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Semi-Delta-Open Sets in Topological Space

Kushal Singh and Asha Gupta

abstract: The purpose of this paper is to introduce a new class of open sets, namely semi-delta-open
sets (briefly δs−open sets). Further, some basic topological concepts such as neighbourhood axioms, border,
exterior, and frontier of a set are defined and their properties have been investigated. In addition, in terms of
these open sets, semi-delta-closed functions (briefly δs−closed functions) and semi-delta-continuous functions
(briefly δs−continuous functions) are also defined and their properties have been discussed.
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1. Introduction

The notion of an open set is very fundamental in topology. Many topologists have extensively studied
open sets and their new versions for so long. Amongst them, Levine [7] was the first who made known
the notion of semi-open sets. His work was not confined to this concept; he also introduced and studied
the term semi-closed set and the concept of semi-continuity of a function. A subset G1 of a topological
space (G, τ ) (briefly G) is termed as semi-open set if G1 ⊆ Cl[Int(G1)]. The complement of a semi-open
set is termed as semi-closed set. For a subset G1 of a space G, a point g in G is a semi-closure point
of G1 if for each semi-open set G2 in G containing g , G2 ∩ G1 6= ∅. Levine’s work opened up a new
window for many researchers. Many topologists used his notion of semi-open sets as a substitute to open
sets and proved various results. Veličko [10] purposed the notion of δ−closure and θ−closure of a set.
δ−closure of a subset G1 of space G is defined as the set of all such g in G such that Int[Cl(G2)]∩G1 6= ∅,
for each open set G2 in G containing g, and δ−interior of a subset G1 of space G is the set of all such
g ∈ G such that Int[Cl(G2)] ⊆ G1 for some open set G2 in G containing g. It is a well-established
result that the collection of all δ−open sets forms a topology on G, referred to as a semi-regularization
topology on G. Andrijević [1] generalized open sets by introducing b-open sets. Dutta and Tripathi [3]
proposed fuzzy b-θ open sets, and in 2019, Sarma and Tripathi [9] investigated several aspects of a fuzzy
semi-pre quasi-neighbourhood of a fuzzy point. In 2020, Latif [6] introduced and studied θ−irresolute,
θ−closed, pre-θ-open, and pre-θ-closed mappings and investigated their properties. Moreover, properties
of θ−continuous and θ−open mappings are further investigated. Latif [5] also proposed and explored the
various properties of δ−derived, δ−border, δ−frontier of a set and concepts of δ-D-sets. Recently, Hassan
and Labendia [4] introduced a new version of open sets called θs−open sets and explored various terms,
namely θs−continuous, θs−open, and θs−closed function. In addition, some forms of separation axioms
are introduced and characterized. The present paper gives an insight into semi-delta-open sets (briefly
δs−open sets), semi-delta-neighbourhood axioms (briefly δs−neighbourhood axioms), and various other
topological concepts using semi-delta-open sets. Moreover, the concepts of semi-delta-closed (briefly
δs−closed) and semi-delta-continuous functions (briefly δs−continuous functions) are introduced and
investigated.
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2. Preliminaries

In this paper, (G, τ ) and (K, σ) represent topological spaces (briefly G and K) unless otherwise
mentioned. Cl(G1) and Int(G1) symbolize the closure and the interior of the subset G1 of space G,
respectively.

Definition 2.1. [7] Let G be a topological space. A subset G1 of G is termed as semi-open set if
G1 ⊆ Cl(Int(G1)) and semi-closed set if Int(Cl(G1)) ⊆ G1

Definition 2.2. [2] The intersection of all semi-closed supersets of subset G1 of space G is called semi-
closure of G1 and is represented by sCl(G1). Also sCl(G1) = G1 ∪ Int(Cl(G1)).

For the following Lemma, one may refer to Navalagi and Gurushantanavar [8].

Lemma 2.3. For subsets G1 and G2 of G, the following hold for the semi-closure operator.

(1) G1 ⊂ sCl(G1) ⊂ Cl(G1);

(2) sCl(G1) ⊂ sCl(G2) if G1 ⊂ G2;

(3) sCl(sCl(G1)) = sCl(G1);

(4) sCl(G1 ∩ G2) ⊂ sCl(G1) ∩ sCl(G2);

(5) sCl(G1) ∪ sCl(G2) ⊂ sCl(G1 ∪ G2);

(6) G1 is semi-closed if and only if sCl(G1) = G1.

3. δs−Open Sets and Neighbourhood Axioms

The term δs−open sets, a new class of open sets, is defined in this section. Furthermore, the concept
of δs−neighbourhood axioms is proposed and investigated.

Definition 3.1. Let G be a topological space and G1 ⊆ G. Then G1 is said to be semi-delta-open (briefly
δs−open) if for every g ∈ G1, there exists an open set G2(say) containing g such that Int[sCl(G2)] ⊆ G1.

Definition 3.2. Let G be a topological space. Let g ∈ G and G1 ⊆ G. We say that G1 is a semi-delta-
neighbourhood (briefly δs−neighbourhood) of g if there is a δs− open set G2 of G such that g ∈ G2 ⊆ G1.

Definition 3.3. Let G be a topological space and G1 ⊆ G. Then the semi-delta-closure (briefly δs−clo-
sure) of G1 is denoted and defined by Clδs

(G1) = ∩{G2 : G2 is δs−closed and G1 ⊆ G2}.

Definition 3.4. A point g ∈ G is called the semi-delta-cluster point (briefly δs−cluster point) of G1 ⊆ G
if G1∩Int[sCl(G2)] 6= ∅ for every open set G2(say) of G containing g. Sometimes we define the δs−closure
of the set G1 as the set of all δs−cluster points of G1.

Definition 3.5. Let G be topological space and G1 ⊆ G. Then the semi-delta-interior (briefly δs−inte-
rior) of G1 is denoted and defined by Intδs

(G1) = ∪{G2 : G2 is δs-open and G2 ⊆ G1}. Moreover, a
point g ∈ G is said to be a δs−interior point of G1 if there exist a δs−open set G2 containing g such that
G2 ⊆ G1.

Definition 3.6. A subset G1 ⊆ G is called semi-delta-closed (briefly δs−closed) if G1 = Clδs
(G1).

Moreover, the complement of a semi-delta-closed set is a semi-delta-open set.

Remark 3.7. The arbitrary union of semi-delta-open sets is semi-delta-open.

Remark 3.8. Clδs
(G1 ∩ G2) ⊆ Clδs

(G1) ∩ Clδs
(G2), for any subsets G1, G2 of space G.

Theorem 3.9. Let G be a topological space. Then the following conditions hold:

(1) Empty set and space G are δs− closed.
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(2) Arbitrary intersections of δs− closed sets are δs−closed.

(3) Finite union of δs− closed sets are δs−closed.

Proof. (1) ∅ and G are δs− closed because they are the complement of δs− open sets G and ∅, respectively.

(2) Given a collection of δs−closed sets {Fα}α∈I , we apply DeMorgan’s law,
G −

⋂

α∈I

Fα =
⋃

α∈I

(G − Fα). Since the sets G − Fα are δs−open by definition and arbitrary union of δs−

open sets is δs− open. Thus
⋂

α∈I

Fα is δs−closed.

(3) Similarly, if Fi is δs− closed for i = 1, ...n, consider the equality G −
⋃n

i=1Fi =
⋂n

i=1(G − Fi). Since
finite intersection of δs− open set is δs− open. Hence

⋃n
i=1Fi is δs− closed. �

Theorem 3.10. Let G be a topological space. Then the intersection of two δs−neighbourhoods of g ∈ G
is also a δs− neighbourhood of g.

Proof. Let N1 and N2 be two δs−neighbourhoods of g ∈ G. Then there exists δs−open sets G1 and G2

such that g ∈ G1 ⊆ N1 and g ∈ G2 ⊆ N2. Therefore, g ∈ G1 ∩ G2 ⊆ N1 ∩ N2. Thus G1 ∩ G2 is an δs−
open set containing g and is contained in N1 ∩ N2. This implies that N1 ∩ N2 is also a δs−neighbourhood
of g. �

Theorem 3.11. Let G be a topological space. If N is a δs−neighbourhood of g ∈ G then there exists a
δs−neighbourhood M of g which is subset of N i.e M ⊆ N such that M is a δs−neighbourhood of each
of its points.

Proof. Let N be a δs−neighbourhood of g ∈ G. Then there exists δs−open set M such that g ∈ M ⊆ N .
Now M being a δs−open set, it is a δs−neighbourhood of each of its points. Hence the result follows. �

Theorem 3.12. A subset of topological space is δs−open iff it is δs−neighbourhood of each of its points.

Proof. Let G be a topological space. Let G1 be a subset of G. Let Ng be δs−neighbourhood of g ∈ G.
Then there exists δs−open set Gg(say) in G such that g ∈ Gg ⊆ Ng ⊆ G1. Now

⋃

g∈G1

Gg = G1. As

arbitrary union of δs−open sets is also δs−open. Hence G1 is δs−open set. Conversely, if G1 is δs−open
set, we can take Ng = G1 for all g ∈ G1. Hence for all g ∈ G1, we have Ng ∈ G1 such that Ng ⊆ G1. �

4. Basic Properties of δs−Open Sets

In this section, the notions of semi-delta-limit point (briefly δs−limit point), semi-delta-border (briefly
δs−border), semi-delta-frontier (briefly δs−frontier) and semi-delta-exterior (briefly δs−exterior) of a
subset G1 of space G have been introduced and investigated.

Definition 4.1. Let G1 be a subset of a space G. A point g ∈ G is said to be δs−limit point of G1 if for
each δs−open set G2 containing g, G2 ∩ (G1 − {g}) 6= ∅.
The set of all δs−limit points of G1 is called semi-delta-derived set (briefly δs−derived set) of G1 and is
denoted by Dδs

(G1).

Remark 4.2. For a subset G1 of the space G, the following results hold.

(1) [G − Intδs
(G1)] = Clδs

(G − G1).

(2) Cl(G1) ⊆ Clδs
(G1).

(3) G1 is δs−open if and only if G1 = Intδs
(G1).

(4) Intδs
[Intδs

(G1)] = Intδs
(G1).

(5) Intδs
(G1) = [G1 − Dδs

(G − G1)].
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(6) Clδs
(G1) = G1 ∪ Dδs

(G1).

(7) Intδs
(G1) ∪ Intδs

(G2) ⊆ Intδs
(G1 ∪ G2).

Definition 4.3. δs−border of a subset G1 of space G is defined and denoted by Bdδs
(G1) = G1 −

Intδs
(G1).

Theorem 4.4. For a subset G1 of space G, the following statements hold:

(1) Bd(G1) ⊆ Bdδs
(G1), where Bd(G1) denotes the border of G1.

(2) G1 = Intδs
(G1) ∪ Bdδs

(G1).

(3) Intδs
(G1) ∩ Bdδs

(G1) = ∅.

(4) G1 is δs−open set if and only if Bdδs
(G1) = ∅.

(5) Bdδs
[Intδs

(G1)] = ∅.

(6) Intδs
[Bdδs

(G1)] = ∅.

(7) Bdδs
[Bdδs

(G1)] = Bdδs
(G1).

(8) Bdδs
(G1) = G1 ∩ [Clδs

(G − G1)].

(9) Bdδs
(G1) = Dδs

(G − G1).

Proof. (1) Bd(G1) = G1 ∩ (Int(G1))c = G1 ∩ Cl(Gc
1). Since Cl(G1) ⊆ Clδs

(G1), therefore Bd(G1) ⊆
G1 ∩ Clδs

(G1)c = G1 ∩ (Intδs
(G1))c = Bdδs

(G1).

(2) Intδs
(G1)∪Bdδs

(G1) = Intδs
(G1)∪[G1 −Intδs

(G1)] = [Intδs
(G1)∪G1]∩[Intδs

(G1)∪(Intδs
(G1))c]

= G1.

(3) Intδs
(G1) ∩ Bdδs

(G1) = Intδs
(G1) ∩ (G1 − Intδs

(G1)) = [Intδs
(G1) ∩ (Intδs

(G1))c)] ∩ G1

= ∅.

(4) If G1 is δs−open, then using Remark 4.2, Intδs
(G1) = G1. Therefore, Bdδs

(G1) = ∅. Conversely,
if Bdδs

(G1) = ∅ =⇒ G1 − Intδs
(G1) = ∅, which implies G1 = Intδs

(G1). Hence G1 is δs−open.

(5) Bdδs
[Intδs

(G1)] = Intδs
(G1) − Intδs

(Intδs
(G1))= ∅. Using Remark 4.2.

(6) If g ∈ Intδs
[Bdδs

(G1)], then g ∈ Bdδs
(G1). On the other hand, since Bdδs

(G1) ⊆ G1, g ∈

Intδs
[Bdδs

(G1)] ⊆ Intδs
(G1). Hence, g ∈ Intδs

(G1) ∩ Bdδs
(G1) which contradicts (3). Thus,

Intδs
[Bdδs

(G1)] = ∅.

(7) Bdδs
[Bdδs

(G1)] = Bdδs
(G1) − Intδs

[Bdδs
(G1)] = ∅. Now, using result proved in (6) we get the

desired result.

(8) Bdδs
(G1) = G1 − Intδs

(G1)= G1 − [G − Clδs
(G − G1)] = G1 ∩ Clδs

(G − G1).

(9) Bdδs
(G1) = G1 − Intδs

(G1) = G1 − [G1 − Dδs
(G − G1)] = Dδs

(G − G1).
�

Definition 4.5. δs−frontier of a subset G1 of space G is defined and denoted by Frδs
(G1) = Clδs

(G1) −
Intδs

(G1).

Theorem 4.6. For a subset G1 of space G, the following statements hold:

(1) Fr(G1) ⊆ Frδs
(G1), where Fr(G1) denotes the frontier of G1.

(2) Clδs
(G1) = Intδs

(G1) ∪ Frδs
(G1).
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(3) Intδs
(G1) ∩ Frδs

(G1) = ∅.

(4) Bdδs
(G1) ⊆ Frδs

(G1).

(5) Frδs
(G1) = Bdδs

(G1) ∪ Dδs
(G1).

(6) G1 is a δs−open set if and only if Frδs
(G1) = Dδs

(G1).

(7) Frδs
(G1) = Clδs

(G1) ∩ Clδs
(G − G1).

(8) Frδs
(G1) = Frδs

(G − G1).

(9) Frδs
(G1) is δs− closed.

(10) Frδs
[Frδs

(G1)] ⊆ Frδs
(G1).

(11) Frδs
[Intδs

(G1)] ⊆ Frδs
(G1).

(12) Frδs
[Clδs

(G1)] ⊆ Frδs
(G1).

(13) Intδs
(G1) = G1 − Frδs

(G1).

Proof. (1) Fr(G1) = Cl(G1) ∩ [Int(G1)]c = Cl(G1) ∩ Cl(G1)c. Since, Cl(G1)c ⊆ Clδs
(G1)c, therefore,

Fr(G1) ⊆ Cl(G1) ∩ Clδs
(G1)c = Cl(G1) − Intδs

(G1) = Frδs
(G1).

(2) Intδs
(G1) ∪ Frδs

(G1) = Intδs
(G1) ∪ [Clδs

(G1) − Intδs
(G1)]

=[Intδs
(G1) ∪ Clδs

(G1)] ∩ [Intδs
(G1) ∪ (G − Intδs

(G1))] = Clδs
(G1).

(3) Intδs
(G1) ∩ Frδs

(G1) = Intδs
(G1) ∩ [Clδs

(G1) − Intδs
(G1)]

= [Intδs
(G1) ∩ Clδs

(G1)] ∩ [Intδs
(G1) ∩ (G − Intδs

(G1))] = ∅.

(4) Bdδs
(G1) = G1 − Intδs

(G1) = G1 ∩ [Intδs
(G1)]c. Since G1 ⊆ Clδs

(G1), therefore Bdδs
(G1) ⊆

Clδs
(G1) ∩ [Intδs

(G1)]c = Frδs
(G1).

(5) Since Intδs
(G1) ∪ Frδs

(G1) = Intδs
(G1) ∪ Bdδs

(G1) ∪ Dδs
(G1). Using Remark 4.2, result proved

in (2) and Theorem 4.4. We have, Frδs
(G1) = Bdδs

(G1) ∪ Dδs
(G1).

(6) If G1 is δs−open, this implies Bdδs
(G1) = ∅ =⇒ Frδs

(G1) = Dδs
(G1), using result proved in

(5). Conversely, if Frδs
(G1) = Dδs

(G1) then using result proved in (2) and Remark 4.2 =⇒ G1 is
δs−open.

(7) Frδs
(G1) = Clδs

(G1) − Intδs
(G1) = Clδs

(G1) ∩ Clδs
(G − G1). By using Remark 4.2.

(8) From (7), Frδs
(G1) = Clδs

(G1) ∩ Clδs
(G − G1). Replacing G1 by G − G1 we have,

Frδs
(G1) = Frδs

(G − G1).

(9) Clδs
[Frδs

(G1)] = Clδs
[Clδs

(G1)∩Clδs
(G−G1)] ⊆ Clδs

[Clδs
(G1)]∩Clδs

[Clδs
(G−G1)]=Clδs

(G1)∩
Clδs

(G − G1) = Frδs
(G1). Hence, Frδs

(G1) is δs− closed.

(10) Frδs
[Frδs

(G1)] = Clδs
[Frδs

(G1)] ∩ Clδs
[G − Frδs

(G1)] ⊆ Clδs
[Frδs

(G1)] = Frδs
(G1).

(11) Frδs
[Intδs

G1] = Clδs
[Intδs

(G1)] ∩ Clδs
[Intδs

(G1)]c ⊆ Clδs
[Frδs

(G1)] = Frδs
(G1). Using result

proved in (3).

(12) Frδs
[Clδs

(G1)] = Clδs
[Clδs

(G1)] − Intδs
[Clδs

(G1)] = Clδs
(G1) − Intδs

(Clδs
(G1)) ⊆ [Clδs

(G1) −
Intδs

(G1)] = Frδs
(G1).

(13) G1 − Frδs
(G1) = G1 − [Clδs

(G1) − Intδs
(G1)] = Intδs

(G1).
�
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Definition 4.7. δs−exterior of a subset G1 of space G is defined and denoted by Extδs
(G1) = Intδs

(G−
G1).

Theorem 4.8. For the subset G1 of space G, the following statements hold:

(1) Extδs
(G1) ⊆ Ext(G1), where Ext(G1) denotes the exterior of G1.

(2) Extδs
(G1) is δs− open.

(3) Extδs
(G1) = Intδs

(G − G1) = G − Clδs
(G1).

(4) Extδs
[Extδs

(G1)] = Intδs
[Clδs

(G1)].

(5) If G1 ⊆ G2, then Extδs
(G2) ⊆ Extδs

(G1).

(6) Extδs
(G1) ∩ Extδs

(G2) ⊆ Extδs
(G1 ∩ G2).

(7) Extδs
(G) = ∅.

(8) Extδs
(∅) = G.

(9) Extδs
(G1) = Extδs

[G − Extδs
(G1)].

(10) Intδs
(G1) ⊆ Extδs

[Extδs
(G1)].

(11) G = Intδs
(G1) ∪ Extδs

(G1) ∪ Frδs
(G1).

(12) Extδs
(G1) ∪ Extδs

(G2) ⊆ Extδs
(G1 ∩ G2).

Proof. (1) Since, Extδs
(G1) = Intδs

(G−G1), therefore, Intδs
(G−G1) = G−Clδs

(G1) ⊆ G−Cl(G1) =
Int(G − G1) = Ext(G1)

(2) Since Intδs
(G1) is δs− open for any subset G1 of space G, this implies Extδs

(G1) is δs− open.

(3) Using result, Intδs
(G − G1) = G − Clδs

(G1).

(4) Extδs
[Extδs

(G1)] = Extδs
[G − Clδs

(G1)] = Intδs
[G − (G − Clδs

(G1))] = Intδs
[Clδs

(G1)].

(5) As G1 ⊆ G2 =⇒ G − G2 ⊆ G − G1. Therefore, Extδs
(G2) = Intδs

(G − G2) ⊆ Intδs
(G − G1) =

Extδs
(G1).

(6) Using the fact, G1 ∩ G2 ⊆ G1, G1 ∩ G2 ⊆ G2 and result proved in (5).

(7) Extδs
(G) = Intδs

(∅) = ∅.

(8) Extδs
(∅) = Intδs

(G).

(9) Extδs
[G − Extδs

(G1)] = Extδs
[G − Intδs

(G − G1)] = Intδs
[Intδs

(G − G1)] = Intδs
(G − G1) =

Extδs
(G1).

(10) Intδs
(G1) ⊆ Intδs

[Clδs
(G1)] = Intδs

[G − Intδs
(G − G1)] =Intδs

[G − Extδs
(G1)]

= Extδs
[Extδs

(G1)].

(11) Intδs
(G1) ∪ Extδs

(G1) ∪ Frδs
(G1) = Intδs

(G1) ∪ Intδs
(G − G1) ∪ Bdδs

(G1) ∪ Dδs
(G1) = G.

(12) Extδs
(G1)∪Extδs

(G2) = Intδs
(G−G1)∪Intδs

(G−G2) ⊆ Intδs
[(G−G1)∪ (G−G2)] = Intδs

[G−

(G1 ∩ G2)] = Extδs
(G1 ∩ G2).

�



Semi-Delta-Open Sets in Topological Space 7

5. δs−Open Functions, δs−Closed Functions and δs−Continuous Functions

In this section, we introduce the concepts of δs−open, δs−closed, and δs−continuous functions and
further study their properties.

Definition 5.1. Let G and K be topological spaces. A function g : G → K is δs−open if g(G1) is δs−
open in K for each open set G1 in G.

Definition 5.2. Let G and K be topological spaces. A function g : G → K is δs−closed if g(G1) is δs−
closed in K for every closed set G1 in G.

Definition 5.3. A function g : (G, τ ) → (K, σ) is said to be δs−continuous function if g−1(K1) is
δs−open for every open set K1 of K.

Theorem 5.4. Let G and K be topological spaces and g : G → K be a function. Then the following
statements are equivalent:

(1) g is δs− closed on G.

(2) Clδs
(g(G1)) ⊆ g(Cl(G1)) for every G1 ⊆ G.

Proof. (1) =⇒ (2) Let G1 ⊆ G. Note that g(G1) ⊆ g[Cl(G1)] and g[Cl(G1)] is δs− closed. As δs−closure
of G1 is the smallest δs− closed set containing G1. Therefore, Clδs

[g(G1)] ⊆ g[Cl(G1)].

(2) =⇒ (1) Let G1 be closed set in G. By assumption, g(G1) ⊆ Clδs
[g(G1)] ⊆ g[Cl(G1)] = g(G1).

Thus, g(G1) is δs−closed. Therefore, g is δs−closed in G. �

Theorem 5.5. Let g : (G, τ ) → (K, σ) be δs−closed. If K1 ⊆ K and G1 ⊆ G is an open set containing
g−1(K1), then there exists a δs−open set K2 ⊆ K containing K1 such that g−1(K2) ⊆ G1.

Proof. Let K2 = K − g(G − G1). Since g−1(K1) ⊆ G1, we have g(G − G1) ⊆ (K − K1). Since g is
δs−closed, then K2 is a δs− open set and g−1(K2) = G − g−1[g(G − G1)] ⊆ G − (G − G1) = G1. �

Theorem 5.6. Suppose that g : (G, τ ) → (K, σ) is a δs−closed function. Then Intδs
[Clδs

(g(G1))] ⊆
g(Cl(G1)) for every subset G1 of G.

Proof. Suppose g is a δs−closed function and G1 is an arbitrary subset of G. Then g[Cl(G1)] is δs−closed
set in K. Then Intδs

[Clδs
(g(Cl(G1)))] ⊆ g[Cl(G1)]. But also Intδs

[Clδs
(g(G1))] ⊆ Intδs

[Clδs
(g(Cl(G1))].

Hence Intδs
[Clδs

(g(G1))] ⊆ g(Cl(G1)). �

Theorem 5.7. Let g : (G, τ ) → (K, σ) be a δs− closed function, and K1, K2 ⊆ K. Then the following
statements hold:

(1) If U is an open neighbourhood of g−1(K1), then there exists a δs−open neighbourhood V of K1 such
that g−1(K1) ⊆ g−1(V ) ⊆ U .

(2) If g is also onto, then if g−1(K1) and g−1(K2) have disjoint open neighbourhoods, so have K1 and
K2.

Proof. (1) Let V = K − g(G − U). Then K − V = g(G − U). Since g is δs−closed, so V is a δs−open set.
Since g−1(K1) ⊆ U , we have K − V = g(G − U) ⊆ g[g−1(K − K1)] ⊆ (K − K1). Hence, K1 ⊆ V , thus
V is a δs−neighbourhood of K1. Further G − U ⊆ g−1[g(G − U)] = g−1(K − V ) = G − g−1(V ). This
proves that g−1(V ) ⊆ U .

(2) If g−1(K1) and g−1(K2) have disjoint open neighbourhoods M and N , then by (1), we have δs−open
neighbourhoods U and V of K1 and K2 respectively such that g−1(K1) ⊆ g−1(U) ⊆ Intδs

(M) and
g−1(K2) ⊆ g−1(V ) ⊆ Intδs

(N). Since M and N are disjoint, so are Intδs
(M) and Intδs

(N), hence so
g−1(U) and g−1(V ) are disjoint as well. It follows that U and V are disjoint too, as g is onto. �
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Theorem 5.8. Prove that a surjective mapping g : (G, τ ) → (K, σ) is δs−closed, if and only if for
each subset K1 of K and each open set G1 in G containing g−1(K1), there exists a δs−open set V in K
containing K1 such that g−1(V ) ⊆ G1.

Proof. Necessity. Follows from (1) of Theorem 5.7.

Sufficiency. Suppose F is an arbitrary closed set in G. Let k be an arbitrary point in K − g(F ). Then
g−1(k) ⊆ G − g−1[g(F )] ⊆ (G − F ) and (G − F ) is open in G. By using assumption, there exists a δs−
open set Vk containing k such that g−1(Vk) ⊆ (G − F ). This implies that k ∈ Vk ⊆ [K − g(F )]. Thus
K − g(F ) = ∪{Vk : k ∈ K − g(F )}. Hence K − g(F ), being a union of δs− open sets, is δs−open. Thus
its complement g(F ) is δs−closed. Which proves that g is δs−closed. �

Theorem 5.9. Let G and K be topological spaces and g : G → K be a function.Then the following
statements are equivalent:

(1) g is δs−continuous on G.

(2) g−1(F ) is δs−closed in G for each closed subset F of K.

(3) g−1(K1) is δs−open for each basic open set K1 in K.

(4) For every p ∈ G and every open set V of K containing g(p), there exists a δs−open set U containing
p such that g(U) ⊆ V..

(5) g[Clδs
(G1)] ⊆ Cl[g(G1)] for each G1 ⊆ G.

(6) Clδs
[g−1(K1)] ⊆ g−1(Cl(K1)).

(7) Bdδs
[g−1(K1)] ⊆ g−1[Bd(K1)], for every K1 ⊆ K.

(8) g[Dδs
(G1)] ⊆ Cl[g(G1)], for every G1 ⊆ G.

(9) g−1[Int(K1)] ⊆ Intδs
[g−1(K1)], for every K1 ⊆ K.

Proof. (1) =⇒ (2) Let F be closed subset of K, then its complement is open in K. By using assumption,
g−1(K/F ) = g−1(K)/g−1(F ) = G/g−1(F ) is δs−open which implies that g−1(F ) is δs−closed in G.
(2) =⇒ (1) Let F be an open set in K then K/F is closed in K, by using assumption, g−1(K/F ) is
δs−closed in G, which implies g−1(F ) is δs− open in G. Hence g is δs−continuous.

(2) =⇒ (3) Let K1 be basic open set in K. Then K/K1 is closed in K, therefore g−1(G/K1) is δs−
closed in G, which implies g−1(K1) is δs−open.

(3) =⇒ (4) For each p ∈ G and every open set V of K containing g(p). Then U = g−1(V ) is δs− open
in G, which implies g(U) ⊆ V

(4) =⇒ (5) Let G1 ⊆ G and p ∈ Clδs
(G1). Let V be an open neighbourhood of g(p) and U be

δs−open set in G containing p, such that g(U) ⊆ V . Since p ∈ Clδs
(G1) implies U ∩ G1 6= ∅. Hence

∅ 6= g(U ∩ G1) ⊆ g(U) ∩ g(G1) ⊆ V ∩ g(G1). Since choice of V is arbitrary =⇒ every neighbourhood of
g(p) intersect g(G1) =⇒ g(p) ∈ Cl(g(G1)). Hence g[Clδs

(G1)] ⊆ Cl[g(G1)] for each G1 ⊆ G.

(5) =⇒ (6) Let G1 = g−1(K1) then using assumption, g[Clδs
(G1)] ⊆ Cl[g(G1)] = Cl[g(g−1(K1))] =

Cl(K1). Hence Clδs
[g−1(K1)] ⊆ g−1[Cl(K1)].

(7) =⇒ (9) Let K1 ⊆ K. Then by hypothesis, Bdδs
[g−1(K1)] ⊆ g−1[Bd(K1)]

=⇒ g−1(K1) − Intδs
[g−1(K1)] ⊆ g−1[K1 − Int(K1)] = g−1(K1) − g−1[Int(K1)]

=⇒ g−1[Int(K1)] ⊆ Intδs
[g−1(K1)].

(9) =⇒ (7) Let K1 ⊆ K. Then by hypothesis, g−1[Int(K1)] ⊆ Intδs
[g−1(K1)]

=⇒ g−1(K1) − Intδs
[g−1(K1)] ⊆ g−1(K1) − g−1[Int(K1)] = g−1[K1 − Int(K1)]

=⇒ Bdδs
[g−1(K1)] ⊆ g−1[Bd(K1)].
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(1) =⇒ (8) It is obvious, since g is δs−continuous, by (5), g(Clδs
(G1)) ⊆ Cl(g(G1)) for each G1 ⊆ G.

So g[Dδs
(G1)] ⊆ Cl[g(G1)].

(8) =⇒ (1) Let K1 ⊆ K be an open set, V = K − K1 and g−1(V ) = W . Then by hypothesis,
g[Dδs

(W )] ⊆ Cl[g(W )]. Thus g[Dδs
(g−1(V ))] ⊆ Cl[g(g−1(V ))] ⊆ Cl(V ) = V. Then

Dδs
[g−1(V )] ⊆ g−1(V ) and g−1(V ) is δs−closed. Therefore g is δs−continuous.

(1) =⇒ (9) Let K1 ⊆ K. Then g−1[Int(K1)] is δs−open in G. Thus g−1[Int(K1)] = Intδs
[g−1(Int(K1))]

⊆ Intδs
[g−1(K1)]. Therefore g−1[Int(K1)] ⊆ Intδs

[g−1(K1)].

(9) =⇒ (1) Let K1 ⊆ K be an open set. Then g−1(K1) = g−1[Int(K1)] ⊆ Intδs
[g−1(K1)]. Therefore

g−1(K1) is δs− open. Hence g is δs−continuous. �
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