

(3s.) **v. 2024 (42)** : 1–10. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.62420

On Pencil of Bounded Linear Operators on Non-archimedean Banach Spaces

A. EL AMRANI¹, J. ETTAYB¹ and A. BLALI²

ABSTRACT: In this paper, we introduce and check some properties of pseudospectrum and some approximation of a pencil of bounded linear operators on non-archimedean Banach spaces. Our main result extend some results for a pencil of bounded linear operators on non-archimedean Banach spaces and we give some examples to support our work.

Key Words: Non-archimedean Banach spaces, spectrum, pencil of linear operator, pseudospectrum.

Contents

1Introduction12Main results33Non-archimedean generalized spectrum approximation7

1. Introduction

Throughout this paper, X is a non-archimedean (n.a) Banach space over a (n.a) non trivially complete valued field K with valuation $|\cdot|$, $\mathcal{L}(X)$ denotes the set of all bounded linear operators on X, \mathbb{Q}_p is the field of *p*-adic numbers ($p \geq 2$ being a prime) equipped with *p*-adic valuation $|.|_p$, \mathbb{Z}_p denotes the ring of *p*-adic integers of \mathbb{Q}_p (is the unit ball of \mathbb{Q}_p). We denote the completion of algebraic closure of \mathbb{Q}_p under the *p*-adic valuation $|\cdot|_p$ by \mathbb{C}_p . For more details, we refer to [4] and [8].

Remember that a free Banach space X is a non-archimedean Banach space for which there exists a family $(e_i)_{i\in\mathbb{N}}$ in $X\setminus\{0\}$ such that every element $x\in X$ can be written in the form of a convergent sum $x = \sum_{i\in\mathbb{N}} x_i e_i, x_i \in \mathbb{K}$ and $||x|| = \sup_{i\in\mathbb{N}} |x_i|||e_i||$. The family $(e_i)_{i\in\mathbb{N}}$ is called an orthogonal basis. In free

Banach space X, each bounded linear operator A on X can be written in a unique fashion as a pointwise convergent series, that is, there exists an infinite matrix $(a_{i,j})_{(i,j)\in\mathbb{N}\times\mathbb{N}}$ with coefficients in \mathbb{K} such that

$$A = \sum_{i,j \in \mathbb{N}} a_{i,j} e'_j \otimes e_i, \text{ and } \forall j \in \mathbb{N}, \ \lim_{i \to \infty} |a_{i,j}| ||e_i|| = 0,$$

where $(\forall j \in \mathbb{N}) e'_j(u) = u_j(e'_j \text{ is the linear form associated with } e_j)$. Moreover, for each $j \in \mathbb{N}$, $Ae_j = \sum_{i \in \mathbb{N}} a_{ij}e_i$ and its norm is defined by

$$|| A || = \sup_{i,j} \frac{|a_{ij}|||e_i||}{||e_j||}.$$

Also, recall that X is of countable type if it contains a countable set whose linear hull is dense in X. For more details, we refer [4] and [8]. An unbounded linear operator $A : D(A) \subseteq X \to Y$ is said to be closed if for all $(x_n)_{n \in \mathbb{N}} \subset D(A)$ such that $||x_n - x|| \to 0$ and $||Ax_n - y|| \to 0$ as $n \to \infty$, for some $x \in X$ and $y \in Y$, then $x \in D(A)$ and y = Ax. The collection of closed linear operators from X into Y is denoted by $\mathcal{C}(X, Y)$. When X = Y, $\mathcal{C}(X, X) = \mathcal{C}(X)$. If $A \in \mathcal{L}(X)$ and B is an unbounded linear operator, then A + B is closed if and only if B is closed, for more details, we refer to [4].

²⁰¹⁰ Mathematics Subject Classification: 47A10, 47S10.

Submitted February 09, 2022. Published August 20, 2022

Definition 1.1. [4] Let $\omega = (\omega_i)_i$ be a sequence of non-zero elements of K. We define \mathbb{E}_{ω} by

$$\mathbb{E}_{\omega} = \{ x = (x_i)_i : \forall i \in \mathbb{N}, \ x_i \in \mathbb{K}, \ and \ \lim_{i \to \infty} |\omega_i|^{\frac{1}{2}} |x_i| = 0 \},$$

and it is equipped with the norm

$$\forall x \in \mathbb{E}_{\omega} : x = (x_i)_i, \ \|x\| = \sup_{i \in \mathbb{N}} (|\omega_i|^{\frac{1}{2}} |x_i|).$$

Remark 1.2. [4]

(i) The space $(\mathbb{E}_{\omega}, \|\cdot\|)$ is a non-archimedean Banach space.

(ii) If

$$\begin{array}{rcl} \langle \cdot, \cdot \rangle : \mathbb{E}_{\omega} \times \mathbb{E}_{\omega} & \longrightarrow & \mathbb{K} \\ (x, y) & \mapsto & \sum_{i=0}^{\infty} x_i y_i \omega_i, \end{array}$$

where $x = (x_i)_i$ and $y = (y_i)_i$. Then, the space $\left(\mathbb{E}_{\omega}, \|\cdot\|, \langle\cdot, \cdot\rangle\right)$ is called a p-adic (or non-archimedean) Hilbert space.

(iii) The orthogonal basis $\{e_i, i \in \mathbb{N}\}$ is called the canonical basis of \mathbb{E}_{ω} , where for all $i \in \mathbb{N}$, $||e_i|| = |\omega_i|^{\frac{1}{2}}$.

Definition 1.3. [7] Let X, Y, Z be three non-archimedean Banach spaces over \mathbb{K} , let $A \in B(X, Y)$ and $B \in B(X, Z)$. Then A majorizes B, if there exists M > 0 such that

for all
$$x \in X$$
, $||Bx|| \le M ||Ax||$. (1.1)

Theorem 1.4. [7] Assume that, either field \mathbb{K} is spherically complete or both Y and Z are countable type Banach spaces over \mathbb{K} . Let $A \in B(X, Y)$ and $B \in B(X, Z)$. Then the statements are equivalent:

- (1) $R(A^*) \subset R(B^*);$
- (2) B majorizes A;
- (3) there exists a continuous linear operator $D: R(B) \longrightarrow Y$, such that A = DB.

In this paper, we study the problem of finding the eigenvalues of the generalized eigenvalue problem

$$Ax = \lambda Bx$$

for $\lambda \in \mathbb{K}$, $x \in X$, and $A, B \in \mathcal{L}(X)$.

Fore more basic concepts of non-archimedean operators theory, we refer to [4]. In [2], the authors extended the notion of pseudospectrum of linear operator A on non-archimedean Banach space X as follows.

Definition 1.5. [2] Let X be a non-archimedean Banach space over \mathbb{K} and $\varepsilon > 0$. The pseudospectrum of a linear operator A on X is defined by

$$\sigma_{\epsilon}(A) = \sigma(A) \cup \{\lambda \in \mathbb{K} : \|(\lambda - A)^{-1}\| > \varepsilon^{-1}\},\$$

by convention $\|(\lambda - A)^{-1}\| = \infty$ if, and only if, $\lambda \in \sigma(A)$.

2. Main results

We introduce the following definitions.

Definition 2.1. Let X be a non-archimedean Banach space over \mathbb{K} . Let $A, B \in \mathcal{L}(X)$, the spectrum $\sigma(A, B)$ of a pencil of linear operator (A, B) is defined by

$$\begin{aligned} \sigma(A,B) &= \{\lambda \in \mathbb{K} : A - \lambda B \text{ is not invertible in } \mathcal{L}(X)\}, \\ &= \{\lambda \in \mathbb{K} : 0 \in \sigma(A - \lambda B)\}. \end{aligned}$$

The resolvent set $\rho(A, B)$ of a pencil of bounded linear operator (A, B) is

$$\rho(A,B) = \{\lambda \in \mathbb{K} : R(\lambda,A,B) = (A - \lambda B)^{-1} \text{ exists in } \mathcal{L}(X)\}.$$

 $R(\lambda, A, B)$ is called the resolvent of pencil of bounded linear operator (A, B).

Definition 2.2. Let X be a non-archimedean Banach space over K. Let $A, B \in \mathcal{L}(X)$, the couple (A, B) is said to be regular, if $\rho(A, B) \neq \emptyset$.

For a regular couple (A, B), we have the following definitions.

Definition 2.3. Let X be a non-archimedean Banach space over \mathbb{K} , let $A, B \in \mathcal{L}(X)$ and $\varepsilon > 0$. The pseudospectrum $\sigma_{\varepsilon}(A, B)$ of a pencil of bounded linear operator (A, B) on X is defined by

$$\sigma_{\varepsilon}(A,B) = \sigma(A,B) \cup \{\lambda \in \mathbb{K} : \|(A-\lambda B)^{-1}\| > \varepsilon^{-1}\}$$

The pseudoresolvent $\rho_{\epsilon}(A, B)$ of a pencil of bounded linear operator (A, B) is defined by

$$\rho_{\varepsilon}(A,B) = \rho(A,B) \cap \{\lambda \in \mathbb{K} : \|(A-\lambda B)^{-1}\| \le \varepsilon^{-1}\},\$$

by convention $||(A - \lambda B)^{-1}|| = \infty$ if, and only if, $\lambda \in \sigma(A, B)$.

Definition 2.4. Let X be a non-archimedean Banach space over \mathbb{K} , let $A, B \in \mathcal{L}(X)$ and $\varepsilon > 0$. The generalized pseudospectrum of a pencil of bounded linear operator (A, B) on X is defined by

$$\Sigma_{\varepsilon}(A,B) = \sigma(A,B) \cup \{\lambda \in \mathbb{K} : \|(A-\lambda B)^{-1}B\| > \varepsilon^{-1}\}.$$

By convention $||(A - \lambda B)^{-1}B|| = \infty$ if, and only if, $\lambda \in \sigma(A, B)$.

Remark 2.5. Let X be a non-archimedean Banach space over \mathbb{K} , let $A, B \in \mathcal{L}(X)$. Then

(i) If B = I, then, $\Sigma_{\varepsilon}(A, I) = \sigma_{\varepsilon}(A)$ where $\sigma_{\varepsilon}(A)$ is the pseudospectrum of A.

(*ii*) Definition 2.3 is a natural generalization of Definition 1.5.

In the rest of this section, we suppose that (A, B) is regular. The next proposition gives a comparison between $\sigma_{\varepsilon}(A, B)$ and $\Sigma_{\varepsilon}(A, B)$.

Proposition 2.6. Let X be a non-archimedean Banach space over \mathbb{K} , let $A, B \in \mathcal{L}(X)$. Then for all $\varepsilon > 0$,

$$\Sigma_{\varepsilon}(A,B) \subset \sigma_{\varepsilon \parallel B \parallel}(A,B).$$

Proof. Let $\varepsilon > 0$ and $\lambda \in \Sigma_{\varepsilon}(A, B)$, then $\lambda \in \sigma(A, B)$ and

$$\frac{1}{\varepsilon} < \|(A - \lambda B)^{-1}B\|$$
(2.1)

$$\leq \| (A - \lambda B)^{-1} \| \| B \|.$$
 (2.2)

Hence

$$\frac{1}{\|B\|\varepsilon} < \|(A - \lambda B)^{-1}\|.$$

Thus $\lambda \in \sigma_{\varepsilon \parallel B \parallel}(A, B)$. Consequently

$$\Sigma_{\varepsilon}(A,B) \subset \sigma_{\varepsilon \parallel B \parallel}(A,B).$$

We have the following statements.

Lemma 2.7. Let X be a non-archimedean Banach space over \mathbb{K} , let $A, B \in \mathcal{L}(X)$ such that ||B|| = 1. Then for all $\varepsilon > 0$,

$$\Sigma_{\varepsilon}(A,B) \subset \sigma_{\varepsilon}(A,B).$$

Theorem 2.8. Let X be a non-archimedean Banach space over \mathbb{K} , let $A, B, C \in \mathcal{L}(X)$ such that $C^{-1} \in \mathcal{L}(X)$. Then

- (i) For all $\varepsilon > 0$, $\Sigma_{\varepsilon}(A, B) = \Sigma_{\varepsilon}(CA, CB)$.
- (ii) For all $\varepsilon > 0$, $\Sigma_{\varepsilon}(A, C) = \sigma_{\varepsilon}(C^{-1}A)$. In particular C = I, $\Sigma_{\varepsilon}(A, I) = \sigma_{\varepsilon}(A)$.
- *Proof.* (i) For all $\lambda \in \rho(A, B)$, we have $(A \lambda B)^{-1}C^{-1} = (CA \lambda CB)^{-1}$. Then, $\sigma(A, B) = \sigma(CA, CB)$. In addition, it is clear that

$$\|(CA - \lambda CB)^{-1}CB\| = \|(A - \lambda B)^{-1}B\|.$$
(2.3)

Hence $\lambda \in \Sigma_{\varepsilon}(A, B)$, if, and only if, $\lambda \in \Sigma_{\varepsilon}(CA, CB)$.

(ii) Assume that C is invertible, then $(A - \lambda C)^{-1}C = (C^{-1}A - \lambda I)^{-1}$. Then $\lambda \in \Sigma_{\varepsilon}(A, C)$, if and only if $\lambda \in \sigma_{\varepsilon}(C^{-1}A)$.

Proposition 2.9. Let X be a non-archimedean Banach space over \mathbb{K} , let $A, B \in \mathcal{L}(X)$. For all $\varepsilon > 0$, we have

(i) $\sigma(A,B) = \bigcap_{\varepsilon > 0} \Sigma_{\varepsilon}(A,B).$

(ii) If $0 < \varepsilon_1 \le \varepsilon_2$, then $\sigma(A, B) \subset \Sigma_{\varepsilon_1}(A, B) \subset \Sigma_{\varepsilon_2}(A, B)$.

- Proof. (i) By Definition 2.4, we have for all $\varepsilon > 0$, $\sigma(A, B) \subset \Sigma_{\varepsilon}(A, B)$. Conversely, if $\lambda \in \bigcap_{\varepsilon > 0} \Sigma_{\varepsilon}(A, B)$, then for all $\varepsilon > 0$, $\lambda \in \Sigma_{\varepsilon}(A, B)$. If $\lambda \notin \sigma(A, B)$, then $\lambda \in \{\lambda \in \mathbb{K} : \|(A \lambda B)^{-1}B\| > \varepsilon^{-1}\}$, taking limits as $\varepsilon \to 0^+$, we get $\|(A \lambda B)^{-1}B\| = \infty$. Thus $\lambda \in \sigma(A, B)$.
 - (ii) For $0 < \varepsilon_1 \le \varepsilon_2$. Let $\lambda \in \sigma_{\varepsilon_1}(A, B)$, then $||(A \lambda B)^{-1}B|| > \varepsilon_1^{-1} \ge \varepsilon_2^{-1}$. Hence $\lambda \in \sigma_{\varepsilon_2}(A, B)$.

Proposition 2.10. Let X be a non-archimedean Banach space over \mathbb{K} , let X be a free Banach space over \mathbb{K} and let $A \in \mathcal{L}(X)$ be analytic operator with compact spectrum $\sigma(A) \neq \emptyset$, then there exists $B, C \in \mathcal{L}(X)$ such that $\sigma(A) = \sigma(B, C)$. In addition we have, for all $\varepsilon > 0$, $\Sigma_{\varepsilon}(B, C) = \sigma_{\varepsilon}(A)$.

Proof. Let $\alpha \in \rho(A)$, we set $C = (A - \alpha I)^{-1}$ and $B = A(A - \alpha I)^{-1}$. Then

$$\begin{split} \lambda \in \rho(A) &\iff (A - \lambda I)^{-1} \in \mathcal{L}(X) \\ &\iff (A - \lambda I)(A - \alpha I)^{-1} \in \mathcal{L}(X) \\ &\iff A(A - \alpha I)^{-1} - \lambda(A - \alpha I)^{-1} \in \mathcal{L}(X) \\ &\iff B - \lambda C \in \mathcal{L}(X) \\ &\iff (B - \lambda C)^{-1} \in \mathcal{L}(X) \\ &\iff \lambda \in \rho(B, C). \end{split}$$

Thus, $\sigma(A) = \sigma(B, C)$, let $\varepsilon > 0$, $z \in \sigma_{\varepsilon}(A)$, then $z \in \sigma(A)$ and

$$\frac{1}{\varepsilon} < \|(A - zI)^{-1}\|,$$

= $\|(B - zC)^{-1}C\|.$

Thus $\sigma_{\varepsilon}(A) = \Sigma_{\varepsilon}(B, C).$

Proposition 2.11. Let X be a non-archimedean Banach space over \mathbb{K} and let $A \in \mathcal{C}(X)$ with $\rho(A) \neq \emptyset$, then there exists $B, C \in \mathcal{L}(X)$ such that $\sigma(A) = \sigma(B, C)$.

Proof. Similar to the proof of Proposition 2.10.

We have the following examples.

Example 2.12. Let $\mathbb{K} = \mathbb{Q}_p$. Let 2×2 square matrix A and B over $\mathbb{Q}_p \times \mathbb{Q}_p$ and $a, b, c, d \in \mathbb{Q}_p^*$ such that $a \neq b$ and $c \neq d$. Then:

(i) If

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} and B = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}.$$

It is easy to see that, for all $\lambda \in \mathbb{Q}_p$, det $(A - \lambda B) = -\lambda a$, then $\sigma(A, B) = \{0\}$. Simple calculation, we get

$$(A - \lambda B)^{-1}B = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix},$$

thus, for all $\varepsilon > 0$, $\Sigma_{\varepsilon}(A, B) = \{0\} \cup \{\lambda \in \mathbb{Q}_p : |\lambda|_p < \varepsilon\}.$ (ii) If

$$A = \begin{pmatrix} a & 0\\ 0 & b \end{pmatrix} and B = \begin{pmatrix} c & 0\\ 0 & d \end{pmatrix}$$

Note that, for all $\lambda \in \mathbb{Q}_p$, $\det(A - \lambda B) = (a - \lambda c)(b - \lambda d)$, then $\sigma(A, B) = \{\frac{a}{c}, \frac{b}{d}\}$ and

$$||(A - \lambda B)^{-1}B|| = \max\left\{\frac{|c|_p}{|a - \lambda c|_p}, \frac{|d|_p}{|b - \lambda d|_p}\right\}$$

Hence, the generalized pseudospectrum of (A, B) is

$$\Sigma_{\varepsilon}(A,B) = \left\{\frac{a}{c}, \frac{b}{d}\right\} \cup \left\{\lambda \in \mathbb{Q}_p : \max\left\{\frac{1}{|ac^{-1} - \lambda|_p}, \frac{1}{|bd^{-1} - \lambda|_p}\right\} > \frac{1}{\varepsilon}\right\}$$

Example 2.13. Let $A, B \in \mathcal{L}(\mathbb{E}_{\omega})$ be two diagonal operators such that for all $i \in \mathbb{N}$, $Ae_i = a_ie_i$ and $Be_i = b_ie_i$, where $a_i, b_i \in \mathbb{Q}_p$ and B is invertible and $\sup_{i \in \mathbb{N}} |a_i|_p$ and $\sup_{i \in \mathbb{N}} |b_i|_p$ are finite and $0 < \inf_{i \in \mathbb{N}} |b_i|_p \le \sup_{i \in \mathbb{N}} |b_i|_p \le 1$. It is easy to see that

$$\sigma(A,B) = \{\lambda \in \mathbb{Q}_p : \inf_{i \in \mathbb{N}} |a_i - \lambda b_i| = 0\} = \{\lambda \in \mathbb{Q}_p : \inf_{i \in \mathbb{N}} |a_i b_i^{-1} - \lambda| = 0\}$$

and for all $\lambda \in \rho(A, B)$, we have

$$\|(A - \lambda B)^{-1}B\| = \sup_{i \in \mathbb{N}} \frac{\|(A - \lambda B)^{-1}Be_i\|}{\|e_i\|}$$
$$= \sup_{i \in \mathbb{N}} \left|\frac{b_i}{a_i - \lambda b_i}\right|$$
$$= \frac{1}{\inf_{i \in \mathbb{N}} |a_i b_i^{-1} - \lambda|}.$$

Hence,

$$\left\{\lambda \in \mathbb{Q}_p : \|(A - \lambda B)^{-1}B\| > \frac{1}{\varepsilon}\right\} = \left\{\lambda \in \mathbb{Q}_p : \frac{1}{\inf_{i \in \mathbb{N}} |a_i b_i^{-1} - \lambda|} > \frac{1}{\varepsilon}\right\}.$$

Consequently,

$$\Sigma_{\varepsilon}(A,B) = \{\lambda \in \mathbb{Q}_p : \inf_{i \in \mathbb{N}} |a_i b_i^{-1} - \lambda| = 0\} \cup \bigg\{\lambda \in \mathbb{Q}_p : \inf_{i \in \mathbb{N}} |a_i b_i^{-1} - \lambda| < \varepsilon\bigg\}.$$

We have the following results.

Theorem 2.14. Let X, Y be two non-Archimedean Banach spaces over \mathbb{K} , let $A \in \mathcal{C}(X, Y)$, $B \in \mathcal{L}(X, Y)$ and $\lambda \in \mathbb{K}$. If $A - \lambda B$ is one-to-one and onto, then $(A - \lambda B)^{-1}$ is closed linear operator.

Proof. Let $\lambda \in \mathbb{K}$ and a sequence $(y_n)_n \subset Y$ such that y_n converges to y in Y and $(A - \lambda B)^{-1}y_n$ converges to x in X. Setting $x_n = (A - \lambda B)^{-1}y_n$, then $x_n \in D(A)$ and $y_n = (A - \lambda B)x_n \in Y$. Since $(A - \lambda B)x_n \to y$ and $x_n \to x$ and $A - \lambda B$ is a closed linear operator wich implies that $x \in D(A)$ and $y = (A - \lambda B)x$, then $y \in Y$ and $x = (A - \lambda B)^{-1}y$. Thus $(A - \lambda B)^{-1}$ is closed linear operator.

Corollary 2.15. Let X, Y be two non-Archimedean Banach spaces over \mathbb{K} . Let A be a linear operator from X into Y and B be a non null bounded linear operator from X into Y. If A is a non closed operator, then $\sigma(A, B) = \mathbb{K}$.

Proof. Let A be a linear operator which is not closed. We argue by contradiction. Suppose that $\rho(A, B)$ is not empty, then there exists $\lambda \in \mathbb{K}$ such that $\lambda \in \rho(A, B)$, consequently, $(A - \lambda B)^{-1}$ is a bounded operator. Hence, $A - \lambda B$ is a closed operator. In addition, we can write $A = A - \lambda B + \lambda B$. We conclude that A is a closed operator, which is a contradiction.

Corollary 2.16. Let X be a non-archimedean Banach space over \mathbb{K} , let $A, B \in \mathcal{L}(X)$ such that $\sigma(A, B) = \mathbb{K}$, then A is not invertible.

Proposition 2.17. Let X be a non-archimedean Banach space over \mathbb{K} , let $A, B \in \mathcal{L}(X)$ and $B^{-1} \in \mathcal{L}(X)$, then $\sigma_p(B^{-1}A) = \sigma_p(A, B)$.

Proof. Let $\lambda \in \sigma_p(A, B)$, then there exists $x \in X \setminus \{0\}$ such that $Ax = \lambda Bx$. Since $B^{-1} \in \mathcal{L}(X)$, we have $B^{-1}Ax = \lambda x$, thus $\lambda \in \sigma_p(B^{-1}A)$, therefore $\sigma_p(A, B) \subseteq \sigma_p(B^{-1}A)$. Similarly, we obtain $\sigma_p(B^{-1}A) \subseteq \sigma_p(A, B)$. Thus $\sigma_p(A, B) = \sigma_p(B^{-1}A)$.

Theorem 2.18. Let $A, B \in \mathcal{L}(\mathbb{K}^n)$. If A is invertible and $A^{-1}B$ or BA^{-1} is nilpotent, then $\sigma(A, B) = \emptyset$.

Proof. Assume that A is invertible and $A^{-1}B$ or BA^{-1} is nilpotent, then for all $\lambda \in \mathbb{K}$, $I - \lambda A^{-1}B$ or $I - \lambda BA^{-1}$ is invertible, hence for all $\lambda \in \mathbb{K}$, $(A - \lambda B)^{-1}$ exists in $\mathcal{L}(\mathbb{K}^n)$. Thus, $\sigma(A, B) = \emptyset$.

Theorem 2.19. Let X be a Banach space of countable type over \mathbb{Q}_p , let $A, B \in \mathcal{L}(X)$ such that B majorizes A and B is not invertible, then $\sigma(A, B) = \mathbb{Q}_p$.

Proof. If B majorizes A. From Theorem 1.4, there exists a continuous linear operator $D: R(B) \longrightarrow X$ such that A = DB. then, for all $\lambda \in \mathbb{Q}_p$, $A - \lambda B = (D - \lambda)B$, since B is not invertible then, for all $\lambda \in \mathbb{Q}_p$, $A - \lambda B$ is not invertible. Thus, $\sigma(A, B) = \mathbb{Q}_p$.

Proposition 2.20. Let X be a non-archimedean Banach space over \mathbb{K} , let $A, B \in \mathcal{L}(X)$ such that AB = BA and $0 \in \rho(A) \cap \rho(B)$, then $\lambda \in \sigma(A, B)$ if and only if $\frac{1}{\lambda} \in \sigma(A^{-1}, B^{-1})$.

Proof. From $A - \lambda B = -\lambda B(A^{-1} - \lambda^{-1}B^{-1})A$, we obtain that $\lambda \in \sigma(A, B)$ if and only if $\frac{1}{\lambda} \in \sigma(A^{-1}, B^{-1})$.

Proposition 2.21. Let X be a non-archimedean Banach space over \mathbb{K} , let $A, B \in \mathcal{L}(X)$ such that AB = BA with $\sigma(A, B) \neq \emptyset$. If $\mu \in \rho(A, B)$, then $\lambda \in \sigma(A, B)$ if and only if $\frac{1}{\lambda - \mu} \in \sigma((A - \mu B)^{-1}B)$.

Proof. Let $A, B \in \mathcal{L}(X)$ and $\mu \in \rho(A, B)$. For $\lambda \in \mathbb{K}$ with $\lambda \neq \mu$, we have

$$A - \lambda B = (A - \mu B)[(A - \mu B)^{-1}B - (\lambda - \mu)^{-1}](\mu - \lambda).$$

Hence $\lambda \in \sigma(A, B)$ if and only if $\frac{1}{\lambda - \mu} \in \sigma((A - \mu B)^{-1}B)$.

3. Non-archimedean generalized spectrum approximation

In [1], the authors extended the following definitions to non-archimedean case.

Definition 3.1. [1] Let X be a non-archimedean Banach space over \mathbb{K} and let $A \in \mathcal{L}(X)$.

- (1) A sequence (A_n) of bounded linear operators on X is said to be norm convergent to A, denoted by $A_n \to A$, if $\lim_{n \to \infty} ||A_n A|| = 0$.
- (2) A sequence (A_n) of bounded linear operators on X is said to be pointwise convergent to A, denoted by $A_n \xrightarrow{p} A$, if for all $x \in X$, $\lim_{n \to \infty} ||A_n x Ax|| = 0$.

Definition 3.2. [1] Let X be a non-archimedean Banach space over \mathbb{K} and let $A \in \mathcal{L}(X)$. A sequence (A_n) of bounded linear operators on X is said to be ν -convergent to A, denoted by $A_n \xrightarrow{\nu} A$, if

- (1) $(||A_n||)$ is bounded,
- (2) $||(A_n A)A|| \to 0 \text{ as } n \to \infty, \text{ and}$
- (3) $||(A_n A)A_n|| \to 0 \text{ as } n \to \infty.$

Definition 3.3. [1] Let X be a non-archimedean Banach space over a locally compact filed \mathbb{K} and let $A \in \mathcal{L}(X)$. A sequence (A_n) of bounded linear operators on X is said to be convergent to A in the collectively compact convergence, denoted by $A_n \stackrel{c.c}{\longrightarrow} A$, if $A_n \stackrel{p}{\rightarrow} A$, and for some positive integer N,

$$\bigcup_{n \ge N} \{ (A_n - A)x : x \in X, \ \|x\| \le 1 \}$$

has compact closure of X.

We have the following results.

Proposition 3.4. Let X be a non-archimedean Banach space over \mathbb{K} , let $A, A_n, B, B_n \in \mathcal{L}(X)$. If $A_n \to A$ or $B_n \to B$, then for any $C \in B(X)$, we have

$$\|(A_n - A)C(B_n - B)\| \to 0.$$

Proof. Since $A_n \to A$ or $B_n \to B$, then for any $C \in B(X)$, we have

$$||(A_n - A)C(B_n - B)|| \le ||(A_n - A)|| ||C|| ||(B_n - B)|| \to 0.$$

Proposition 3.5. Let X be a non-archimedean Banach space over \mathbb{K} , let $A, A_n, B, B_n \in \mathcal{L}(X)$. If $A_n \xrightarrow{\nu} A, B_n \xrightarrow{\nu} B$ and $0 \in \rho(A) \cap \rho(B)$, then for all $\lambda \in \mathbb{K}$, we have

$$A_n - \lambda B_n \to A - \lambda B.$$

Proof. Suppose that $A_n \xrightarrow{\nu} A$, $B_n \xrightarrow{\nu} B$, $0 \in \rho(A) \cap \rho(B)$, and for all $\lambda \in \mathbb{K}$, we have

$$\| \left(A_n - \lambda B_n \right) - \left(A - \lambda B \right) \| \leq \max \left\{ \| \left(A_n - A \right) \|; |\lambda| \| \left(B_n - B \right) \| \right\} \\ \to 0.$$

Since,

$$\|(A_n - A)\| = \|(A_n - A)AA^{-1}\|$$

$$\leq \|(A_n - A)A\|\|A^{-1}\|$$

$$\rightarrow 0.$$

Similarly, we obtain $||(B_n - B)|| \to 0.$

Proposition 3.6. Let X be a non-archimedean Banach space over \mathbb{Q}_p such that $||X|| \subseteq |\mathbb{Q}_p|$, let $A, A_n, B, B_n \in \mathcal{L}(X)$. If $A_n \xrightarrow{p} A$ and $B_n \xrightarrow{cc} B$, then for any $C \in \mathcal{L}(X)$, we have

$$\|(A_n - A)C(B_n - B)\| \to 0.$$

Proof. Since $A_n \xrightarrow{p} A$ and $B_n \xrightarrow{cc} B$, and $||X|| \subseteq |\mathbb{Q}_p|$, hence $A_n \xrightarrow{p} A$ and $B_n \xrightarrow{p} B$ and $C\Big(\bigcup_{n\geq N} \{(B_n - B)x : x \in X, ||x|| \leq 1\}\Big)$ has compact closure of X. Then

$$\|(A_n - A)C(B_n - B)\| \to 0.$$

The aim of the following results is to discuss the spectrum of a sequence of a pencil of linear operators in a non-archimedean Banach space.

Theorem 3.7. Let X be a non-archimedean Banach space over \mathbb{K} , let (A_n) be a sequence of bounded linear operators on X and $A \in \mathcal{L}(X)$. If $A_n \to A$, then there exists $N \in \mathbb{N}$, we have

for all
$$n \ge N$$
, $\sigma(A_n) \subset \sigma(A)$.

Proof. Let $\lambda \in \rho(A)$. Then for all $n \in \mathbb{N}$, we have

$$\lambda I - A_n = (\lambda I - A) \Big(I + (\lambda I - A)^{-1} (A - A_n) \Big).$$

Since $A_n \to A$ Then, $\lim_{n \to \infty} ||A_n - A|| = 0$, hence for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$, $||A_n - A|| < \varepsilon$. In particular, for $\varepsilon = ||(\lambda - A)^{-1}||^{-1}$, we have

for all
$$n \ge N$$
, $||A_n - A|| < ||(\lambda - A)^{-1}||^{-1}$.

Thus, for all $n \ge N$, we have

$$\begin{aligned} \|(\lambda I - A)^{-1}(A - A_n)\| &\leq \|(\lambda I - A)^{-1}\|\|(A - A_n)\| \\ &< 1. \end{aligned}$$

Then for all $n \ge N$, $\left(I + (\lambda I - A)^{-1}(A - A_n)\right)^{-1} \in \mathcal{L}(X)$, hence for all $n \ge N$, $(\lambda - A_n)^{-1} \in \mathcal{L}(X)$. Thus, for all $n \ge N$, $\lambda \in \rho(A_n)$.

We have the following proposition.

Proposition 3.8. Let X be a non-archimedean Banach space over \mathbb{K} , let $A, B, C, D \in \mathcal{L}(X)$ such that $\rho(A, C) \neq \emptyset$. For all $z \in \rho(A, C)$ such that ||R(z, A, C)[(A - B) - z(C - D)]|| < 1, we have $z \in \rho(B, D)$.

Proof. Since, for all $z \in \rho(A, C)$ such that ||R(z, A, C)[(A - B) - z(C - D)]|| < 1 and

$$B - zD = (A - zC) \Big[I - R(z, A, C) \Big((A - B) - z(C - D) \Big) \Big]$$

Hence (B - zD) is invertible and $(B - zD)^{-1} \in \mathcal{L}(X)$. Thus, $z \in \rho(B, D)$.

Theorem 3.9. Let X be a non-archimedean Banach space over \mathbb{K} , let (A_n) and (B_n) be a sequences of bounded linear operators on X and $A, B \in \mathcal{L}(X)$. If $A_n \to A$ and $B_n \to B$, then there exists $N \in \mathbb{N}$, we have

for all
$$n \ge N$$
, $\sigma(A_n, B_n) \subset \sigma(A, B)$

Proof. Let $\lambda \in \rho(A, B)$. Then for all $n \in \mathbb{N}$, we can write

$$A_n - \lambda B_n = \left(I - (E_n - \lambda F_n)\right)(A - \lambda B),$$

where $E_n = (A - A_n)R(\lambda, A, B)$ and $F_n = (B - B_n)R(\lambda, A, B)$. Since $A_n \to A$ and $B_n \to B$, then for all $\lambda \in \rho(A, B)$, $\lim_{n \to \infty} ||E_n - \lambda F_n|| = 0$. Hence there exists $N \in \mathbb{N}$ such that for all $n \ge N$, $||E_n - \lambda F_n|| < 1$. Then, there exists $N \in \mathbb{N}$ such that for all $n \ge N$,

$$(I - (E_n - \lambda F_n))^{-1} \in \mathcal{L}(X).$$

Thus, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $A_n - \lambda B_n$ is invertible $\mathcal{L}(X)$. Then, for all $n \geq N$, $\lambda \in \rho(A_n, B_n)$.

Theorem 3.10. Let X be a non-archimedean Banach space over \mathbb{K} , let (A_n) , (B_n) be a sequences of bounded linear operators on X and A, $B \in \mathcal{L}(X)$. If $A_n \to A$ and $B_n \to B$, then for all $\lambda \in \rho(A, B)$, $(A_n - \lambda B_n)^{-1} \to (A - \lambda B)^{-1}$.

Proof. Let $\lambda \in \rho(A, B)$. Since $A_n \to A$ and $B_n \to B$, then by using Theorem 3.9, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $\lambda \in \rho(A_n, B_n)$. Then for all $n \geq N$,

$$\|(A_n - \lambda B_n)^{-1} - (A - \lambda B)^{-1}\|$$
(3.1)

$$(3.1) = \|(A_n - \lambda B_n)^{-1} ((A - \lambda B) - (A_n - \lambda B_n)) (A - \lambda B)^{-1} \|$$

= $\|(A_n - \lambda B_n)^{-1} ((A - A_n) - \lambda (B - B_n)) (A - \lambda B)^{-1} \|$
 $\leq \max \{ \|(A - A_n)\|, \|\lambda\| \|(B - B_n)\| \} \|(A_n - \lambda B_n)^{-1}\| \|(A - \lambda B)^{-1}\|$

Since $A_n \to A$ and $B_n \to B$, and $||(A_n - \lambda B_n)^{-1}|| ||A - \lambda B)^{-1}|| < \infty$. Thus,

$$\lim_{n \to \infty} \| (A_n - \lambda B_n)^{-1} - (A - \lambda B)^{-1} \| = 0.$$

Proposition 3.11. Let X be a non-archimedean Banach space over \mathbb{K} , let (A_n) be a sequence of bounded linear operators on X and $A \in \mathcal{L}(X)$. If $A_n \to A$, then $A_n \stackrel{\nu}{\to} A$.

Proof. Ovbious.

Theorem 3.12. Let X be a non-archimedean Banach space over \mathbb{K} , let (A_n) , (B_n) be a sequence of bounded linear operators on X and A, $B \in \mathcal{L}(X)$. If $A_n \to A$ and $B_n \to B$, then $(A_n - \lambda B_n)^{-1} \xrightarrow{\nu} (A - \lambda B)^{-1}$ for all $\lambda \in \rho(A, B)$.

Proof. It suffices to apply Theorem 3.10 and Proposition 3.11.

References

- A. Ammar, A. Bouchekouaa, A. Jeribi, Some approximation results in a non-Archimedean Banach space, faac 12 (1) (2020), 33-50.
- A. Ammar, A. Bouchekouaa, A. Jeribi, Pseudospectra in a Non-Archimedean Banach Space and Essential Pseudospectra in E_ω, Filomat 33, no 12 (2019), 3961-3976.
- 3. P. M. Anselone, Collectively compact operator approximation theory and applications to integral equations, 1971.
- 4. T. Diagana, F. Ramaroson, Non-archimedean Operators Theory, Springer, 2016.
- 5. G. Karishna Kumar, S. H. Lui, Pseudospectrum and condition spectrum, Operators and Matrices (2015), 121-145.

- 6. A. Khellaf, H. Guebbai, S. Lemita, Z. Aissaoui, On the Pseudo-spectrum of Operator Pencils, Asian European Journal of Mathematics, 2019.
- W. PengHui, Z. Xu, Range inclusion of operators on non-archimedean Banach space, Science China Mathematics, Vol. 53 No. 12 (2010), 3215-3224.
- A. C. M. van Rooij, Non-Archimedean functional analysis, Monographs and Textbooks in Pure and Applied Math., 51. Marcel Dekker, Inc., New York, 1978.
- 9. L. N. Trefethen, M. Embree, Spectra and pseudospectra. The behavior of nonnormal matrices and operators, Princeton University Press, Princeton, 2005.

¹ Department of Mathematics and Computer Science, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, Fez, Morocco. E-mail address: abdelkhalek.elamrani@usmba.ac.ma; jawad.ettayb@gmail.com

and

² Department of Mathematics, Sidi Mohamed Ben Abdellah University, ENS B. P. 5206 Bensouda-Fez, Morocco. E-mail address: aziz.blali@usmba.ac.ma