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Some Common Fixed Point Results on (ψ, φ)-contraction
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abstract: The aim of the paper is to obtain common fixed point theorems for (ψ, φ)-contraction under the
generalized rational type condition in a complete metric space. Moreover, these theorems generalize recent
well known results in the literature.
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1. Introduction

In 1976, Jungck [9] initiated the notion of commutativity of mappings and established a common
fixed point theorem on a complete metric space. In 1982, Sessa [18] also introduced the concept of weak
commutativity by weakening the commutativity and obtained some interesting results on the existence
of common fixed points. Further, Jungck [10] generalized the weak commutativity by a new notion of
compatible mappings. However, in 1996, Jungck [11] again introduced a more generalized concept known
as weakly compatiblity, and defined as follows.

Definition 1.1 ( [11]). Let f and g be self mappings of a set X. Then the pair {f, g} is said to be weakly
compatible if they commute on the set of coincidence points, i.e., fgx = gfx whenever fx = gx for some
x ∈ X.

On the other hand, generalizing Banach contraction condition, Boyd and Wong [5] defined a new class
of contractive condition which is generally known as φ-contraction. Further Alber et al. [2] generalized
this concept by introducing weak φ-contraction and established a fixed point theorem for the mapping
satisfying such type of contractive condition. By the way, a self mapping T on a metric space (X, d) is
said to be weak φ-contractive if there exists a function φ : [0,+∞) → [0,+∞) with φ(0) = 0 and φ(t) > 0
for all t > 0, such that d(Tx, T y) ≤ d(x, y) −φ(d(x, y)) for each x, y ∈ X . Thereafter, Rhoades [15] again
generalized the result of Alber et al. [2] and obtained the following interesting theorem.

Theorem 1.2 ( [15]). Let (X, d) be a complete metric space and T : X → X such that, for every x, y ∈ X,

d(Tx, T y) ≤ d(x, y) − φ(d(x, y)), (1.1)

where φ : [0,+∞) → [0,+∞) is a continuous and non-decreasing function with φ(0) = 0 and φ(t) > 0 for
all t > 0. Then T has a unique fixed point.

Now, for further discussions, we consider following classes of functions:

(C1) Φ = {φ |φ : [0,+∞) → [0,+∞) is lower semi continuous with φ(t) > 0 for all t > 0 and φ(0) = 0}.
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(C2) Ψ = {ψ |ψ : [0,+∞) → [0,+∞) is continuous and nondecreasing with ψ(t) = 0 if and only if t = 0}.

Moreover, in 2008, Dutta et al. [17] generalized the φ-contraction by a new extended class contractive
mappings known as (ψ, φ)-contraction and established the following result.

Theorem 1.3 ( [17]). Let X be a complete metric space and T : X → X such that, for every x, y ∈ X,

ψ(d(Tx, T y)) ≤ ψ(d(x, y)) − φ(d(x, y)), (1.2)

where φ ∈ Φ, ψ ∈ Ψ. Then T has a unique fixed point in X.

Furthermore, in 2015, Murty et al. [14] also obtained the following common fixed point theorem for
(ψ, φ)-contraction which generalizes various results in the literature.

Theorem 1.4 ( [14]). Suppose that A, B, S and T are self mappings of a complete metric space (X, d),
A(X) ⊆ T (X), B(X) ⊆ S(X), and the pairs {A,S} and {B, T } are weakly compatible. If, for every
x, y ∈ X with x 6= y,

ψ(d(Ax,By)) ≤ ψ(M(x, y)) − φ(N(x, y)), (1.3)

where ψ ∈ Ψ, φ ∈ Φ such that φ is discontinuous at t = 0, and

M(x, y) = max

{

d(Sx, T y),
d(Ax, Sx) + d(By, Ty)

2
,
d(Sx,By) + d(Ax, Ty)

2

}

and

N(x, y) = min

{

d(Sx, T y),
d(Ax, Sx) + d(By, Ty)

2
,
d(Sx,By) + d(Ax, Ty)

2

}

.

Then A, B, S, and T have a unique common fixed point in X.

Moreover, during last three decades, a number of researchers have extended and weakened (ψ, φ)-
contractive condition in different settings and obtained several common fixed point theorems for pairs of
mappings (see, [1,3,4,6,7,8,12,13,14,16,17,19] and references therein).

Now, we are in a position to state and prove our results which have been obtained for mappings
satisfying a generalized rational type condition under the weak compatibility and (ψ, φ)-contraction in
complete metric spaces as follow.

2. Main Results

Theorem 2.1. Suppose that A,B, S and T are self mappings of a complete metric space (X, d), A(X) ⊆
T (X), B(X) ⊆ S(X), and the pairs {A,S} and {B, T } are weakly compatible. If, for every x, y ∈ X,

ψ(d(Ax,By)) ≤ ψ(M1(x, y)) − φ(N1(x, y)), (2.1)

where ψ ∈ Ψ, φ ∈ Φ such that φ is discontinuous at t = 0, and

M1(x, y) = max {d(Sx, T y), d(Ax, Sx), d(By, Ty),
(

d(By, Sx) + d(Ax, Ty)

2

)

,

(

d(Sx,Ax) + d(Ty,By)

2

)

, (2.2)

d(By, Ty)

(

1 + d(Ax, Sx)

1 + d(Sx, T y)

)

, d(Ax, Sx)

(

1 + d(By, Ty)

1 + d(Sx, T y)

)}

.

and

N1(x, y) = min {d(Sx, T y), d(Ax, Sx), d(By, Ty),
(

d(By, Sx) + d(Ax, Ty)

2

)

,

(

d(Sx,Ax) + d(Ty,By)

2

)

, (2.3)

d(By, Ty)

(

1 + d(Ax, Sx)

1 + d(Sx, T y)

)

, d(Ax, Sx)

(

1 + d(By, Ty)

1 + d(Sx, T y)

)}

.

Then A,B, S, and T have a unique common fixed point in X, whenever one of the range A(X), B(X),
S(X), T (X) is closed in X.
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Proof. Let x0 be an arbitrary point in X . Since A(X) ⊆ T (X), we can choose an x1 ∈ X such that
y0 = Ax0 = Tx1. Similarly, since B(X) ⊆ S(X), there exists an x2 ∈ X such that y1 = Bx1 = Sx2.
Continuing in this way, we construct a sequence {yn}n∈N0

in X , where N0 = N ∪ {0} and N is a set of
natural numbers, such that y2n+1 = Ax2n = Tx2n+1 and y2n+2 = Bx2n+1 = Sx2n+2.

We shall now show that {yn}n∈N0
is a Cauchy sequence in X . If y2n = y2n+1 for some n ∈ N0, it is

obvious to say that {yn}n∈N0
is a Cauchy sequence. So, we assume the case when y2n 6= y2n+1 for every

n ∈ N0. Then, by taking x = x2n, y = x2n+1 in (2.2) and (2.3), we have

M1(x2n, x2n+1) = max
{

d(Sx2n, Tx2n+1), d(Ax2n, Sx2n), d(Bx2n+1, Tx2n+1),
(

d(Bx2n+1, Sx2n) + d(Ax2n, Tx2n+1)

2

)

,

(

d(Sx2n, Ax2n) + d(Tx2n+1, Bx2n+1)

2

)

,

d(Bx2n+1, Tx2n+1)

(

1 + d(Ax2n, Sx2n)

1 + d(Sx2n, Tx2n+1)

)

, d(Ax2n, Sx2n)

(

1 + d(Bx2n+1, Tx2n+1)

1 + d(Sx2n, Tx2n+1)

)

}

= max
{

d(y2n, y2n+1), d(y2n+1, y2n), d(y2n+2, y2n+1),
(

d(y2n+2, y2n) + d(y2n+1, y2n+1)

2

)

,

(

d(y2n, y2n+1) + d(y2n+1, y2n+2)

2

)

,

d(y2n+2, y2n+1)

(

1 + d(y2n+1, y2n)

1 + d(y2n, y2n+1)

)

, d(y2n+1, y2n)

(

1 + d(y2n+2, y2n+1)

1 + d(y2n, y2n+1)

)

}

= max

{

d(y2n, y2n+1), d(y2n+1, y2n), d(y2n+2, y2n+1), d(y2n+2, y2n+1),

(

d(y2n+2, y2n)

2

)

,

(

d(y2n, y2n+1) + d(y2n+1, y2n+2)

2

)

, d(y2n+1, y2n)

(

1 + d(y2n+2, y2n+1)

1 + d(y2n, y2n+1)

)}

and

N1(x2n, x2n+1) = min
{

d(Sx2n, Tx2n+1), d(Ax2n, Sx2n), d(Bx2n+1, Tx2n+1),
(

d(Bx2n+1, Sx2n) + d(Ax2n, Tx2n+1)

2

)

,

(

d(Sx2n, Ax2n) + d(Tx2n+1, Bx2n+1)

2

)

,

d(Bx2n+1, Tx2n+1)

(

1 + d(Ax2n, Sx2n)

1 + d(Sx2n, Tx2n+1)

)

, d(Ax2n, Sx2n)

(

1 + d(Bx2n+1, Tx2n+1)

1 + d(Sx2n, Tx2n+1)

)

}

= min
{

d(y2n, y2n+1), d(y2n+1, y2n), d(y2n+2, y2n+1),
(

d(y2n+2, y2n) + d(y2n+1, y2n+1)

2

)

,

(

d(y2n, y2n+1) + d(y2n+1, y2n+2)

2

)

,

d(y2n+2, y2n+1)

(

1 + d(y2n+1, y2n)

1 + d(y2n, y2n+1)

)

, d(y2n+1, y2n)

(

1 + d(y2n+2, y2n+1)

1 + d(y2n, y2n+1)

)

}

= min

{

d(y2n, y2n+1), d(y2n+1, y2n), d(y2n+2, y2n+1), d(y2n+2, y2n+1),

(

d(y2n+2, y2n)

2

)

,

(

d(y2n, y2n+1) + d(y2n+1, y2n+2)

2

)

, d(y2n+1, y2n)

(

1 + d(y2n+2, y2n+1)

1 + d(y2n, y2n+1)

)}

.

Now, if M1(x2n, x2n+1) = d(y2n+1, y2n+2) then

ψ(d(y2n+1, y2n+2)) = ψ(d(Ax2n, Bx2n+1))

≤ ψ(M1(x2n, x2n+1)) − φ(N1(x2n, x2n+1))

= ψ(d(y2n+1, y2n+2)) − φ(N1(x2n, x2n+1))

< ψ(d(y2n+1, y2n+2),

which is a contradiction. Therefore d(y2n+2, y2n+1) ≤ d(y2n, y2n+1), and

d(y2n+1, y2n+2) ≤ d(y2n, y2n+1)

(

1 + d(y2n+2, y2n+1)

1 + d(y2n, y2n+1)

)

,
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which implies

d(y2n, y2n+1)

(

1 + d(y2n+2, y2n+1)

1 + d(y2n, y2n+1)

)

≤ d(y2n, y2n+1).

Hence, M1(x2n, x2n+1) = d(y2n, y2n+1) and N1(x2n, x2n+1) = d(y2n,y2n+2)
2 . Using (2.1), we have

ψ(d(y2n+1, y2n+2)) = ψ(d(Ax2n, Bx2n+1))

≤ ψ(M1(x2n, x2n+1)) − φ(N1(x2n, x2n+1))

≤ ψ(d(y2n, y2n+1)) − φ(N1(x2n, x2n+1)). (2.4)

This implies ψ(d(y2n, y2n+1)) for all n ∈ N0, and the sequence is monotonically decreasing of non-
negative real numbers. Hence, there exists r > 0 such that limn→+∞ d(y2n, y2n+1) = r. Moreover,
limn→+∞ ψ(M1(x2n, x2n+1)) = ψ(r). Now, taking upper limits on each side of (2.4) to obtain the
following inequality

lim sup
n→+∞

ψ(d(y2n+1, y2n+2)) ≤ lim sup
n→+∞

ψ(d(y2n+1, y2n)) − lim sup
n→+∞

φ(N1(x2n, x2n+1)).

Thus, the lower semi continuity of φ gives

ψ(r) ≤ ψ(r) − lim sup
n→+∞

φ(N1(x2n, x2n+1)).

Therefore, by the property of φ, we get a contradiction. Hence, we have

lim
n→+∞

d(y2n, y2n+1) = 0.

Similarly, taking x = x2n+1 and y = x2n+2 in (2.1) and arguing as above, we have

lim
n→+∞

d(y2n+1, y2n+2) = 0.

Therefore, for all n ∈ N0, we have

lim
n→+∞

d(y2n, y2n+1) = 0. (2.5)

Next, we prove that {yn}n∈N is a Cauchy sequence in X . For this, it is sufficient to show {y2n}n∈N is a
Cauchy sequence in X . To the contrary, suppose {y2n}n∈N is not a Cauchy sequence, then there exists
an ǫ > 0 and the sequence of natural numbers {2mk}, {2nk} with 2mk > 2nk > k such that

d(y2mk
, y2nk

) ≥ ǫ and d(y2mk−2, y2nk
) < ǫ.

Using (2.5) and the inequality

ǫ ≤ d(y2mk
, y2nk

) ≤ d(y2nk
, y2mk−2) + d(y2mk−1, y2mk−2) + d(y2mk−1, y2mk

)

we get

lim
k→+∞

d(y2mk
, y2nk

) = ǫ. (2.6)

Also (2.5), (2.6) and the inequality, d(y2mk
, y2nk

) ≤ d(y2mk
, y2mk+1) + d(y2mk+1, y2nk

), yield

ǫ ≤ lim
k→+∞

d(y2mk+1, y2nk
),
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and (2.5), (2.6) and the inequality, d(y2mk+1, y2nk
) ≤ d(y2mk+1, ymk

) + d(y2mk
, y2nk

), yield that

lim
k→∞

d(y2mk+1, y2nk
) ≤ ǫ.

Hence, we obtain

lim
k→+∞

d(y2mk+1, y2nk
) = ǫ. (2.7)

In similar manner, it can be shown that

lim
k→+∞

d(y2mk
, y2nk−1) = lim

k→+∞

d(y2nk−1, y2nk+1) = ǫ. (2.8)

Now, we find

M1(x2mk−1, x2nk−1) = max
{

d(Sx2mk−1, Tx2nk−1), d(Ax2mk−1, Sx2mk−1), d(Bx2nk−1, Tx2nk−1),
(

d(Bx2nk−1, Sx2mk−1) + d(Ax2mk−1, Tx2nk−1)

2

)

,

(

d(Sx2mk−1, Ax2mk−1) + d(Tx2nk−1, Bx2nk−1)

2

)

,

d(Bx2nk−1, Tx2nk−1)

(

1 + d(Ax2mk−1, Sx2mk−1)

1 + d(Sx2mk−1, Tx2nk−1)

)

,

d(Ax2mk−1, Sx2mk−1)

(

1 + d(Bx2nk−1, Tx2nk−1)

1 + d(Sx2mk−1, Tx2nk−1)

)

}

= max
{

d(y2mk+1, y2nk
), d(Ax2mk−1, Sx2mk−1), d(Bx2nk−1, Tx2nk−1),

(

d(Bx2nk−1, Sx2mk−1) + d(Ax2mk−1, Tx2nk−1)

2

)

,

(

d(Sx2mk−1, Ax2mk−1) + d(Tx2nk−1, Bx2nk−1)

2

)

,

d(Bx2nk−1, Tx2nk−1)

(

1 + d(Ax2mk−1, Sx2mk−1)

1 + d(Sx2mk−1, Tx2nk−1)

)

,

d(Ax2mk−1, Sx2mk−1)

(

1 + d(Bx2nk−1, Tx2nk−1)

1 + d(Sx2mk−1, Tx2nk−1)

)

}

and

N1(x2mk−1, x2nk−1) = min
{

d(Sx2mk−1, Tx2nk−1), d(Ax2mk−1, Sx2mk−1), d(Bx2nk−1, Tx2nk−1),
(

d(Bx2nk−1, Sx2mk−1) + d(Ax2mk−1, Tx2nk−1)

2

)

,

(

d(Sx2mk−1, Ax2mk−1) + d(Tx2nk−1, Bx2nk−1)

2

)

,

d(Bx2nk−1, Tx2nk−1)

(

1 + d(Ax2mk−1, Sx2mk−1)

1 + d(Sx2mk−1, Tx2nk−1)

)

,

d(Ax2mk−1, Sx2mk−1)

(

1 + d(Bx2nk−1, Tx2nk−1)

1 + d(Sx2mk−1, Tx2nk−1)

)

}
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= min
{

d(y2mk+1, y2nk
), d(Ax2mk−1, Sx2mk−1), d(Bx2nk−1, Tx2nk−1),

(

d(Bx2nk−1, Sx2mk−1) + d(Ax2mk−1, Tx2nk−1)

2

)

,

(

d(Sx2mk−1, Ax2mk−1) + d(Tx2nk−1, Bx2nk−1)

2

)

,

d(Bx2nk−1, Tx2nk−1)

(

1 + d(Ax2mk−1, Sx2mk−1)

1 + d(Sx2mk−1, Tx2nk−1)

)

,

d(Ax2mk−1, Sx2mk−1)

(

1 + d(Bx2nk−1, Tx2nk−1)

1 + d(Sx2mk−1, Tx2nk−1)

)

}

.

Thus, using (2.2), (2.5), (2.6), (2.7) and (2.8), we have limk→+∞ M1(x2mk−1
, x2nk−1

) = ǫ and
limk→+∞ N1(x2mk−1

, x2nk−1
) = 0 Moreover, by taking x = x2mk−1 and y = x2nk−1 in (2.1), we get

ψ(d(y2mk
, y2nk+1)) = ψ(d(Ax2mk−1

, Bx2nk−1
))

≤ ψ(M1(x2mk−1
, x2nk−1

) − φ(N1(x2mk−1
, x2nk−1

).

Therefore, taking the limit as k → +∞, we get ψ(ǫ) ≤ ψ(ǫ) − φ(N1(x2mk−1
, x2nk−1

)), which is a con-
tradiction for ǫ > 0 (due to discontinuity of φ at t = 0). Hence {y2n}n∈N is a Cauchy sequence in
X .

Thus, in both cases, it has been shown that {yn}n∈N0
is a Cauchy sequence in X . Since X is complete,

it has a limit in X , say z. We shall now show that z is a common fixed point for mappings A and S. It
is clear that

lim
n→+∞

y2n+1 = lim
n→+∞

Ax2n = lim
n→+∞

Tx2n+1 = z,

and

lim
n→+∞

y2n+2 = lim
n→+∞

Bx2n+1 = lim
n→+∞

Sx2n+2 = z.

Assuming that S(X) is closed, there exists a u ∈ X such that z = Su. We claim that Au = z. If not,
then

M1(u, x2n+1) = max
{

d(Su, Tx2n+1), d(Au, Su), d(Bx2n+1, Tx2n+1),

(d(Bx2n+1, Su) + d(Au, Tx2n+1)

2

)

,
(d(Su,Au) + d(Tx2n+1, Bx2n+1)

2

)

,

d(Bx2n+1, Tx2n+1)
( 1 + d(Au, Su)

1 + d(Su, Tx2n+1)

)

, d(Au, Su)
(1 + d(Bx2n+1, Tx2n+1)

1 + d(Su, Tx2n+1)

)}

and

N1(u, x2n+1) = min
{

d(Su, Tx2n+1), d(Au, Su), d(Bx2n+1, Tx2n+1),

(d(Bx2n+1, Su) + d(Au, Tx2n+1)

2

)

,
(d(Su,Au) + d(Tx2n+1, Bx2n+1)

2

)

,

d(Bx2n+1, Tx2n+1)
( 1 + d(Au, Su)

1 + d(Su, Tx2n+1)

)

, d(Au, Su)
(1 + d(Bx2n+1, Tx2n+1)

1 + d(Su, Tx2n+1)

)}

.

Taking the limit as n → +∞, we get

lim
n→+∞

M1(u, x2n+1) = d(Au, z) and lim
n→+∞

N1(u, x2n+1) = 0.

Therefore, by (2.1), we have

ψ(d(Au,Bx2n+1)) ≤ ψ(M1(u, x2n+1)) − φ(N1(u, x2n+1),
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which, taking the limit as n → +∞, implies that

ψ(d(Au, z)) ≤ ψ(d(Au, z)) − φ(N1(u, x2n+1),

a contradiction for d(Au, z) > 0. Hence Au = z, and Au = Su = z. Since the mappings A and S are
weakly compatible, Az = ASu = SAu = Sz.

Next we claim that Az = z. If not, we find

M1(z, x2n+1) = max
{

d(Sz, Tx2n+1), d(Az, Sz), d(Bx2n+1, Tx2n+1),

(d(Bx2n+1, Sz) + d(Az, Tx2n+1)

2

)

,
(d(Sz,Az) + d(Tx2n+1, Bx2n+1)

2

)

,

d(Bx2n+1, Tx2n+1)
( 1 + d(Az, Sz)

1 + d(Sz, Tx2n+1)

)

, d(Az, Sz)
(1 + d(Bx2n+1, Tx2n+1)

1 + d(Sz, Tx2n+1)

)}

and

N1(z, x2n+1) = min
{

d(Sz, Tx2n+1), d(Az, Sz), d(Bx2n+1, Tx2n+1),

(d(Bx2n+1, Sz) + d(Az, Tx2n+1)

2

)

,
(d(Sz,Az) + d(Tx2n+1, Bx2n+1)

2

)

,

d(Bx2n+1, Tx2n+1)
( 1 + d(Az, Sz)

1 + d(Sz, Tx2n+1)

)

, d(Az, Sz)
(1 + d(Bx2n+1, Tx2n+1)

1 + d(Sz, Tx2n+1)

)}

.

Taking the limit as n → +∞, we get

lim
n→+∞

M1(z, x2n+1) = d(Sz, z) = d(Az, z).

Using (2.1), we have

ψ(d(Az,Bx2n+1)) ≤ ψ(M1(z, x2n+1)) − φ(N1(z, x2n+1))

which, on taking limit as n → +∞, gives

ψ(d(Az, z)) ≤ ψ(d(Az, z)) − φ(d(Az, z)),

a contradiction for d(Az, z) > 0. Therefore Az = z.
Moreover, we show that z is a fixed point for mappings B and T . Since A(X) ⊆ T (X), there is some

v ∈ X such that Az = Tv. Then Az = Tv = Sz = z. We claim that Bv = z. If not then by (2.1), we
have

ψ(d(z,Bv)) = ψ(d(Az,Bv))

≤ ψ(M1(z, v)) − φ(N1(z, v))

= ψ(d(Bv, z)),

a contradiction for d(Bv, z) > 0, hence Bv = z. Thus Bv = Tv = z, and by the weak compatibility of
mappings B and T , we get Bz = BTv = TBv = Tz. If Bz 6= z then by (2.1), we have

ψ(d(z,Bz)) = ψ(d(Az,Bz))

≤ ψ(M1(z, z)) − φ(N1(z, z))

= ψ(d(z, T z)) − φ(N1(z, z)) = ψ(d(z,Bz)) − φ(N1(z, z)),

a contradiction for d(z,Bz) > 0. Hence Az = Bz = Sz = Tz = z. A similar analysis is also valid for
the case in which T (X) is closed as well as for the cases in which A(X) or B(X) is closed. Also, the
uniqueness of the common fixed point z follows from (2.1). �



8 M. C. Arya, N. Chandra and M. C. Joshi

Remark 2.2. Our Theorem 2.1 also generalizes the results in [3], [4], [7], [13], ( [14], Theorem 1.4),
( [17], Theorem 1.3), ( [15], Theorem 1.2) and many others.

Now, we obtain some special cases of our Theorem 2.1 in the form of corollaries as follow.

Corollary 2.3. Suppose that A,B, S and T are self mappings of a complete metric space (X, d), A(X) ⊆
T (X), B(X) ⊆ S(X), and the pairs {A,S} and {B, T } are weakly compatible. If, for every x, y ∈ X,

ψ(d(Ax,By)) ≤ ψ

(

max
{

d(By, Ty)
(1 + d(Ax, Sx)

1 + d(Sx, T y)

)

, d(Ax, Sx)
(1 + d(By, Ty)

1 + d(Sx, T y)

)

, d(Sx, T y)
}

)

−φ

(

min
{

d(By, Ty)
(1 + d(Ax, Sx)

1 + d(Sx, T y)

)

, d(Ax, Sx)
(1 + d(By, Ty)

1 + d(Sx, T y)

)

, d(Sx, T y)
}

)

,

where φ ∈ Φ, ψ ∈ Ψ Then A,B, S, and T have a unique common fixed point in X, whenever one of the
range A(X), B(X), S(X), T (X) is closed in X.

Corollary 2.4. Suppose A,B, S and T are self mappings of a complete metric space (X, d), A(X) ⊆
T (X), B(X) ⊆ S(X), and the pairs {A,S} and {B, T } are weakly compatible. If, for every x, y ∈ X,

ψ(d(Ax,By)) ≤ ψ

(

max
{

d(By, Ty)
(1 + d(Ax, Sx)

1 + d(Sx, T y)

)}

)

− φ

(

min
{

d(By, Ty)
(1 + d(Ax, Sx)

1 + d(Sx, T y)

)}

)

or

ψ(d(Ax,By)) ≤ ψ

(

max
{

d(Ax, Sx)
(1 + d(By, Ty)

1 + d(Sx, T y)

)}

)

− φ

(

min
{

d(Ax, Sx)
( 1 + d(By, Ty)

1 + d(Sx, T y)

)}

)

,

where φ ∈ Φ and ψ ∈ Ψ. Then A,B, S, and T have a unique common fixed point in X, whenever one of
the range A(X), B(X), S(X), T (X) is closed in X.

Also, by taking S = T = I (identity mapping) in Theorem 2.1, we obtain the following.

Corollary 2.5. Let (X, d) be a complete metric space and let A,B : X → X be two mappings such that,
for every x, y ∈ X,

ψ(d(Ax,By)) ≤ ψ

(

max
{

d(y,By)
(1 + d(x,Ax)

1 + d(x, y)

)

, d(x, y)
}

)

−φ

(

min
{

d(y,By)
(1 + d(x,Ax)

1 + d(x, y)

)

, d(x, y)
}

)

or

ψ(d(Ax,By)) ≤ ψ

(

max
{

d(x,Ax)
(1 + d(y,By)

1 + d(x, y)

)

, d(x, y)
}

)

−φ

(

min
{

d(x,Ax)
(1 + d(y,By)

1 + d(x, y)

)

, d(x, y)
}

)

,

where φ ∈ Φ and ψ ∈ Ψ. Then A and B have a unique common fixed point in X.

However, if we assume A = B and S = T = I (identity mapping) in Theorem 2.1, we have the
following.

Corollary 2.6. Let (X, d) be a complete metric space and let A : X → X be a mapping such that, for
every x, y ∈ X,

ψ(d(Ax,Ay)) ≤ ψ

(

max
{

d(y,Ay)
(1 + d(x,Ax)

1 + d(x, y)

)

, d(x,Ax)
(1 + d(y,Ay)

1 + d(x, y)

)

, d(x, y)
}

)

−φ

(

min
{

d(y,Ay)
(1 + d(x,Ax)

1 + d(x, y)

)

, d(x,Ax)
(1 + d(y,Ay)

1 + d(x, y)

)

, d(x, y)
}

)

,

where φ ∈ Φ and ψ ∈ Ψ. Then A has a unique fixed point in X.
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Hereto, we have obtained another result for mappings satisfying a generalized rational type condition
under the weak compatibility and (ψ, φ)-weak contraction in complete metric spaces. This result also
generalizes many other results in the literature.

Theorem 2.7. Suppose that A,B, S and T are self mappings of a complete metric space (X, d), A(X) ⊆
T (X), B(X) ⊆ S(X), and the pairs {A,S} and {B, T } are weakly compatible. If, for every x, y ∈ X,

ψ(d(Ax,By)) ≤ ψ(M1(x, y)) − φ(M1(x, y)), (2.9)

where ψ ∈ Ψ, φ ∈ Φ such that φ is discontinuous at t = 0, and M1(x, y) is defined by (2.2). Then A,B, S,
and T have a unique common fixed point in X, whenever one of the range A(X), B(X), S(X), T (X) is
closed in X.

Proof. By property of function ψ, we have φ(N1(x, y)) ≤ φ(M1(x, y)), and therefore

ψ(d(Ax,By)) ≤ ψ(M1(x, y)) − φ(M1(x, y))

≤ ψ(M1(x, y)) − φ(N1(x, y)).

Hence, Theorem 2.1 completes the proof. �

Here, we give the following example for the vindication of our result (Theorem 2.1) on (ψ, φ)-
contraction.

Example 2.8. Let X = {(1, 1), (1, 4), (4, 1), (4, 5), (5, 4)} be endowed with metric d defined by

d((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2|.

Suppose A,B, S, T : X → X are such that

A(x1, x2) = B(x1, x2) =

{

(x1, 1) if x1 ≤ x2

(1, x2) if x1 > x2.

S(x1, x2) = T (x1, x2) = (x1, x2).

Choose ψ(t) = t and φ(t) = t
6 . Clearly, mappings A,B, S, T do not satisfy the condition (1.3) of

Theorem 1.4. To see this, at x = (4, 5) and y = (5, 4), we have d(Ax,By) = 6,M(x, y) = 4, N(x, y) = 2,
M1(x, y) = 20

3 and N1(x, y)) = 2. Then, ψ(d(Ax,By)) ≤ ψ(M(x, y)) − φ(N(x, y)) implies 6 ≤ 4 − 1
3 ,

which is not possible. Hence the condition (1.3) is not satisfied. However, the condition (2.1) of our
Theorem 2.1 is satisfied for all x, y ∈ X and (1, 1) is the only common fixed point. Moreover, it is clear
that A(X) ⊆ T (X), B(X) ⊆ S(X), and the pairs {A,S}, {B, T } are weakly compatible.
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