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Multiplicity of Solutions for a Nonlinear Nonlocal Problem with Variable Exponent

Abdelhak Bousgheiri and Anass Ourraoui

abstract: This work deals with a class of value problems involving the p(x)-biharmonic and p(x)−Laplacian

M1(

∫

Ω

1

p(x)
|∆u|p(x)dx)∆2

p(x)u − M2(

∫

Ω

1

p(x)
|∇u|p(x)dx)∆p(x)u = λf(x, u) + µg(x, u) in Ω,

u = ∆u = 0, x ∈ ∂Ω,

where Ω is a bounded domain in R
N , N ≥ 1. with smooth boundary ∂Ω. Our technical method is based on a

theorem obtained by B. Ricceri.
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1. Introduction

The development of Partial Differential Equations is based upon the famous weak solution impact.
It plays a tremendous role in the area of partial differential equations. In other words, it has a direct
efficient contribution in the mathematics and its different subfields. It also have a deep relationship
with the famous Sobolov spaces. Experts in the field confirm ultimately that weak solutions represents
the most advanced methods of analysis by the 20th century for sure. The differentials methods are
clearly experimented in our real life. They have been exposed in many applications on the daily life.
Actually, the experiments are taking place from the start of the 20th century. On the other hand, the
electrorheological fluids are the first factors where experiments occurs. This is due to their viscosity and
the powerful electric fluids in it. Actually, the electrorheological fluids are used in different varieties of
applications such as robotics and aeronautics industry, for more detail we can refer to [4,12]. In fact, the
following work is all concerning the nonlocal p(x)−biharmonic problem :

M1(

∫

Ω

1

p(x)
|∆u|p(x)dx)∆2

p(x)u −M2(

∫

Ω

1

p(x)
|∇u|p(x)dx)∆p(x)u = λf(x, u) + µg(x, u) in Ω,

u = ∆u = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ R
N is a bounded domain with smooth boundary, ∆2

p(x)u = ∆(|∆u|p(x)−2∆u) is the p(x)-

biharmonic with p ∈ C(Ω),p(x) > 1 for every x ∈ Ω, and λ, µ ∈ R+.We define F (x, t) =
∫ t

0 f(x, s)ds,

G(x, t) =
∫ t

0 g(x, s)ds and we denote by p+ := supx∈Ω p(x) and p− := infx∈Ω p(x).
Problems like (1.1) are usually called nonlocal problems because of the presence of the integral over

the entire domain, and this implies that the first equation in (1.1). For more details see for example [3]
and [9].

Throughout this paper, we suppose the following assumptions :
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2 A. Bousgheiri and A. Ourraoui

There exist two positives constants C and δ, and a function q ∈ C(Ω) with

q+ := sup
x∈Ω

q(x), q− := inf
x∈Ω

q(x) and 1 < q− ≤ q+ < p−

such that
(F1) F (x, t) > 0, for a.e x ∈ Ω and t ∈]0, δ].
(F2) there exists q1 ∈ Ω and p+ < q−

1 ≤ q1(x) < p∗
2, Such as :

lim sup
t−→0

F (x, t)

|t|q1(x)
< +∞,

uniformly a.e x ∈ Ω, with
{

p∗
2(x) = Np(x)

N−2p(x) if p(x) < N
2

p∗
2(x) = +∞ if p(x) ≥ N

2 .

(F3) |F (x, t)| ≤ C(1 + |t|q(x)), for x ∈ Ω and for t ∈ R.
(F4) F (x, 0) = 0, for a.e x ∈ Ω.

(G) sup(x,t)∈Ω×R

G(x, t)

1 + |t|q2(x)
< +∞, with q2(x) ∈ C+(Ω) and q2(x) < p∗, ∀x ∈ Ω.

We also assume that Mi : R
+
0 −→ R is a continuous function for i = 1, 2. For simplicity, we

take M(t) = M1(t) = M2(t) and suppose that there exist positives constants, a0 and a1 such that :
(M) 0 < a0 ≤ M1(t) ≤ a1.

The goal of this paper is to prove the following result.

Theorem 1.1. Under the conditions (F1) to (F4) and (G), There is an open interval ∧ ⊆ [0,+∞[, and
a positive real e, such that for every λ ∈ ∧, there exists σ > 0, such as ∀µ ∈ [0, σ]. Then, problem (1.1)

admits at least three weak solutions whose norms in X = W 2,p(x)(Ω) ∩W
1,p(x)
0 (Ω) are smaller than e.

Example 1.2. For N = 1, and Ω =]0, 1[ we take M1 = M2 = 1 then the problem

(|u′′|p(x)−2u′′)′′ − (|u′|p(x)−2u′)′ = λf(x, u) + µg(x, u) in ]0, 1[,

u(0) = u(1) = 0,

u”(0) = u”(1) = 0,

has at least three weak solutions whose norms in W 2,p(x)(]0, 1[) ∩W
1,p(x)
0 (]0, 1[).

Many authors consider the existence of nontrivial solutions for some fourth order problems such as
[1,2,5,6,7,8,9,12,14,15,16,17,19], which represent a generalization of the classical p−biharmonic operator
obtained in the case when p is a positive constant.

Wang et al. [18] are first that considered the following fourth-order equation of Kirchhoff type,

∆2u−M
(

∫

Ω

|∇u|2 dx
)

∆u = f(x, u), in Ω,

u = ∆u = 0 on ∂Ω.

(1.2)

Using the mountain pass theorem, the authors obtained at least one nontrivial solution for the previous
problem.

Here we mention that the p(x)-biharmonic operator possesses more complicated non linearities than
p-biharmonic, for example, it is inhomogeneous and usually it does not have the so-called first eigenvalue,
since the infimum of its principle eigenvalue is zero. This study is Inspired by the results of [1], [18],
[10] and [11], we are to show the existence of three solutions of problem (1.1), which we use the three-
critical-points theorems of Ricceri [15,16].

This manuscript is divided into three sections organized as follows: in section 2 we start with some
preliminary basic results on the theory of Lesbegue-Sobolev spaces with variables exponent, then we
recall the three-critical-points theorem of Ricceri with some required results. In section 3, we give the
proof of the main result.
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2. Preliminaries

In order to deal with the problem, We need some theory of variable exponent Sobolev Space. For
convenience, We only recall some basic facts which will be used later, we refer to the book of Musielak
[13] and [6,8]. Suppose that Ω ⊂ R

N is a bounded domain with smooth boundary ∂Ω. Let C+(Ω) =
{ p ∈ C(Ω) and ess infx∈Ω p(x) > 1} for any p(x) ∈ C+(Ω). Set p− = minx∈Ω p(x), p+ = maxx∈Ω p(x)
and

p∗
k(x) =

Np(x)

N − kp(x)
if kp(x) < N and p∗

k(x) = +∞ if kp(x) ≥ N.

Define the variable exponent Lebesgue space Lp(x)(Ω),

Lp(x)(Ω) = { u : Ω −→ R mesurable :

∫

Ω

|u|p(x)dx < ∞} .

Then Lp(x)(Ω) endowed with the norm :

||u||p(x) = inf{ λ > 0 :

∫

Ω

|
u

λ
|p(x)dx ≤ 1} ,

becomes a Banach separable and reflexive space.

Proposition 2.1. Set, ρ(u) =
∫

Ω |∇u|p(x) + |∆u|p(x)dx for all u ∈ Lp(x)(Ω),

• ||u||p(x) ≤ 1 =⇒ ||u||p
+

p(x) ≤ ρ(u) ≤ ||u||p
−

p(x)

• ||u||p(x) ≥ 1 =⇒ ||u||p
−

p(x) ≤ ρ(u) ≤ ||u||p
+

p(x)

• ||un||p(x) −→ 0 ⇐⇒ ρ(un) −→ 0

• ||un||p(x) −→ +∞ ⇐⇒ ρ(un) −→ ∞.

Define the variable exponent Sobolev space W k,p(Ω):

W k,p(x)(Ω) = { u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k} ,

where Dαu = ∂|α|

∂α1 x1.......∂αN xN
, with α = (α1, .....;αN) is a multi-index, and |α| =

∑N
i=1 αi.

Then W k,p(x)(Ω) endowed with the norm :

||u|| =
∑

|α|≤k

||Dαu||p(x),

becomes a Banach separable and reflexive space.

Define the variable exponent Sobolev space W
1,p(x)
0 (Ω), which is the closure of C∞ functions compactly

supported in Ω for the norm :
||u||1,p(x) =

∫

Ω
|u(x)|p(x)dx+

∫

Ω
|∇u(x)|p(x)dx.

Proposition 2.2. ( [8])
For p, r ∈ C+(Ω) such that r(x) ≤ p∗

k(x) for all x ∈ Ω, there is a continuous and compact embedding

W k,p(x)(Ω) →֒ Lr(x)(Ω).

We denote by W
k,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W k,p(x)(Ω).
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Set X = W 2,p(x)(Ω) ∩W
1,p(x)
0 (Ω), for the norm :

||u|| = |∆u|p(x) + |∇u|p(x) + |u|p(x), ∀u ∈ X

Remarks 2.3. ( [6])
(X, ||.||) is a separable and reflexive Banach space. By the above remark and Proposition 2.2 there is a
continuous and compact embedding of X into Lr(x)(Ω) where r(x) < p∗

2 for all x ∈ Ω.

Proposition 2.4. Set, ρ(u) =
∫

Ω |∆u|p(x) + |∇u|p(x)dx, ∀u ∈ W 2,p(x)(Ω),

• ||u|| ≤ 1 =⇒ ||u||p
+

≤ ρ(u) ≤ ||u||p
−

• ||u|| ≥ 1 =⇒ ||u||p
−

≤ ρ(u) ≤ ||u||p
+

• ||un|| −→ 0 ⇐⇒ ρ(un) −→ 0

• ||un|| −→ +∞ ⇐⇒ ρ(un) −→ ∞

Proposition 2.5. ( [8])
For any u ∈ Lp(x)(Ω), v ∈ Lq(x)(Ω), we have

|

∫

Ω

uvdx| ≤ (
1

p−
+

1

p+
)||u||p(x)||v||q(x),

where 1
p(x) + 1

q(x) = 1.

Definition 2.6. Let u ∈ X, u is said to be a weak solution of the problem (P ), if :

M
(

∫

Ω

1

p(x)
|∆u|p(x) dx

)

∫

Ω

|∆u|p(x)−2∆u∆vdx+M
(

∫

Ω

1

p(x)
|∇u|p(x) dx

)

∫

Ω

|∇u|p(x)−2∇u∇vdx

−λ

∫

Ω

f.vdx− µ

∫

Ω

g.vdx = 0,

for all x ∈ X.

Let define the following operators:

I(u) = M̃
(

∫

Ω

1

p(x)
|∆u|p(x)dx

)

+ M̃
(

∫

Ω

1

p(x)
|∇u|p(x)dx

)

,

and

J(u) = −

∫

Ω

F (x, u)dx et Ψ(u) = −

∫

Ω

G(x, u)dx,

with M̃1(s) =
∫ s

0 M1(t)dt and M̃2(s) =
∫ s

0 M2(t)dt. Set for all u, v in X,

〈Lu, v〉 = M1(

∫

Ω

1

p(x)
|∆u|p(x)dx)

∫

Ω

|∆u|p(x)−2∆u∆vdx+M2(

∫

Ω

1

p(x)
|∇u|p(x)dx)

∫

Ω

|∇u|p(x)−2∇u∇vdx.

Proposition 2.7. (Theorem 1, [15]) Let X be a reflexive real Banach space; K ⊂ R an interval; I : X →
R be a sequentially weakly lower semi-continuous C1 functional whose derivative admits a continuous
inverse on X∗; J : X → R be a C1 functional with compact derivative. In addition, I is bounded on
each bounded subset of X. Assume that

lim
‖x‖→∞

I(x) + λJ(x) = +∞. (2.1)
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for λ ∈ K, and that there exists ρ ∈ R such that

sup
λ∈K

inf
x∈X

(I(x) + λ(J(x) + ρ)) < inf
x∈X

sup
λ∈K

(I(x) + λ(J(x) + ρ)). (2.2)

Then, there exist a nonempty set A ⊆ K and a positive number e with the following property: for every
λ ∈ A and every C1 functional ψ : X → R with compact derivative, there exists σ > 0 such that, for
each µ ∈ [0, σ], the equation

I ′(u) + λJ ′(u) + µψ′(u) = 0,

has at least three solutions in X whose norms are less than e.

Proposition 2.8. [16] Let X be a nonempty set and I, J are two real functionals on X. Suppose there
are γ > 0, u0, u1 ∈ X such that

I(u0) = J(u0) = 0, I(u1) > γ, sup
u∈I−1(]−∞,γ])

J(u) < γ
J(u1)

I(u1)
. (2.3)

Then, for each ρ satisfying

I(u0) = J(u0) = 0, I(u1) > γ, sup
u∈I−1(]−∞,γ])

J(u) < ρ < γ
J(u1)

I(u1)
,

we have
sup
λ≥0

inf
u∈X

(I(u) + λ(ρ− J(u))) < inf
u∈X

sup
λ≥0

(I(u) + λ(ρ− J(u))).

3. Proof of the main result

Let verify the conditions of proposition 2.7. But firt, we start by the following lemma.

Lemma 3.1. Under the condition (M), L : X −→ X∗ is continuous and admits a continuous inverse on
X∗.

Proof. Since L is the Fréchet derivative of I, it follows that L is continuous and bounded. Using the
elementary inequalities :

|x− y|α ≤ 2α(|x|αx− |y|αy)(x− y) if α ≥ 2.

|x− y|α ≤
1

(α− 1)
(|x| + |y|)2−α(|x|αx− |y|αy)(x− y) if 1 < α < 2,

for all (x, y) ∈ (RN )2, where x.y denotes the usual inner product in R
N , we obtain for all u, v ∈ X such

that u 6= v,
So we obtain 〈L(u) − L(v), u − v〉 > 0, for all u, v ∈ X with u 6= v, which means that L is strictly

monotone. Furthermore, for ‖u‖ > 1 we have that

L(u).u ≥ m0‖u‖p−

,

then L is coercive.
Note that the strict monotonicity of L implies that L is injectivie.

Consequently, thanks to a Minty-Browder theorem [19], the operator L is a surjection and admits an
inverse mapping. A standard argument guarantees that L−1 is continuous. �

Now we are ready to prove Theorem 1.1. In view of Lemma 3.1, I is continuously Gâteaux differen-
tiable, whose Gâteaux derivative admits a continuous inverse on X∗. On the other side, since the functions
M̂(t) is increasing and the convex functionals I1(u) =

∫

Ω
1

p(x) |∇u|p(x) and I2(u) =
∫

Ω
1

p(x) |∆u|p(x) are

both sequentially weakly lower semi-continuous, we can see that the functional I : X → R is sequentially
weakly lower semi-continuous. In addition ψ and J are continuously Gâteaux differentiable functions and
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its Gâteaux derivatives are compact. By a similar analysis to that in Fan and Zhang [7], from (F3) and
(G) we know that J, ψ ∈ C1(X,R), such as :

〈J
′

(u), v〉 = −

∫

Ω

f(x, u(x))vdx; 〈ψ
′

(u), v〉 = −

∫

Ω

g(x, u(x))vdx

for u, v ∈ X. As X →֒ Lq(x)(Ω) is compact, J
′

and ψ
′

: X −→ X∗ are also compact.
For ||u|| < 1, we have :

a0

p+
[

∫

Ω

|∆u|p(x)dx+

∫

Ω

|∇u|p(x)dx] ≤ I(u) ≤
a1

p−
[

∫

Ω

|∆u|p(x)dx+

∫

Ω

|∇u|p(x)dx],

then
a0

p+
||u||p

+

≤ I(u) ≤
a1

p+
||u||p

−

.

Let choose c0 > 0 in order to get c0 ≥ a1

p+ ||u||p
−

− a0

p+ ||u||p
+

, that is,

I(u) ≥
a1

p+
||u||p

−

− c0.

When ||u|| ≥ 1, one has I(u) ≥ a0

p+ ||u||p
−

and then ∀u ∈ X , we have

λJ(u) = −λ

∫

Ω

F (x, u)dx

≥ −λ

∫

Ω

C(1 + |u|α(x))dx

≥ −A1(1 + ||u||q
+

q(x))

≥ −A2(1 + ||u||q
+

),

with A1 > 0, A2 > 0, hence,

I(u) + λJ(u) ≥
a1

p+
||u||p

−

−A2(1 + ||u||q
+

) − c0.

So lim||u||−→+∞(I(u) + λJ(u)) = +∞, the assumption (2.1) is satisfied. To check the assertion (2.2),
it suffices to verify the conditions of proposition (2.7). Put u0 = 0 then I(u0) = −J(u0) = 0, and take
x0 ∈ Ω since (Ω 6= ∅), and r2 > r1 > 0.

Let w(x) ∈ C∞
0 (Ω), with w(x) = 0 for x ∈ Ω − B(x0, r2), w(x) = δ

r2−r1
(r2 − ‖xi − x0

i ‖2), when

x ∈ B(x0, r2) −B(x0, r1), and w(x) = δ if x ∈ B(x0, r1) with ‖x‖2 = (
∑N

i=1(xi)
2)

1
2 ; then

−J(u1) =

∫

Ω

F (x,w)dx

=

∫

B(x0,r1)

F (x,w)dx +

∫

B(x0,r2)−B(x0,r1)

F (x,w)dx +

∫

Ω/B(x0,r2)

F (x,w)dx

=

∫

B(x0,r1)

F (x,w)dx +

∫

B(x0,r2)−B(x0,r1)

F (x,w)dx

=

∫

B(x0,r1)

F (x, δ)dx+

∫

B(x0,r2)−B(x0,r1)

F (x,
δ

r2 − r1
[r2 − ||xi − x0

i ||2])dx

(3.1)

Since x 6∈ B(x0, r2) −B(x0, r1), so
r2−||xi−x0

i ||2

r2−r1
> 1, and

∫

B(x0,r2)−B(x0,r1) F (x,w)dx > 0.

By (F2) there exists θ ∈ [0, 1], c1 > 0 such that:

F (x, t) ≤ c1|t|q(x), ∀ |t| < θ,
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for a.e x ∈ Ω.

Put P1 = sup|t|<θ
c(1+|t|q+

)

|t|
q

−
1

, P2 = sup|t|>θ
c[1+|t|q+

]

|t|q− , P3 = sup|t|<1
c[1+|t|q+

]

|t|
q

−
1

, P3 = sup|t|>1
c[1+|t|q+

]

|t|
q

−
1

and M∗ = max{ c1, Pi, i = 1...4} .

It follows that : F (x, t) < M∗|t|q
−
1 for t ∈ R, a.e x ∈ Ω. Afterward, fix γ such that 0 < γ < 1. When

1
p+ ||u||p

+

≤ γ < 1, by Sobolev embeddings theorem, there are positive constants c2, c3 such that:

−J(u) =

∫

Ω

F (x,w)dx < M∗

∫

Ω)

|u|q
−
1 dx ≤ c2||u||q

−
1 ≤ c3γ

q
−
1

p+ .

In view of q−
1 > p+, it yields

lim
γ−→0+

sup 1

p+ ‖u‖p+ ≤γ −J(u)

γ
= 0. (3.2)

Let w ∈ X , with −J(w) > 0. Take γ0 such that γ < γ0 <
a0

p+ min{ ||w||p
+

, ‖w‖p−

, 1} ≤ a0. Two cases

appear. If ||w|| < 1, we have

I(u1) = I(w) = M̃(

∫

Ω

1

p(x)
|∆w|p(x)dx) + M̃(

∫

Ω

1

p(x)
|∇u|p(x)dx)

≥
a0

p+
||w||p

+

≥ γ0 > γ.

From the last inequality we obtain

sup
1

p+ ||u||p+ ≤γ

−J(u) ≤
γ

2

−J(u)
a0

p+ ||w||p− ≤
γ

2

−J(u1)

I(u1)
≤ γ

−J(u1)

I(u1)
. (3.3)

If ||w|| ≥ 1, it follows that

I(u1) = I(w) ≥
a0

p+
||w||p

−

≥ γ0 > γ.

From (3.2) and since γ ≥ 0, we get

sup
1

p+ ||u||p+ ≤γ

−J(u) ≤
γ

2

−J(u)
a0

p+ ||w||p− ≤
γ

2

−J(u1)

I(u1)
< γ

−J(u1)

I(u1)
.

For all u ∈ I−1(] − ∞, γ]), we have

M̃(

∫

Ω

1

p(x)
|∆u|p(x)) + M̃(

∫

Ω

1

p(x)
|∇u|p(x)) ≤ γ

then a0

(

∫

Ω
1

p(x) |∆u|p(x)dx+
∫

Ω
1

p(x) |∇u|p(x)dx
)

≤ γ.

Therefore ,
∫

Ω

|∆u|p(x)dx+

∫

Ω

|∇u|p(x)dx ≤
γp+

a0
<
γ0p

+

a0
< 1.

It means that ||u|| < 1 and

a0

p+
||u||p

+

≤ M̂
(

∫

Ω

1

p(x)
|∆u|p(x)dx

)

+ M̂
(

∫

Ω

1

p(x)
|∇u|p(x)dx

)

≤ γ.

It follows that :

I−1(] − ∞, γ]) ⊂ {u ∈ X :
1

p+
‖u‖p+

< γ} .

So by virtue of (3.3),

sup
u∈(]−∞,γ])

−J(u) < γ
−J(u1)

I(u1)
,
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we can find ρ such that

sup
u∈(]−∞,γ])

−J(u) < ρ < γ
−J(u1)

I(u1)
.

Taking K = [0,+∞[, the assumptions of proposition 2.7 are satisfied. So the proof is complete.
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