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Fractional Order Iterative Boundary Value Problem

M. Menchih, K. Hilal, M. Elomari and A. Kjouni

abstract: In the present paper, we establish the existence and uniqueness results for an iterative differential
equation involving Caputo fractional derivative of order α ∈ (1, 2). We prove our main results by applying
Schauder fixed point theorem. Some fractional inequalities are used to prove the extremal solution of our
proposed model. As application, an example is given to illustrate the theoretical results.
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1. Introduction

Fractional derivatives provide an excellent tool for the description of memory and hereditary propreties
of various materials and processses. Fractional differential equations, in particular, are getting a lot of
attention and importance. Highly remarkable monographs which provide tha main theorical tools for
qualitative analysis of fractional differential equations and at the same time, show the interconnection as
well as the contrast between integer differential models and fractional models (see [5,20]). Many works on
the existence, uniqueness, stability, periodicity of solutions and optimal control for all kinds of fractional
differential equations have been reported (see [12,13,15,17]). Iterative differential equation often arises in
the modeling of a wide range of natural phenomena such as disease transmission models in epidemiology,
two body problems of classical electrodynamics, population models, physical models, mechanical models
and other numerous models (see [8,9,7]). This kind of equations which relates an unknown function, its
derivatives and its iterates, is a special case of the so-called differential equations with state-dependent
delays. More precisely, the following class of functional differential equations with state and time-varying
delays (see [11]),

x(n)(t) = f(t, x(t), x(t − τ1(t, x(t)), ..., x(t − τn(t, x(t))))),

can be considered as the mother of our equation, where the complicated lags τ i(t, x(t)) give rise to
appearance of the iterates. Almost the litterature related to this type of equations that presently exists
includes first order equations. Unfortunately, very few papers have been devoted to study of order
greather than one (see [9,14,6,18]). The difficulty in studying these equations which have distinctive
characteristic lies in iterative terms that often hinder the application of usual methods. The study of
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iterative differential equations can be traced back to papers by Petuhov [18] and Eder [9]. In 1965,
Petuhov [18] considered the existence of solutions of differential equation

x′′(t) = λx(x(t)),

under the condition that x(t) maps the interval [−T, T ] into itself and that x(0) = x(T ) = α. He obtained
conditions on λ and α for existence and uniqueness of solution. In 1984, Eder [9] used Banach contraction
mapping priciple to find the existence and uniqueness of solution to the following iterative differential
equation

x′(t) = f(x(x(t))),

with x(t0) = t0, where t0 ∈ [−1, 1]. In 1990, Feçkan [10] obtained the local solution of the standard
iterative differential equation

x′(t) = φ(x(x(t))),

whit the initial condition x(0) = 0, where φ ∈ C1(R). In 1993, Wang [21] studied the same equation
associated to intial condition x(ν) = ν by using the Schauder’s fixed point theorem, where ν is the
endpoint of the well defined interval. By using the nonexpansive operators, in 2010, Berinde [6] proposed
the existence and and the convergence results to iterative differential equation studied by Feçkan and
Wang. In 2018, Kaufmann [14] established the existence and uniqueness of solutions of the functional
differential equation

x′′(t) = f(t, x(t), x(x(t))),

by using Shauder’s fixed point.
In this paper, we disscus the existence and uniqueness of the fractional iterative boundary value problem

{

CDα

0+x(t) = f(t, x[1](t), x[2](t), ..., x[m](t)), t ∈]0, T [,
x(0) = 0, x(T ) = T.

(1.1)

Where f : [0, T ] × R × ... × R is a continuouns function, x[1](t) = x(t), x[2](t) = x(x(t)), ..., x[m](t) =
x(x[m]−1(t)), 1 < α < 2 and CDα

0+ is the Caputo derivative. We establish also some fractional differ-
ential inequalities which are an important and great mathematical topic for research, they have many
applications, the most important ones are in establishing uniqueness of solutions in fractional differential
equations and systems. Also they provide upper bounds of the solutions of the above equations. More-
over, the comparaison principle is proved. Note that due to the iterative term x[i](t), i = 1, 2, ..., m in
order for solution to be well-defined, we require that the image of x be in the interval [0, T ]; that is, we
need 0 ≤ x(t) ≤ T, for all t ∈ [0, T ]. Our motivations came from the fact that very little know about
fractional order iterative problems and that many dynamical systems are better characterized by the
fractional derivatives. Furthermore, as far as know, this kind of problems has not been studied till know.
Thus, it is worthwhile to contribute in filling this gap by continuing the investigation in this direction in
order to enrich and complement the avalaible works in the litterature.
We arrang the rest of the paper as follows. In section 2, we present some definitions and propreties of
fractional calculus related to our work. Section 3 contains the existence and uniqueness results which
proved by using Schauder’s and Banach fixed points. As an illustation, in section 4, we provide an exam-
ple to show the feasibilty of our main results. Some fundamental fractional differential inequalities are
proved in section 5. Section 6 is devoted to the existence of extremal solution. Finaly, a comparaison
theorems, which will be useful for further study of qualitative behavior of solutions, are given in the last
section.

2. Existence and uniquness results

We first convert the boundary value problem (1.1) to a fixed point problem. To do, applying the
fractional integral to the both sides of the first equation of (1.1), we get

x(t) = c0 + c1t +
1

Γ(α)

∫ t

0

(t − s)α−1f(s, x[1](s), x[2](s), ..., x[m](s))ds.



Fractional Order Iterative Boundary Value Problem 3

Using the value conditions, we obtain c0 = 0 and

c1 = 1 −
1

T Γ(α)

∫ T

0

(T − s)α−1f(s, x[1](s), x[2](s), ..., x[m](s))ds.

Intersecting the value of c0 and c1, we have

x(t) =t −
t

T Γ(α)

∫ T

0

(T − s)α−1f(s, x[1](s), x[2](s), ..., x[m](s))ds

+
1

Γ(α)

∫ t

0

(t − s)α−1f(s, x[1](s), x[2](s), ..., x[m](s))ds.

Then, x satisfies the integral equation

x(t) = t +

∫ T

0

G(t, s)f(s, x[1](s), x[2](s), ..., x[m](s))ds, (2.1)

where,

G(t, s) =

{

− t

T Γ(α) (T − s)α−1 + 1
Γ(α) (t − s)α−1, 0 ≤ s < t ≤ T,

− t

T Γ(α) (T − s)α−1, 0 ≤ t < s ≤ T.
(2.2)

Motivate by the above calculus, we can introduce the following lemma.

Lemma 2.1. x is a solution of the boundary value problem (1.1) if only and if x satisfies the inetgral
solution (2.1).

Proof. It’s clear that x(0) = 0 and x(T ) = T. Applying the Caputo fractional derivative to (2.1), we
obtain that

CDα

0+x(t) = f(t, x[1](t), x[2](t), ..., x[m](t)), t ∈]0, T [.

Which acheve the proof. �

By X = C([0, T ],R) we denote the Banach space of all continuous functions from [0.T ] into R equipped
with the norm

‖x‖ = sup{|x(t)|; t ∈ [0, 1]}.

We define the operator A : X → X by

(Aϕ)(t) = t +

∫ T

0

G(t, s)f(s, ϕ[1](s), ϕ[2](s), ..., ϕ[m](s))ds,

where G(t, s) is the function defined by (2.2).
Recall that for solutions of the boundary value problem (1.1) to be well defined, we need 0 ≤ x(t) ≤ T,

for all 0 ≤ t ≤ T. As such, if x ∈ C([0, T ]) is a fixed point of A such that 0 ≤ (Ax)(t) ≤ T, for all 0 ≤ t ≤ T ,
then x is a solution of the boundary value problem (1.1). To guarantee 0 ≤ (Ax)(t) ≤ T, we need the
following lemma.

Lemma 2.2. The function x is a solution of the boundary value probelm (1.1) if only and if x is a fixed
point of A and 0 ≤ (Ax)(t) ≤ T, for all t ∈ [0, T ].

To establish our existence and uniqueness results we will need the following asumptions.
(H1) There exist A > 0 such that

|f(t, x1, x2, ..., xm)| < A,

for all x1, x2, ..., xm ∈ R, t ∈ [0, T ] and
AT α−1

Γ(α + 1)
<

1

α + 1
.
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(H2) There exist L1, L2, ..., Lm > 0 such that

|f(t, x1, x2, ..., xm) − f(t, y1, y2, ..., ym)| <

m
∑

i=1

Li‖xi − yi‖,

for all t ∈ [0, T ] and xi, yi ∈ R, i = 1, 2, ..., m.

We are now ready to presente our first result which will poved by Schauder’s fixed point [19].

Theorem 2.3. Assume that hypothesis (H1) holds. Then the fractional boundary value problem (1.1)
has a solution defined on [0, T ].

Proof. From the lemma 2.2, we first prove that 0 ≤ (Ax)(t) ≤ T. To do, we consider t ∈ [0, T ], and we
have

(Ax)′(t) = 1 −
1

T Γ(α)

∫ T

0

(T − s)α−1f(s, x(x), ..., x[m](s))ds

+
1

Γ(α − 1)

∫ t

0

(t − s)α−2f(s, x(x), ..., x[m](s))ds

≥ 1 −
A

T Γ(α)

∫ T

0

(T − s)α−1ds −
A

Γ(α − 1)

∫ t

0

(t − s)α−2ds

≥ 1 −
AT α−1

Γ(α + 1)
(1 + α) > 0.

Consequently Ax is increasing on [0, T ], which implies that 0 ≤ (Ax)(t) ≤ T, for all t ∈ [0, T ]. To complete
the proof, it’s suffice to show that A(S) ⊂ S, where S is defined by

S = {ϕ ∈ X ; ‖ϕ‖ ≤ r},

such that 1 +
2AT α−1

Γ(α + 1)
≤

r

T
. We have

|Ax(t)| ≤ T +
AT α

Γ(α + 1)
+

AT α

Γ(α + 1)

≤ T +
2AT α

Γ(α + 1)
≤ r.

Which, on taking the taking the norm of t ∈ [0, T ], implies that A(S) ⊂ S. An application of Schauder’s
theorem yields a fixed point of the operator A, which compelete the proof.

�

Now, we consider uniqueness of solution of the fractional boundary value problem (1.1). To this end,
we need the Banach fixed point to show our second result [19].

Theorem 2.4. Assume that (H1), (H2) hold. Under the condition

m
∑

i=1

Li ≤
Γ(α + 1)

2T α
,

the fractional boundary value problem (1.1) has a unique solution on [0, T ].

Proof. Since (H1) holds, we have A(S) ⊂ S.
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Let x, y ∈ X, t ∈ [0, T ], we have

|Ax(t) − Ay(t)| ≤
1

Γ(α)

∫ t

0

(t − s)α−1|f(s, x(s), ..., x[m](s)) − f(s, y(s), ..., y[m](s))|ds

+
t

Γ(α)T

∫ T

0

(T − s)α−1|f(s, x(s), ..., x[m](s)) − f(s, y(s), ..., y[m](s))|ds

≤
T α

Γ(α + 1)

m
∑

i=1

Li‖x[i] − y[i]‖+
T α

Γ(α + 1)

m
∑

i=1

Li‖x[i] − y[i]‖

≤
2T α

Γ(α + 1)

m
∑

i=1

Li‖x − y‖.

Since
m
∑

i=1

Li ≤
Γ(α + 1)

2T α
, then the operator A is a contraction mapping.

Hence, we deduce by Banach contraction mapping principle that the operator has a unique fixed point
which correspond to a unique solution of problem on [0, T ]. This complete the proof. �

3. Fractional differential inequalities

In this section, we disscus a fundamental results relative to strict inequalities for the fractional bound-
ary value problem (1.1). We begin by the following lemma which will be needed later.

Lemma 3.1. [16] Let m : [0, T ] → R be locally Holder continuous function such that, for any t1 ∈
(0, +∞), we have

m(t1) = 0, and m(t) ≤ 0, for t ∈ [0, t1].

Then it follows that
CDα

0+m(t1) ≥ 0. (3.1)

Let us now disscus a fundamental result relative to strict fractional differential inequalities.

Theorem 3.2. Suppose that z, y : [0, T ] → R be locally Holder continuous, f ∈ C([0, T ]×R×...×R, [0, T ]),
and

(i) CDα

0+y(t) ≤ f(t, y(t), ..., y[m](t)), (ii) CDα

0+z(t) ≥ f(t, z(t), ..., z[m](t)), t ∈ [0, T ],

with one of the inequalities being strict. Then

y[i](0) < z[i](0), for all i = 1, 2, ..., m, (3.2)

implies that

y[i](t) < z[i](t), t ∈ [0, T ], for all i = 1, 2, ..., m. (3.3)

Proof. Suppose that the conclusion (3.3) is false. Let us suppose that the inequality (ii) is strict. Since
z, y be a Holder continuous functions, there exist t1 ∈ [0, T ], such that y[i](t1) = z[i](t1) and y[i](t) <

z[i](t), 0 ≤ t ≤ t1.

Setting m(t) = y[i](t) − z[i](t), t ∈ [0, t1], i = 1, 2, .., m, then m(t1) = 0 and m(t) ≤ 0, t ∈ [0, t1]. Hence
by lemma 3.1, we obtain CDα

0+m(t1) ≥ 0, which yields

CDα

0+y[i](t1) ≥C Dα

0+z[i](t1), i = 1, 2, ..., m

In particular, we have

f(t, y(t), ..., y[m](t)) ≥C Dα

0+y(t1) ≥C Dα

0+z(t1) > f(t, z(t), ..., z[m](t)).

This is a contradiction, since y[i](t1) = z[i](t1), i = 1, 2, ..., m. Hence the conclusion (3.3) is valid and the
proof is complete. �
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The next result is for nonstrict fractional differential inequalities which requires a one sided Lipshitz
type condition.

Theorem 3.3. Assume that the conditions of theorem 3.2 hold, with nonstict inequalities. Suppose that

f(t, x1, ..., xm) − f(t, y1, ..., ym) ≤

m
∑

i=1

Li

1

1 + tα
(xi − yi),

whenever xi ≥ yi, i = 1, 2, ..., m and
m
∑

i=1

Li > 0.

Then
y[i](0) ≤ z[i](0), i = 1, 2, ..., m,

implies that, provided Γ(α + 1) ≤
m
∑

i=1

Li,

y[i](t) ≤ z[i](t), i = 1, 2, ..., m, for all t ∈ [0, T ]. (3.4)

Proof. We set z
[i]
ǫ (t) = z[i](t) + ǫ(1 + tα), i = 1, 2, .., m, for small ǫ > 0. So that, we have

z[i]
ǫ (0) > z[i](0), and z[i]

ǫ (t) > z[i](t), i = 1, 2, ..., m, t ∈ [0, T ].

In particular, we have zǫ(t) = z(t) + ǫ(1 + tα), then

CDα

0+zǫ(t) =C Dα

0+z(t) + ǫCDα

0+(1 + tα)

≥ f(t, z(t), ..., z[m](t)) + ǫΓ(α + 1)

≥ f(t, zǫ(t), ..., z
[m]
ǫ (t)) + ǫΓ(α + 1) −

m
∑

i=1

Li

1

1 + tα
(zǫ − z)

≥ f(t, zǫ(t), ..., z
[m]
ǫ (t)) + ǫ(Γ(α + 1) −

m
∑

i=1

Li)

> f(t, zǫ(t), ..., z
[m]
ǫ (t)), t ∈ [0, T ].

Since z
[i]
ǫ (0) > z[i](0) ≥ y[i](0), hence by application of the theorem 3.2 we get y(t) < zǫ(t) for all t ∈ [0, T ].

By the arbitarariness of ǫ > 0, taking the limit ǫ → 0, we have y(t) ≤ z(t) for all t ∈ [0, T ]. This
complete the proof.

�

4. Existence of maximal and minimal solutions

In this section, we shall prove the existence of maximal and minimal solutions for the fractional
boundary value problem (1.1) on [0, T ]. We need the following definition in what follows.

Definition 4.1. A solution r of the fractional boundary value problem (1.1) is said to be maximal if for
an other solution x of the problem (1.1) one has x(t) ≤ r(t), for all t ∈ [0, T ].

Similarly, a solution ρ of the fractional boundary value problem (1.1) is said to be minimal if for an
other solution x of the problem (1.1) one has x(t) ≥ ρ(t), for all t ∈ [0, T ].

We discuss the case of maximal solution only, as the case of minimal solution is similar and can be
obtained with the same arguments with appropriate modifications.

Given an arbitrarily small real number ǫ > 0, consider the following boundary value problem

{

CDα

0+x(t) = f(t, x[1](t), x[2](t), ..., x[m](t)) + ǫ, t ∈]0, T [,
x(0) = ǫ, x(T ) = T.

(4.1)

Where, x[1](t) = x(t), x[2](t) = x(x(t)), ..., x[m](t) = x(x[m]−1(t)), 1 < α < 2, CDα

0+ is the Caputo
derivative, and f ∈ C([0, T ] × R × ... × R,R).

An existence theorem for the problem (4.1) can be stated as follows.



Fractional Order Iterative Boundary Value Problem 7

Theorem 4.2. Assume that (H1) holds. Then for every small ǫ > 0 the fractional boundary value
problem (4.1) has a solution defined on [0, T ].

Proof. Since
AT α−1

Γ(α + 1)
(α + 1) < 1.

Then for every ǫ > 0, we have
AT α−1

Γ(α + 1)
((α + 1) − ǫ(1 − α)) < 1.

Now the rest of the proof is similar to theorem 2.3. �

Our main existence theorem for maximal solution for the fractional boundary value problem (1.1) is
the following.

Theorem 4.3. Assume that (H1) and the conditions of theorem 3.2 hold. If

AT α−1

Γ(α + 1)
((α + 1) − ǫ0(1 − α)) < 1.

Then the fractional boundary value problem (1.1) has a maximal solution on [0, T ].

Proof. Let {ǫn}∞

n=0 be a decreasing sequence of positive real numbers such that lim
n→∞

ǫn = 0. Where ǫ0 is

a positive real number satisfying the inequality

AT α−1

Γ(α + 1)
((α + 1) − ǫ0(1 = α)) < 1.

By theorem 4.2, there exists a solution r(t, ǫn) defined on [0, T ] of the fractional boundary value problem

{

CDα

0+ = f(t, x[1](t), x[2](t), ..., x[m](t)) + ǫn, t ∈]0, T [,
x(0) = ǫn, x(T ) = T.

(4.2)

Then any solution u of the problem (1.1) satisfies

CDα

0+u(t) ≤ f(t, u(t), ..., u[m](t)),

and any solution of auxiliary problem (4.2) satisfies

CDα

0+r(t, ǫn) = f(t, r(t, ǫn), ..., r[m](t, ǫn)) + ǫn > f(t, r(t, ǫn), ..., r[m](t, ǫn)).

Where u(0) = 0 < ǫn = r(0, ǫn). Then

u[i](0) = 0 < ǫn = r[i](0, ǫn), i = 1, 2, ..., m.

Implies that

u(t) ≤ r(t, ǫn), for all n ∈ N and t ∈ [0, T ]. (4.3)

Since ǫ2 = r(0, ǫ2) < ǫ1 = r(0, ǫ1), Then

r[i](0, ǫ2) < r[i](0, ǫ1), i = 1, 2, ..., m.

Hence by theorem 3.2, we infer that

r[i](t, ǫ2) ≤ r[i](t, ǫ1), for all t ∈ [0, T ], i = 1, 2, ..., m.

In paricular
r(t, ǫ2) ≤ r(t, ǫ1), for all t ∈ [0, T ].
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Therefore, r(t, ǫn) is a decreasing sequence of positive real numbers and the limits

r(t) = lim
n−→∞

r(t, ǫn) (4.4)

exists.
Now we show that the convergence in (4.4) is uniform on [0, T ]. To do, it’s enough to show that the

sequence r(t, ǫn) is equicontinuous on C([0, T ],R).
Let t1, t2 ∈ [0, T ] such that t1 < t2. Then

|r(t1, ǫn) − r(t2, ǫn)| ≤|t1 − t2| +
|t1 − t2|

T Γ(α)

∫ T

0

(T − s)α−1|f(s, r(s, ǫn), ..., r[m](s, ǫn))|ds

+ǫn

|t1 − t2|

Γ(α + 1)
T α−1 +

∫ t1

0

|(t1 − s)α−1 − (t2 − s)α−1||f(s, r(s, ǫn), ..., r[m](s, ǫn))|ds

+

∫ t2

t1

(t2 − s)α−1|f(s, r(s, ǫn), ..., r[m](s, ǫn))|ds

≤t2 − t1 +
t2 − t1

Γ(α)T

AT α

α
+ ǫn

t2 − t1

Γ(α + 1)
T α−1 + A(

tα
2 − tα

1

Γ(α + 1)
) + 2A(

(t2 − t1)α

Γ(α + 1)
).

When t2 − t1 → 0, we have |r(t1, ǫn) − r(t2, ǫn)| → 0, for all n ∈ N.

Therefore, r(t, ǫn) → r(t), uniformaly for all t ∈ [0, T ].
Next we show that r(t) is solution of the fractional boundary value problem (1.1) defined on [0, T ].
Since r(t, ǫn) is solution of the fractinal boundary value problem (4.2), we have

r(t, ǫn) = t + ǫn −
t

T Γ(α)

∫ T

0

(T − s)α−1f(s, r(s, ǫn), ..., r[m](s, ǫn))ds − ǫ
tT α−1

Γ(α + 1)

+
1

Γ(α)

∫ t

0

(t − s)α−1f(s, r(s, ǫn), ..., r[m](s, ǫn))ds.

Since the convergence in (4.4) is uniform, one can obtain that

r(t) =t −
t

T Γ(α)

∫ T

0

(T − s)α−1f(s, r(s), r[2](s), ..., r[m](s))ds

+
1

Γ(α)

∫ t

0

(t − s)α−1f(s, r(s), r[2](s), ..., r[m](s))ds.

Which implies that r(t) is solution of (1.1). By using (4.3) we obtaion that u(t) ≤ r(t), for all t ∈ [0, T ].
Hence the fractional boundary value problem has a maximal solution on [0, T ].

�

5. Comparaison theorems

The main problem of the differential inequalities is to estimate a bound for the solution set for the
differential inequality related to fractional boundary value problem (1.1). In this section, we prove that
the maximal and minimal solutions serve as bounds for the solutions of the related differential inequality
to our problem on [0, T ].

Theorem 5.1. Assume that (H1) holds. Suppose that there exist Li > 0, i = 1, 2, ..., m, such that

f(t, x1, ..., xn) − f(t, y1, ..., yn) <

m
∑

i=1

1

1 + tα
(xi − yi),

for all xi, yi ∈ R with xi ≥ yi, for all i = 1, 2, ..., m, and t ∈ [0, T ], where
m
∑

i=1

Li ≤ Γ(1 + α).
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Furthermore, if there exist a function u ∈ C([0, T ],R) such that

{

CDα

0+u(t) ≤ f(t, u(t), ..., u[m](t)), t ∈ [0, T ],
u(0) = 0 u(T ) = T.

Then

u(t) ≤ r(t)

for all t ∈ [0, T ], where r(t) is a maximal solution of tha fractional boundary value problem (1.1).

Proof. Let ǫ be arbitrarily small. By theorem 4.3, r(t, ǫ) is a maximal solution of the problem (4.1) so
that the limit

r(t) = lim
ǫ→0

r(t, ǫ),

is uniform on [0, T ] and the function r is maximal solution of the problem (1.1). Hence

{

CDα

0+r(t, ǫ) = f(t, r(t, ǫ), ..., r[m](t, ǫ)) + ǫ, t ∈ [0, T ],
r(0, ǫ) = ǫ r(T, ǫ) = T.

It follows that
{

CDα

0+r(t, ǫ) > f(t, r(t, ǫ), ..., r[m](t, ǫ)), t ∈ [0, T ],
r(0, ǫ) > u(0).

Which implies that

u[i](0) < r[i](0, ǫ), for all i = 1, 2, ..., m.

By application of theorem (3.3) we have

u[i](t) < r[i](t, ǫ), for all i = 1, 2, .., m.

In paricular,

u(t) < r(t, ǫ).

We acheve the proof of the theorem by taking ǫ → 0. �

Theorem 5.2. Assume that (H1) holds. Suppose that there exist Li > 0, i = 1, 2, ..., m, such that

f(t, x1, ..., xn) − f(t, y1, ..., yn) <

m
∑

i=1

1

1 + tα
(xi − yi),

for all xi, yi ∈ R with xi ≥ yi, for all i = 1, 2, ..., m, and t ∈ [0, T ], with
m
∑

i=1

Li ≤ Γ(1 + α).

Furthermore, if there exist a function v ∈ C([0, T ],R) such that

{

Dαv(t) ≥ f(t, v(t), ..., v[m](t)), t ∈ [0, T ],
v(0) > 0 v(T ) = T.

Then

ρ(t) ≤ v(t)

for all t ∈ [0, T ], where ρ(t) is a minimal solution of tha fractional boundary value problem (1.1).

Note that the proof is similar and can be obtained with the same arguments with appropriate modi-
fications.
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6. An illustrative example

In this section, We present an example to better illustrate our existence and uniqueness results.
Consider the fractional iterative differential equation

CD
3
2 0+x(t) = −

1

3
−

1

16
cos(x(t)) +

1

20
sin(x[2](t)) +

1

24
cos(x[3](t)), t ∈ [0, π], (6.1)

associated to the boundary condtions

x(0) = 0, x(π) = π. (6.2)

We have

f(t, x, y, z) = −
1

3
−

1

16
cos(x) +

1

20
sin(y) +

1

24
cos(z).

Then
|f(t, x, y, z)| ≤ A, where A = 0, 4875.

Since
Aπα−1

Γ(α + 1)
= 0, 26 <

1

α + 1
=

2

5
= 0, 4, then the hypothesis (H1) holds. By theorem 2.3, the

problem (6.1)-(6.2) has a solution on [0, T ].
By the mean value theorem, we have

|f(t, x1, x2, x3) − f(t, y1, y2, y3)| ≤
1

16
|x1 − y1| +

1

20
|x2 − y2| +

1

24
|x3 − y3|

≤
3

∑

i=1

Li‖xi − yi‖,

where L1 =
1

16
, L2 =

1

20
and L3 =

1

24
.

Since
3

∑

i=1

Li = 0, 154166667 ≤ Γ(α+1)
2πα

= 0, 29841551. Then all asumptions of theorem (2.4) hold.

Hence the fractional boundary value problem (6.1)-(6.2) has a unique solution on [0, T ], which is a
maximal solution.

7. Conclusion

In this paper, we have looked at fractional boundary value problems in the context of Caputo
derivative. Due to Schauder’s fixed point and some results of fractional calculus, the existence and
uniqueness of solution of our problem are established. Also, we give a necessary condition for the existence
of maximal solution.
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