(3s.) v. 2024 (42) : $1-7$.

On some realizable metabelian 5 -groups

Fouad Elmouhib (iD Mohamed Talbi iD and Abdelmalek Azizi iD

Abstract

Let G be a 5-group of maximal class and $\gamma_{2}(G)=[G, G]$ its derived group. Assume that the abelianization $G / \gamma_{2}(G)$ is of type $(5,5)$ and the transfers $V_{H_{1} \rightarrow \gamma_{2}(G)}$ and $V_{H_{2} \rightarrow \gamma_{2}(G)}$ are trivial, where H_{1} and H_{2} are two maximal normal subgroups of G. Then G is completely determined with the isomorphism class groups of maximal class. Moreover the group G is realizable with some fields k, which is the normal closure of a pure quintic field.

Key Words: Groups of maximal class, metabelian 5-groups, transfer, 5 -class groups.

Contents

1 Introduction 1
2 On the 5-class group of maximal class 2
2.1 On the transfer concept 3
3 Main results 3
3.1 Invariants of metabelian 5-group of maximal class 3
3.2 Application 5
4 Numerical examples 6

1. Introduction

The coclass of a p-group G of order p^{n} and nilpotency class c is defined as $c c(G)=n-c$, and a p-group G is called of maximal class, if it has $c c(G)=1$. These groups have been studied by various authors, by determining there classification, the position in coclass graph [6] [3], and the realization of these groups. Blackburn's paper [2], is considered as reference of the basic materials about these groups of maximal class. Eick and Leendhan-Green in [6] gave a classification of 2-groups. Blackburn's classification in [2], of the 3 -groups of coclass 1 , implies that these groups exhibit behaviour similar to that proved for 2 -groups. The 5 -groups of maximal class have been investigated in detail in [3], [4], [5], [9], [14].
Let G be a metabelian p-group of order $p^{n}, n \geq 3$, with abelianization $G / \gamma_{2}(G)$ is of type (p, p), where $\gamma_{2}(G)=[G, G]$ is the commutator group of G. The subgroup G^{p} of G, generated by the $p^{t h}$ powers is contained in $\gamma_{2}(G)$, which therefore coincides with the Frattini subgroups $\phi(G)=G^{p} \gamma_{2}(G)=\gamma_{2}(G)$. According to the basis theorem of Burnside [[1], Theorem 1.12], the group G can thus be generated by two elements x and $y, G=<x, y>$. If we declare the lower central series of G recursively by

$$
\left\{\begin{array}{l}
\gamma_{1}(G)=G \\
\gamma_{j}(G)=\left[\gamma_{j-1}(G), G\right] \text { for } j \geq 2
\end{array}\right.
$$

Then we have Kaloujnine's commutator relation $\left[\gamma_{j}(G), \gamma_{l}(G)\right] \subseteq \gamma_{j+l}(G)$, for $j, l \geq 1$ [[2], Corollary 2], and for an index of nilpotence $c \geq 2$ the series

$$
G=\gamma_{1}(G) \supset \gamma_{2}(G) \supset \ldots \ldots \supset \gamma_{c-1}(G) \supset \gamma_{c}(G)=1
$$

becomes stationary.
The two-step centralizer

$$
\chi_{2}(G)=\left\{g \in G \mid[g, u] \in \gamma_{4}(G) \text { for all } \mathrm{u} \in \gamma_{2}(G)\right\}
$$

[^0]of the two-step factor group $\gamma_{2}(G) / \gamma_{4}(G)$, that is the largest subgroup of G such that $\left[\chi_{2}(G), \gamma_{2}(G)\right] \subset$ $\gamma_{4}(G)$. It is characteristic, contains the commutator subgroup $\gamma_{2}(G)$. Moreover $\chi_{2}(G)$ coincides with G if and only if $n=3$. For $n \geq 4, \chi_{2}(G)$ is one of the $p+1$ normal subgroups of G [[2], Lemma 2.5].
Let the isomorphism invariant $k=k(G)$ of G, be defined by $\left[\chi_{2}(G), \gamma_{2}(G)\right]=\gamma_{n-k}(G)$, where $k=0$ for $n=3$ and $0 \leq k \leq n-4$ if $n \geq 4$, also for $n \geq p+1$ we have $k=\min \{n-4, p-2\}$ [[11], p.331].
$k(G)$ provides a measure for the deviation from the maximal degree of commutativity $\left[\chi_{2}(G), \gamma_{2}(G)\right]=1$ and is called defect of commutativity of G.
With a further invariant e, it will be expressed, which factor $\gamma_{j}(G) / \gamma_{j+1}(G)$ of the lower central series is cyclic for the first time [13], and we have $e+1=\min \left\{3 \leq j \leq m\left|1 \leq\left|\gamma_{j}(G) / \gamma_{j+1}\right| \leq p\right\}\right.$.
In this definition of e, we exclude the factor $\gamma_{2}(G) / \gamma_{3}(G)$, which is always cyclic. The value $e=2$ is characteristic for a group G of maximal class.
By $G_{a}^{(n)}(z, w)$ we denote the representative of an isomorphism class of the metabelian p-groups G, which satisfies the relations of theorem 2.1, with a fixed system of exponents a, w and z.
In this paper we shall prove that some metabelian 5 -groups are completely determined with the isomorphism class groups of maximal class, furthermore they can be realized.
For that we consider $K=\mathbb{Q}\left(\sqrt[5]{p}, \zeta_{5}\right)$, the normal closure of the pure quintic field $\Gamma=\mathbb{Q}(\sqrt[5]{p})$, and also a cyclic Kummer extension of degree 5 of the $5^{\text {th }}$ cyclotomic field $K_{0}=\mathbb{Q}\left(\zeta_{5}\right)$, where p is a prime number, such that $p \equiv-1(\bmod 25)$. According to $[7]$, if the 5 -class group of K, denoted $C_{K, 5}$, is of type $(5,5)$, we have that the rank of the subgroup of ambiguous ideal classes, under the action of $\operatorname{Gal}\left(K / K_{0}\right)=\langle\sigma\rangle$, denoted $C_{K, 5}^{(\sigma)}$, is rank $C_{K, 5}^{(\sigma)}=1$. Whence by class field theory the relative genus field of the extension K / K_{0}, denoted $K^{*}=\left(K / K_{0}\right)^{*}$, is one of the six cyclic quintic extension of K.
By $F_{5}^{(1)}$ we denote the Hilbert 5 -class field of a number field F. Let $G=\operatorname{Gal}\left(\left(K^{*}\right)_{5}^{(1)} / K_{0}\right)$, we show that G is a metabelian 5 -group of maximal class, and has two maximal normal subgroups H_{1} and H_{2}, such that the transfers $V_{H_{1} \rightarrow \gamma_{2}(G)}$ and $V_{H_{2} \rightarrow \gamma_{2}(G)}$ are trivial. Moreover G is completely determined with the isomorphism class groups of maximal class.
The theoretical results are underpinned by numerical examples obtained with the computational number theory system PARI/GP [16].

2. On the 5 -class group of maximal class

Let G be a metabelian 5 -group of order 5^{n}, such that $G / \gamma_{2}(G)$ is of type (5,5), then G admits six maximal normal subgroups H_{1}, \ldots, H_{6}, which contain the commutator group $\gamma_{2}(G)$ as a normal subgroup of index 5 . We have that $\chi_{2}(G)$ is one of the groups H_{i} and we fix $\chi_{2}(G)=H_{1}$. We have the following theorem

Theorem 2.1. Let G be a metabelian 5-group of order 5^{n} where $n \geq 5$, with the abelianization $G / \gamma_{2}(G)$ is of type $(5,5)$ and $k=k(G)$ its invariant defined before. Assume that G is of maximal class, then G can be generated by two elements, $G=<x, y\rangle$, be selected such that $x \in G \backslash \chi_{2}(G)$ and $y \in \chi_{2}(G) \backslash \gamma_{2}(G)$. Let $s_{2}=[y, x] \in \gamma_{2}(G)$ and $s_{j}=\left[s_{j-1}, x\right] \in \gamma_{j}(G)$ for $j \geq 3$. Then we have:
(1) $s_{j}^{5} s_{j+1}^{10} s_{j+2}^{10} s_{j+3}^{5} s_{j+4}=1$ for $j \geq 2$.
(2) $x^{5}=s_{n-1}^{w}$ with $w \in\{0,1,2,3,4\}$.
(3) $y^{5} s_{2}^{10} s_{3}^{10} s_{4}^{5} s_{5}=s_{n-1}^{z}$ with $z \in\{0,1,2,3,4\}$.
(4) $\left[y, s_{2}\right]=\prod_{i=1}^{k} s_{n-i}^{a_{n-i}}$ with $a=\left(a_{n-1}, \ldots a_{n-k}\right)$ exponents such that $0 \leq a_{n-i} \leq 4$.

Proof. See [[12], Theorem 1] for $p=5$.
The six maximal normal subgroups $H_{1} \ldots . H_{6}$ are arranged as follows:
$H_{1}=\left\langle y, \gamma_{2}(G)\right\rangle=\chi_{2}(G), H_{i}=\left\langle x y^{i-2}, \gamma_{2}(G)\right\rangle$ for $2 \leq i \leq 6$. The order of the abelianization of each H_{i}, for $1 \leq i \leq 6$, is given by the following theorem.

Theorem 2.2. Let G, H_{i} and the invariant k as before. Then for $1 \leq i \leq 6$, the order of the commutator factor groups of H_{i} is given by:
(1) If $n=2$ we have : $\left|H_{i} / \gamma_{2}\left(H_{i}\right)\right|=5$ for $1 \leq i \leq 6$.
(2) If $n \geq 3$ we have : $\left|H_{i} / \gamma_{2}\left(H_{i}\right)\right|=5^{2}$ for $2 \leq i \leq 6$, and $\left|H_{1} / \gamma_{2}\left(H_{1}\right)\right|=5^{n-k-1}$

Proof. See [[10], Theorem 3.1] for $p=5$.
Lemma 2.3. Let G be a 5-group of order $|G|=5^{n}, n \geq 4$. Assume that the commutator group $G / \gamma_{2}(G)$ is of type $(5,5)$. Then G is of maximal class if and only if G admits a maximal normal subgroup with factor commutator of order 5^{2}. Furthermore G admits at least five maximal normal subgroups with factor commutator of order 5^{2}.

Proof. Assume that G is of maximal class, then by theorem 2.2, we conclude that G has five maximal normal subgroups with the order of commutator factor is 5^{2} if $n \geq 4$, and has six when $n=3$. Conversely, Assume that $c c(G) \geq 2$, the invariant e defined before is greater than 3, and since each maximal normal subgroup H of G verify $\left|H / \gamma_{2}(H)\right| \geq 5^{e}$ we get that $\left|H / \gamma_{2}(H)\right|>5^{2}$

2.1. On the transfer concept

Let G be a group and let H be a subgroup of G. The transfer $V_{G \rightarrow H}$ from G to H can be decomposed as follows:

Definition 2.4. Let G be a group, H be a normal subgroup of G, and let $g \in G$ such that, f is the order of $g H$ in $G / H, r=\frac{[G: H]}{f}$ and $g_{1}, \ldots g_{r}$ be a representative system of G / H, then the transfer from G to H, noted $V_{G \rightarrow H}$, is defined by:

$$
\begin{aligned}
V_{G \rightarrow H}: G / \gamma_{2}(G) & \longrightarrow H / \gamma_{2}(H) \\
g \gamma_{2}(G) & \longrightarrow \prod_{i=1}^{r} g_{i}^{-1} g^{f} g_{i} \gamma_{2}(H)
\end{aligned}
$$

In the special case that G / H is cyclic group of order 5 and $G=\langle h, H\rangle$, then the transfer $V_{G \rightarrow H}$ is given as:
(1) If $g \in H$; then $V_{G \rightarrow H}\left(g \gamma_{2}(G)\right)=g^{1+h+h^{2}+h^{3}+h^{4}} \gamma_{2}(H)$
(2) $V_{G \rightarrow H}\left(h \gamma_{2}(G)\right)=h^{5} \gamma_{2}(H)$

3. Main results

In this section we investigate the purely group theoretic results to determine the invariants of metabelian 5 -group of maximal class developed in theorem 2.1. Furthermore we show that a such metabelian 5 -group is realized by the Galois group of some fields tower.

3.1. Invariants of metabelian 5-group of maximal class

In this paragraph, we keep the same hypothesis on the group G and the generators $G=\langle x, y\rangle$, such that $x \in G \backslash \chi_{2}(G)$ and $y \in \chi_{2}(G) \backslash \gamma_{2}(G)$. The six maximal normal subgroups of G are as follows: $H_{1}=\chi_{2}(G)=\left\langle y, \gamma_{2}(G)\right\rangle$ and $H_{i}=\left\langle x y^{i-2}, \gamma_{2}(G)\right\rangle$ for $2 \leq i \leq 6$.
In the case that the transfers from two subgroups H_{i} and H_{j} to $\gamma_{2}(G)$ are trivial, we can determine completely the 5 -group G.

Proposition 3.1. Let G be a metabelian 5 -group of maximal class of order $5^{n}, n \geq 4$. If the transfers $V_{\chi_{2}(G) \rightarrow \gamma_{2}(G)}$ and $V_{H_{2} \rightarrow \gamma_{2}(G)}$ are trivial, then $n \leq 6$ and $\gamma_{2}(G)$ is of exponent 5. Furthermore:

- If $n=6$ then $G \sim G_{a}^{(6)}(1,0)$ where $a=0$ or 1 .
- If $n=5$ then $G \sim G_{a}^{(5)}(0,0)$ where $a=0$ or 1 .
- If $n=4$ then $G \sim G_{0}^{(4)}(0,0)$.

Proof. Assume that $n \geq 7$, then $\gamma_{5}(G)=\left\langle s_{5}, \gamma_{6}(G)\right\rangle$, because G is of maximal class and $\left|\gamma_{5}(G) / \gamma_{6}(G)\right|=$ 5. By [[2], lemma 3.3] we have $y^{5} s_{5} \in \gamma_{6}(G)$, thus $\gamma_{5}(G)=\left\langle s_{5}^{4}, \gamma_{6}(G)\right\rangle=\left\langle y^{5} s_{5} s_{5}^{4}, \gamma_{6}(G)\right\rangle=\left\langle y^{5}, \gamma_{6}(G)\right\rangle$, and since $V_{\chi_{2}(G) \rightarrow \gamma_{2}(G)}(y)=y^{5}=1$, because the transfers are trivial by hypothesis, we get that $\gamma_{5}(G)=\gamma_{6}(G)$, which is impossible, whence $n \leq 6$ and According to [[2], lemma 3.2], $\gamma_{2}(G)$ is of exponent 5.

If $n=6$, we have $V_{\chi_{2}(G) \rightarrow \gamma_{2}(G)}$ and $V_{H_{2} \rightarrow \gamma_{2}(G)}$ are trivial, so by theorem 2.1 we obtain $x^{5}=s_{5}^{w}=1$ which imply $w=0$, because $0 \leq w \leq 4$. Since $\gamma_{2}(G)$ is of exponent 5 , we have $s_{2}^{5}=1$ and by theorem 2.1 the relation $s_{4}^{5} s_{5}^{10} s_{6}^{10} s_{7}^{5} s_{8}=1$ gives $s_{4}^{5}=1$, also $s_{3}^{5} s_{4}^{10} s_{5}^{10} s_{6}^{5} s_{7}=1$ gives $s_{3}^{5}=1$. We replace in $y^{5} s_{2}^{10} s_{3}^{10} s_{4}^{5} s_{5}=s_{5}^{z}$ and we get $s_{5}=s_{5}^{z}$, whence $z=1$. We have $\left[\chi_{2}(G), \gamma_{2}(G)\right] \subset \gamma_{6-k}(G) \subset \gamma_{4}(G)$ then $6-k \geq 4$, and $0 \leq k \leq 2$, thus $\left[y, s_{2}\right]=s_{4}^{\alpha \beta}, a=(\alpha, \beta)$. If $k=0$, then $a=0$ and $G \sim G_{0}^{(6)}(1,0)$, if $k=1$ then $a=1$ and $G \sim G_{1}^{(6)}(1,0)$ and if $k=2$ then $G \sim G_{a}^{(6)}(1,0)$.
If $n=5$, we have $\left[\chi_{2}(G), \gamma_{2}(G)\right] \subset \gamma_{5-k}(G) \subset \gamma_{4}(G)$ then $5-k \geq 4$, and $0 \leq k \leq 1$. We have $s_{4}^{5}=1$, $s_{2}^{5}=s_{3}^{5}=1$ and $\left[y, s_{2}\right]=s_{4}^{a}$. the relation $y^{5} s_{2}^{10} s_{3}^{10} s_{4}^{5} s_{5}=s_{4}^{z}$ imply $s_{4}^{z}=1$ so $z=0$. As $n=6$ we obtain $w=0$. If $k=0$ then $G \sim G_{0}^{(5)}(0,0)$ and if $k=1 G \sim G_{a}^{(5)}(0,0)$.
If $n=4$, Since $\left[\chi_{2}(G), \gamma_{2}(G)\right] \subset \gamma_{5-k}(G) \subset \gamma_{4}(G)$ we have $4-k \geq 4$, and $k=0$, thus $\left[y, s_{2}\right]=1$, i.e $a=0$. By the same way in this case we have $w=z=0$, therefor $G \sim G_{0}^{(4)}(0,0)$.

Proposition 3.2. Let G be a metabelian 5-group of maximal class of order 5^{n}. If the transfers $V_{H_{2} \rightarrow \gamma_{2}(G)}$ and $V_{H_{i} \rightarrow \gamma_{2}(G)}, 3 \leq i \leq 6$, are trivial, then we have:

- If $n=5$ or 6 then $G \sim G_{a}^{(n)}(0,0)$.
- If $n \geq 7$ then $G \sim G_{0}^{(n)}(0,0)$.

Proof. If $n=5$ or 6 , by [[2], theorem 1.6] we have $\left[\chi_{2}(G), \gamma_{2}(G)\right]=1$ and $\left[\chi_{2}(G), \gamma_{2}(G)\right] \subset \gamma_{4}(G)$ elementary, and $\left(\gamma_{2}\left(\chi_{2}(G)\right)\right)^{5}=1$ and $\prod_{i=2}^{3}\left[\gamma_{i}(G), \gamma_{4}(G)\right]=1$, we conclude that $(x y)^{5}=x^{5} y^{5} s_{2}^{10} s_{3}^{10} s_{4}^{5} s_{5}$ and we have $y^{5} s_{2}^{10} s_{3}^{10} s_{4}^{5} s_{5}=s_{n-1}^{z}$ then $(x y)^{5}=x^{5} s_{n-1}^{z}$ and since $V_{H_{2} \rightarrow \gamma_{2}(G)}$ and $V_{H_{3} \rightarrow \gamma_{2}(G)}$ are trivial then $(x y)^{5}=x^{5}=s_{n-1}^{z}=s_{n-1}^{w}=1$, thus $z=w=0$. Since $\left[\chi_{2}(G), \gamma_{2}(G)\right]=\gamma_{n-k} \subset \gamma_{4}(G)$ we have $n-k \geq 4$, whence $0 \leq k \leq 2$ because $n=5$ or 6 then $G \sim G_{a}^{(n)}(0,0)$.
If $n \geq 7$, according to corollary page 69 of [2] we have, $\left(\gamma_{j}\left(\chi_{2}(G)\right)\right)^{5}=\gamma_{j+4}(G)$ for $j \geq 2$, and since $y^{5} s_{2}^{10} s_{3}^{10} s_{4}^{5} s_{5}=s_{n-1}^{z}$ we obtain:

$$
y^{5}=s_{n-1}^{z} s_{5}^{-1} s_{4}^{-1} s_{3}^{-10} s_{2}^{-10} \equiv s_{n-1}^{z} s_{5}^{-1} \bmod \gamma_{6}(\mathrm{G})
$$

because $s_{2}^{5} \in \gamma_{6}(G), s_{3}^{5} \in \gamma_{6}(G)$ and $s_{4}^{5} \in \gamma_{6}(G)$, and since $n \geq 7$ we have $s_{n-1} \in \gamma_{6}(G)$, therefor $V=V_{H_{3} \rightarrow \gamma_{2}(G)}(y) \equiv s_{5}^{-1} \bmod \gamma_{6}(\mathrm{G})$. Thus $\operatorname{Im}(V) \subset \gamma_{5}(G)$, In fact $\operatorname{Im}(V)=\gamma_{5}(G)$, and also we have $y \notin \operatorname{ker}(V)$ and $\forall f \geq 2 y^{k} s_{f}^{l} \notin \operatorname{ker}(V)$. The kernel of V is formed by elements of $\gamma_{2}(G)$ of exponent 5 , its exactly $\gamma_{n-4}(G)$, and since G is of maximal class then the rank of $\gamma_{2}(G)$ is 2 and $\gamma_{2}(G)$ admits exactly 25 elements of exponent 5, these elements form $\gamma_{n-4}(G)$. We conclude that $\left|\chi_{2}(G) / \gamma_{2}\left(\chi_{2}(G)\right)\right|=$ $\left|\gamma_{n-4}(G)\right| \times\left|\gamma_{5}(G)\right|=5^{4} \times 5^{n-5}=5^{n-1}=\left|\chi_{2}(G)\right|$, whence $\chi_{2}(G)$ is abelian because $\gamma_{2}\left(\chi_{2}(G)\right)=1$, consequently $\left[y, s_{2}\right]=1$, thus $a=0$. As the cases $n=5$ or 6 we obtain $(x y)^{5}=x^{5} s_{n-1}^{z}$, therefor $z=w=0$, hence $G \sim G_{0}^{(n)}(0,0)$.
In the case when $V_{\mathrm{H}_{2} \rightarrow \gamma_{2}(G)}$ and $V_{\mathrm{H}_{i} \rightarrow \gamma_{2}(G)}, 4 \leq i \leq 6$ are trivial, according to [[2], theorem 1.6] we have $\left(x y^{\mu}\right)^{5}=x^{5}\left(y^{5} s_{2}^{10} s_{3}^{10} s_{4}^{5} s_{5}\right)^{\mu}=s_{n-1}^{w} s_{n-1}^{s^{\mu z}}$ with $\mu=2,3,4$, then we can admit the same reasoning to prove the result.

Proposition 3.3. Let G be a metabelian 5-group of maximal class of order 5^{n}. If the transfers $V_{H_{i} \rightarrow \gamma_{2}(G)}$ and $V_{H_{j} \rightarrow \gamma_{2}(G)}$, where $i, j \in\{3,4,5,6\}$ and $i \neq j$, are trivial, then we have: $G \sim G_{0}^{(n)}(0,0)$.

Proof. Assume that $H_{i}=\left\langle x y^{\mu_{1}}, \gamma_{2}(G)\right\rangle$ and $H_{j}=\left\langle x y^{\mu_{2}}, \gamma_{2}(G)\right\rangle$ where $\mu_{1}, \mu_{2} \in\{1,2,3,4\}$ and $\mu_{1} \neq \mu_{2}$. According to [[2], theorem 1.6] we have already prove that $\left(x y^{\mu_{1}}\right)^{5}=s_{n-1}^{w+\mu_{1} z}$ and $\left(x y^{\mu_{2}}\right)^{5}=s_{n-1}^{w+\mu_{2} z}$. Since $V_{H_{i} \rightarrow \gamma_{2}(G)}$ and $V_{H_{j} \rightarrow \gamma_{2}(G)}$ are trivial, we obtain $s_{n-1}^{w+\mu_{1} z}=s_{n-1}^{w+\mu_{2} z}=1$ then $w+\mu_{1} z \equiv w+\mu_{2} z \equiv 0(\bmod 5)$ and since 5 does not divide $\mu_{1}-\mu_{2}$ we get $z=0$ and at the same time $w=0$. To prove $a=0$ we admit the same reasoning as proposition 3.2.

3.2. Application

Through this section we denote by:

- p a prime number such that $p \equiv-1(\bmod 25)$.
- $K_{0}=\mathbb{Q}\left(\zeta_{5}\right)$ the $5^{t h}$ cyclotomic field, $\left(\zeta_{5}=e^{\frac{2 \pi i}{5}}\right)$.
- $K=K_{0}(\sqrt[5]{p})$ a cyclic Kummer extension of K_{0} of degree 5 .
- $C_{F, 5}$ the 5-ideal class group of a number field F.
- $K^{*}=\left(K / K_{0}\right)^{*}$ the relative genus field of K / K_{0}.
- $F_{5}^{(1)}$ the absolute Hilbert 5-class field of a number field F.
- $G=\operatorname{Gal}\left(\left(K^{*}\right)_{5}^{(1)} / K_{0}\right)$.

We begin by the following theorem.
Theorem 3.4. Let $K=\mathbb{Q}\left(\sqrt[5]{p}, \zeta_{5}\right)$ be the normal closure of a pure quintic field $\mathbb{Q}(\sqrt[5]{p})$, where p a prime congruent to -1 modulo 25. Let K_{0} be the the $5^{\text {th }}$ cyclotomic field. Assume that the 5 -class group $C_{K, 5}$ of K, is of type $(5,5)$, then $G a l\left(K^{*} / K_{0}\right)$ is of type $(5,5)$, and two sub-extensions of K^{*} / K_{0} admit a trivial 5 -class number.

Proof. By $C_{K, 5}^{(\sigma)}$ we denote the subgroup of ambiguous ideal classes under the action of $\operatorname{Gal}\left(K / K_{0}\right)=\langle\sigma\rangle$. According to [[7], theorem 1.1], in this case of the prime p we have rank $C_{K, 5}^{(\sigma)}=1$, and by class field theory, since $\left[K^{*}: K\right]=\left|C_{K, 5}^{(\sigma)}\right|$, we have that K^{*} / K is a cyclic quintic extension, whence $G a l\left(K^{*} / K_{0}\right)$ is of type $(5,5)$.
Since $p \equiv-1(\bmod 25)$, then p splits in K_{0} as $p=\pi_{1} \pi_{2}$, where π_{1}, π_{2} are primes of K_{0}. By [[8], theorem 5.15] we have explicitly the relative genus field K^{*} as $K^{*}=K\left(\sqrt[5]{\pi_{1}^{a_{1}} \pi_{2}^{a_{2}}}\right)=K_{0}\left(\sqrt[5]{\pi_{1} \pi_{2}}, \sqrt[5]{\pi_{1}^{a_{1}} \pi_{2}^{a_{2}}}\right)$ with $a_{1}, a_{2} \in\{1,2,3,4\}$ such that $a_{1} \neq a_{2}$. Its clear that the extension K^{*} / K_{0} admits six sub-extensions, where K is one of them, and the others are $K_{0}\left(\sqrt[5]{\pi_{1}^{a_{1}} \pi_{2}^{a_{2}}}\right), K_{0}\left(\sqrt[5]{\pi_{1}^{a_{1}+1} \pi_{2}^{a_{2}+1}}\right), K_{0}\left(\sqrt[5]{\pi_{1}^{a_{1}+2} \pi_{2}^{a_{2}+2}}\right)$, $K_{0}\left(\sqrt[5]{\pi_{1}^{a_{1}+3} \pi_{2}^{a_{2}+3}}\right)$ and $K_{0}\left(\sqrt[5]{\pi_{1}^{a_{1}+4} \pi_{2}^{a_{2}+4}}\right)$. Since $a_{1}, a_{2} \in\{1,2,3,4\}$, we can see that the extensions $L_{1}=K_{0}\left(\sqrt[5]{\pi_{1}}\right)$ and $L_{2}=K_{0}\left(\sqrt[5]{\pi_{2}}\right)$ are sub-extensions of K^{*} / K_{0}.
In [[8], section 5.1], we have an investigation of the rank of ambiguous classes of $K_{0}(\sqrt[5]{x}) / K_{0}$, denoted t. We have $t=d+q^{*}-3$, where d is the number of prime divisors of x in K_{0}, and q^{*} an index defined as [[8], section 5.1]. For the extensions $L_{i} / K_{0},(i=1,2)$, we have $d=1$ and by [[8], theorem 5.15] we have $q^{*}=2$, hence $t=0$.
By $h_{5}\left(L_{i}\right),(i=1,2)$, we denote the class number of L_{i}, then we have $h_{5}\left(L_{1}\right)=h_{5}\left(L_{2}\right)=1$. Otherwise $h_{5}\left(L_{i}\right) \neq 1$, then there exists an unramified cyclic extension of L_{i}, denoted F. This extension is abelian over K_{0}, because $\left[F: K_{0}\right]=5^{2}$, then F is contained in $\left(L_{i} / K_{0}\right)^{*}$ the relative genus field of L_{i} / K_{0}. Since $\left[\left(L_{i} / K_{0}\right)^{*}: L_{i}\right]=5^{t}=1$, we get that $\left(L_{i} / K_{0}\right)^{*}=L_{i}$, which contradicts the existence of F. Hence the 5 -class number of $L_{i},(i=1,2)$, is trivial.

In what follows, we denote by L_{1} and L_{2} the two sub-extensions of K^{*} / K_{0}, which verify theorem 3.4, and by \tilde{L} the three remaining sub-extensions different to K. Let $G=G a l\left(\left(K^{*}\right)_{5}^{(1)} / K_{0}\right)$, we have $\gamma_{2}(G)=$ $\operatorname{Gal}\left(\left(K^{*}\right)_{5}^{(1)} / K^{*}\right)$, then $G / \gamma_{2}(G)=\operatorname{Gal}\left(K^{*} / K_{0}\right)$ is of type $(5,5)$, therefore G is metabelian 5-group with factor commutator of type $(5,5)$, thus G admits exactly six maximal normal subgroups as follows:

$$
H=\operatorname{Gal}\left(\left(K^{*}\right)_{5}^{(1)} / K\right), H_{L_{i}}=\operatorname{Gal}\left(\left(K^{*}\right)_{5}^{(1)} / L_{i}\right),(i=1,2), \tilde{H}=\operatorname{Gal}\left(\left(K^{*}\right)_{5}^{(1)} / \tilde{L}\right)
$$

With $\chi_{2}(G)$ is one of them.
Now we can state our principal result.
Theorem 3.5. Let $G=\operatorname{Gal}\left(\left(K^{*}\right)_{5}^{(1)} / K_{0}\right)$ be a 5 -group of order $5^{n}, n \geq 4$, then G is a metabelian of maximal class. Furthermore we have:

- If $\chi_{2}(G)=H_{L_{i}}(i=1,2)$ then: $G \sim G_{a}^{(n)}(z, 0)$ with $n \in\{4,5,6\}$ and $a, z \in\{0,1\}$.
- If $\chi_{2}(G)=\tilde{H}$ then : $G \sim G_{1}^{(n)}(0,0)$ with $n=5$ or 6 .

$$
G \sim G_{0}^{(n)}(0,0) \text { with } n \geq 7 \text { such that } n=s+1 \text { where } h_{5}(\tilde{L})=5^{s}
$$

Proof. Let $G=\operatorname{Gal}\left(\left(K^{*}\right)_{5}^{(1)} / K_{0}\right)$ and $H=\operatorname{Gal}\left(\left(K^{*}\right)_{5}^{(1)} / K\right)$ its maximal normal subgroup, then $\gamma_{2}(H)=$ $\operatorname{Gal}\left(\left(K^{*}\right)_{5}^{(1)} / K_{5}^{(1)}\right)$, therefor $H / \gamma_{2}(H)=\operatorname{Gal}\left(K_{5}^{(1)} / K\right) \simeq C_{K, 5}$, and as $C_{K, 5}$ is of type $(5,5)$ by hypothesis we get that $\left|H / \gamma_{2}(H)\right|=5^{2}$. Lemma 2.3 imply that G is a metabelian 5 -group of maximal class, generated by two elements $G=\langle x, y\rangle$, such that, $x \in G \backslash \chi_{2}(G)$ and $y \in \chi_{2}(G) \backslash \gamma_{2}(G)$. Since $\chi_{2}(G)=\left\langle y, \gamma_{2}(G)\right\rangle$, we have $\chi_{2}(G) \neq H$. Otherwise we get that $\left|H / \gamma_{2}(H)\right|=5^{2}$, which contradict theorem 2.1.
According to theorem 3.4, we have $h_{5}\left(L_{1}\right)=h_{5}\left(L_{2}\right)=1$, then the transfers $V_{H_{L_{i}} \rightarrow \gamma_{2}(G)}$ are trivial. If $\chi_{2}(G)=H_{L_{i}}$ the results are nothing else than proposition 3.1.
If $\chi_{2}(G)=\tilde{H}$ and $n=4$ then $\gamma_{4}(G)=1$ and $\left[\chi_{2}(G), \gamma_{2}(G)\right]=\gamma_{2}(\tilde{H})$, also $\left[\chi_{2}(G), \gamma_{2}(G)\right]=\gamma_{4}(G)=1$ then $\chi_{2}(\tilde{H})=1$, whence \tilde{H} is abelian. Consequently $\tilde{H} / \gamma_{2}(\tilde{H})=C_{\tilde{L}, 5}$, so $h_{5}(\tilde{L})=|\tilde{H}|=5^{3}$ because its a maximal subgroup of G. Since \tilde{L} and k have always the same conductor, we deduce that $h_{5}(K)$ and $h_{5}(\tilde{L})$ verify the relations $5^{5} h_{\tilde{L}}=u h_{\Gamma}^{4}$ and $5^{5} h_{K}=u h_{\Gamma}^{4}$, given by C. Parry in [15], where u is a unit index and a divisor of 5^{6}. Using the 5 -valuation on these relations we get that $h_{5}(\tilde{L})=5^{s}$ where s is even, which contradict the fact that $h_{5}(\tilde{L})=5^{3}$, hence $n \geq 5$.
The results of the theorem are exactly application of propositions 3.2, 3.3. According to proposition 3.2, if $n \geq 7$ we have $\left|\chi_{2}(G)\right|=5^{n-1}$ and since $h_{5}(\tilde{L})=\left|\tilde{H} / \gamma_{2}(\tilde{H})\right|=|\tilde{H}|=5^{n-1}=5^{s}$ we deduce that $n=s+1$.

4. Numerical examples

For these numerical examples of the prime p, we have that $C_{K, 5}$ is of type $(5,5)$ and $\operatorname{rank} C_{K, 5}^{(\sigma)}=1$, which mean that K^{*} is cyclic quintic extension of K, then by theorem 3.5 we have a completely determination of G. We note that the absolute degree of $\left(K^{*}\right)_{5}^{(1)}$ surpass 100 , then the task to determine the order of G is definitely far beyond the reach of computational algebra systems like MAGMA and PARI/GP.

Table 1: $K=\mathbb{Q}\left(\sqrt[5]{p}, \zeta_{5}\right)$ with $C_{K, 5}$ is of type $(5,5)$ and $\operatorname{rank} C_{K, 5}^{(\sigma)}=1$

p	$p(\bmod 25)$	$h_{K, 5}$	$C_{K, 5}$	$\operatorname{rank}\left(C_{K, 5}^{(\sigma)}\right)$
149	-1	25	$(5,5)$	1
199	-1	25	$(5,5)$	1
349	-1	25	$(5,5)$	1
449	-1	25	$(5,5)$	1
559	-1	25	$(5,5)$	1
1249	-1	25	$(5,5)$	1
1499	-1	25	$(5,5)$	1
1949	-1	25	$(5,5)$	1
1999	-1	25	$(5,5)$	1
2099	-1	25	$(5,5)$	1

Acknowledgments

The authors would like to thank the referee for the thoughtful comments and efforts towards improving our manuscript.

References

1. Y. Berkovich, Groups of prime power order, Volume 1, de Gruyter, Expositions in Mathematics 46, 2008.
2. N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45-92.
3. H. Dietrich, B. Eick, and D. Feichtenschlager. Investigating p-groups by coclass with GAP. Contemp. Math. AMS 470, 45-61, 2008.
4. H. Dietrich. Periodic patterns in the graph of p-groups of maximal class. J. Group Theory 13, 851-871, 2010.
5. H. Dietrich. A new periodic pattern in the graph of p-groups of maximal class. Bull. London Math. Soc. 42, 1073-1088, 2010.
6. B. Eick and C. Leedham-Green, Classification of prime-power groups by coclass, Bull. London Math. Soc. 40, 274-288, 2008.
7. F. Elmouhib, M. Talbi, and A. Azizi, 5-rank of ambiguous class groups of quintic Kummer extensions, Proc Math Sci 132, 12 (2022). https://doi.org/10.1007/s12044-022-00660-z
8. M. Kulkarni, D. Majumdar, B. Sury, l-class groups of cyclic extension of prime degree l, J. Ramanujan Math. Soc. 30, No. 4 (2015), 413-454.
9. C. R. Leedham-Green and S. McKay. On the classification of p-groups of maximal class. Quart. J. Math. Oxford Ser. (2) 35, 293-304, 1984.
10. D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2012), no. 2, 471-505.
11. R. J. Miech, Metabelian p-groups of maximal class, Trans. Amer. Math. Soc. 152 (1970), 331-373.
12. R. J. Miech, The metabelian p-groups of maximal class, Trans. Amer. Math. Soc. 236 (1978), 93-119.
13. B. Nebelung, Klassiffication metabesher 3-gruppen mit Faktorkommutatogruppe von typ $(3,3)$ und anwendung auf das Kapitulationsproblem, Thèse de doctorat (1989), Kolon.
14. M. F .Newman. Groups of prime-power order. Groups Canberra 1989, 49-62, Lecture Notes in Math. 1456, Springer, Berlin, 1990.
15. C. Parry, Class number relations in pure quintic fields, Symposia Mathematica. 15 (1975), 475-485.
16. The PARI Group, Version 2.4.9, Bordeaux, 2017, http://pari.math.u-bordeaux.fr.
```
Fouad Elmouhib,
Department of Mathematics, Faculty of Sciences
Mohammed First University, 60000 Oujda, Morocco,
ORCID iDs: https://orcid. org/0000-0002-9880-3236
E-mail address: fouad.cd@gmail.com
and
Mohamed Talbi,
Regional Center of Education and Training, 60000 Oujda, Morocco,
ORCID iDs: https://orcid. org/0000-0002-9726-5608
E-mail address: ksirat1971@gmail.com.
and
Abdelmalek Azizi,
Department of Mathematics,
Faculty of Sciences
Mohammed First University,
60000 Oujda, Morocco,
ORCID iDs: https://orcid. org/0000-0002-0634-1995
E-mail address: abdelmalekazizi@yahoo.fr
```


[^0]: 2010 Mathematics Subject Classification: 11R37, 11R29, 11R20, 20D15.
 Submitted February 28, 2022. Published September 04, 2022

