname{Reg}(n, m)} a=104=\frac{16}{2}(1+12)$.

5. The summatory function $F_{n}(m)$

The summatory function $F(m)=\sum_{d \mid m} V(d)$ is calculated in [2]. In this section, we will calculate $F_{n}(m)$, the generalized form of the summatory function $F(m)$. Let $F_{n}(m)=\sum_{d \mid m} V(n, d)$. Since $V(n, m)$ is multiplicative concerning $m, F_{n}(m)$ is also multiplicative concerning m, hence $F_{n}(m)$ is completely characterized by its values on powers of primes. Recall that the functions $\sigma(n)$ and $\sigma_{k}(n)$ are defined as the sum, or the sum of k-th powers, of the divisors of n respictively.

Theorem 5.1. Let p be a prime number and let α and n be positive integers. Then

1. If $\alpha \leq n$, then $F_{n}\left(p^{\alpha}\right)=\sigma\left(p^{\alpha}\right)$.
2. If $\alpha>n$, then $F_{n}\left(p^{\alpha}\right)=p^{\alpha}+1+\sigma\left(p^{n-1}\right) \sigma_{n-1}\left(p^{q-1}\right)+p^{q(n-1)} \sigma\left(p^{r-1}\right)$, where q, r are the quotient and remainder when we divide o by n.

Proof. 1. In Corollary [3.5] if $\alpha \leq n$, then $V\left(n, p^{\alpha}\right)=p^{\alpha}$. Hence, the result is clear.
2. If $\alpha>n$, then $F_{n}\left(p^{\alpha}\right)=\sum_{d \mid p^{\alpha}} V(n, d)$
$=\sum_{k=0}^{\alpha} V\left(n, p^{k}\right)$
$=\sum_{k=0}^{\alpha} \phi\left(p^{k}\right)+p^{k-\left\lceil\frac{k}{n}\right\rceil}$
$=p^{\alpha}+1+\sum_{k=1}^{\alpha} p^{k-\left\lceil\frac{k}{n}\right\rceil}$
$=p^{\alpha}+1+\sum_{k=1}^{n} p^{k-\left\lceil\left\lceil\frac{k}{n}\right\rceil\right.}+\sum_{k=n+1}^{2 n} p^{k-\left\lceil\frac{k}{n}\right\rceil}+\sum_{k=2 n+1}^{3 n} p^{k-\left\lceil\frac{k}{n}\right\rceil}+\cdots+\sum_{k=(q-1) n+1}^{q n} p^{k-\left\lceil\frac{k}{n}\right\rceil}+$
$\sum_{k=q n+1}^{\alpha} p^{k-\left\lceil\frac{k}{n}\right\rceil}$
$=p^{\alpha}+1+\sum_{k=1}^{n} p^{k-1}+\sum_{k=n+1}^{2 n} p^{k-2}+\sum_{k=2 n+1}^{3 n} p^{k-3}+\cdots+\sum_{k=(q-1) n+1}^{q n} p^{k-q}+$
$\sum_{k=q n+1}^{\alpha} p^{k-(q+1)}$
$=p^{\alpha}+1+\left(\sum_{k=0}^{n-1} p^{k}\right)\left[1+p^{n-1}+p^{2(n-1)}+\cdots+p^{(q-1)(n-1)}\right]+p^{q(n-1)} \sum_{k=0}^{r-1} p^{k}$
$=p^{\alpha}+1+\sigma\left(p^{n-1}\right) \sigma_{n-1}\left(p^{q-1}\right)+p^{q(n-1)} \sigma\left(p^{r-1}\right)$.

6. Conclusions

This article defines the n-regular elements of the ring R, as well as the function $V(n, m)$, which counts the number of n-regular elements in the ring \mathbb{Z}_{m}. Throughout the article, we have established that the set of n-regular elements of the ring R is $U(R) \bigcup N i l_{n}(R)$. Also, we show that the function $V(n, m)$ is multiplicative. The sum of the n-regular elements modulo m is calculated using number theoretic considerations. Also, we introduce the summatory function $F_{n}(m)=\sum_{d \mid m} V(n, d)$ and we find the relationship between $F_{n}(m)$ and the divisor function $\sigma(m)$.

References

1. Anderson, D. F. and Badawi A., On (m, n)-closed ideals of commutative rings, Journal of Algebra and Its Applications, 16(1), 1750013, (2017).
2. Alkam O., and Osba E.A., On the regular elements in Z_{n}, Turkish Journal of Mathematics, 32(1), 31-39, (2008).
3. Osba E.A., Henriksen M. and Alkam O., Combining local and von Neumann regular rings, Communications in Algebra, 32, 2639-2653, (2004).
4. Tóth L., Regular integers modulo n, Annales Univ. Sci. Budapest., Sect. Comp., 29, 263-275, (2008).
5. Anderson D.F. and Badawi A., Von Neumann Regular and Related Elements in Commutative Rings, Algebra colloquium 19 (spec01), 1017-1040, (2012).
6. Anderson D.F., Badawi A. and Fahid B., Weakly (m, n)-closed ideals and (m, n)-von Neumann regular rings, Journal of the Korean Mathematical Society, 55(5), 1031-1043, (2018).
[^0]
[^0]: B. Alkhamaiseh,

 Department of Mathematics,
 Yarmouk University,
 Jordan.
 E-mail address: basem.m@yu.edu.jo

