On Pencil of Bounded Linear Operators on Non-archimedean Banach Spaces

A. El amrani ${ }^{1}$, J. Ettayb ${ }^{1}$ and A. Blali ${ }^{2}$

Abstract

In this paper, we introduce and check some properties of pseudospectrum and some approximation of a pencil of bounded linear operators on non-archimedean Banach spaces. Our main result extend some results for a pencil of bounded linear operators on non-archimedean Banach spaces and we give some examples to support our work.

Key Words: Non-archimedean Banach spaces, spectrum, pencil of linear operator, pseudospectrum.

Contents

1 Introduction

2 Main results

3 Non-archimedean generalized spectrum approximation

1. Introduction

Throughout this paper, X is a non-archimedean (n.a) Banach space over a (n.a) non trivially complete valued field \mathbb{K} with valuation $|\cdot|, \mathcal{L}(X)$ denotes the set of all bounded linear operators on X, \mathbb{Q}_{p} is the field of p-adic numbers ($p \geq 2$ being a prime) equipped with p-adic valuation $|\cdot|_{p}, \mathbb{Z}_{p}$ denotes the ring of p-adic integers of \mathbb{Q}_{p} (is the unit ball of \mathbb{Q}_{p}). We denote the completion of algebraic closure of \mathbb{Q}_{p} under the p-adic valuation $|\cdot|_{p}$ by \mathbb{C}_{p}. For more details, we refer to [4] and [8].
Remember that a free Banach space X is a non-archimedean Banach space for which there exists a family $\left(e_{i}\right)_{i \in \mathbb{N}}$ in $X \backslash\{0\}$ such that every element $x \in X$ can be written in the form of a convergent sum $x=\sum_{i \in \mathbb{N}} x_{i} e_{i}, x_{i} \in \mathbb{K}$ and $\|x\|=\sup _{i \in \mathbb{N}}\left|x_{i}\right|\left\|e_{i}\right\|$. The family $\left(e_{i}\right)_{i \in \mathbb{N}}$ is called an orthogonal basis. In free Banach space X, each bounded linear operator A on X can be written in a unique fashion as a pointwise convergent series, that is, there exists an infinite matrix $\left(a_{i, j}\right)_{(i, j) \in \mathbb{N} \times \mathbb{N}}$ with coefficients in \mathbb{K} such that

$$
A=\sum_{i, j \in \mathbb{N}} a_{i, j} e_{j}^{\prime} \otimes e_{i}, \text { and } \forall j \in \mathbb{N}, \quad \lim _{i \rightarrow \infty}\left|a_{i, j}\right|\left\|e_{i}\right\|=0,
$$

where $(\forall j \in \mathbb{N}) e_{j}^{\prime}(u)=u_{j}\left(e_{j}^{\prime}\right.$ is the linear form associated with $\left.e_{j}\right)$.
Moreover, for each $j \in \mathbb{N}, A e_{j}=\sum_{i \in \mathbb{N}} a_{i j} e_{i}$ and its norm is defined by

$$
\|A\|=\sup _{i, j} \frac{\left|a_{i j}\right|\left\|e_{i}\right\|}{\left\|e_{j}\right\|}
$$

Also, recall that X is of countable type if it contains a countable set whose linear hull is dense in X. For more details, we refer [4] and [8]. An unbounded linear operator $A: D(A) \subseteq X \rightarrow Y$ is said to be closed if for all $\left(x_{n}\right)_{n \in \mathbb{N}} \subset D(A)$ such that $\left\|x_{n}-x\right\| \rightarrow 0$ and $\left\|A x_{n}-y\right\| \rightarrow 0$ as $n \rightarrow \infty$, for some $x \in X$ and $y \in Y$, then $x \in D(A)$ and $y=A x$. The collection of closed linear operators from X into Y is denoted by $\mathcal{C}(X, Y)$. When $X=Y, \mathcal{C}(X, X)=\mathcal{C}(X)$. If $A \in \mathcal{L}(X)$ and B is an unbounded linear operator, then $A+B$ is closed if and only if B is closed, for more details, we refer to [4].

[^0]Definition 1.1. [4] Let $\omega=\left(\omega_{i}\right)_{i}$ be a sequence of non-zero elements of \mathbb{K}. We define \mathbb{E}_{ω} by

$$
\mathbb{E}_{\omega}=\left\{x=\left(x_{i}\right)_{i}: \forall i \in \mathbb{N}, x_{i} \in \mathbb{K}, \text { and } \lim _{i \rightarrow \infty}\left|\omega_{i}\right|^{\frac{1}{2}}\left|x_{i}\right|=0\right\},
$$

and it is equipped with the norm

$$
\forall x \in \mathbb{E}_{\omega}: x=\left(x_{i}\right)_{i},\|x\|=\sup _{i \in \mathbb{N}}\left(\left|\omega_{i}\right|^{\frac{1}{2}}\left|x_{i}\right|\right) .
$$

Remark 1.2. [4]
(i) The space $\left(\mathbb{E}_{\omega},\|\cdot\|\right)$ is a non-archimedean Banach space.
(ii) If

$$
\begin{aligned}
\langle\cdot, \cdot\rangle: \mathbb{E}_{\omega} \times \mathbb{E}_{\omega} & \longrightarrow \mathbb{K} \\
(x, y) & \mapsto \sum_{i=0}^{\infty} x_{i} y_{i} \omega_{i}
\end{aligned}
$$

where $x=\left(x_{i}\right)_{i}$ and $y=\left(y_{i}\right)_{i}$. Then, the space $\left(\mathbb{E}_{\omega},\|\cdot\|,\langle\cdot, \cdot\rangle\right)$ is called a p-adic (or nonarchimedean) Hilbert space.
(iii) The orthogonal basis $\left\{e_{i}, i \in \mathbb{N}\right\}$ is called the canonical basis of \mathbb{E}_{ω}, where for all $i \in \mathbb{N},\left\|e_{i}\right\|=\left|\omega_{i}\right|^{\frac{1}{2}}$.

Definition 1.3. [7] Let X, Y, Z be three non-archimedean Banach spaces over \mathbb{K}, let $A \in B(X, Y)$ and $B \in B(X, Z)$. Then A majorizes B, if there exists $M>0$ such that

$$
\begin{equation*}
\text { for all } x \in X,\|B x\| \leq M\|A x\| \text {. } \tag{1.1}
\end{equation*}
$$

Theorem 1.4. [7] Assume that, either field \mathbb{K} is spherically complete or both Y and Z are countable type Banach spaces over \mathbb{K}. Let $A \in B(X, Y)$ and $B \in B(X, Z)$. Then the statements are equivalent:
(1) $R\left(A^{*}\right) \subset R\left(B^{*}\right)$;
(2) B majorizes A;
(3) there exists a continuous linear operator $D: R(B) \longrightarrow Y$, such that $A=D B$.

In this paper, we study the problem of finding the eigenvalues of the generalized eigenvalue problem

$$
A x=\lambda B x
$$

for $\lambda \in \mathbb{K}, x \in X$, and $A, B \in \mathcal{L}(X)$.
Fore more basic concepts of non-archimedean operators theory, we refer to [4]. In [2], the authors extended the notion of pseudospectrum of linear operator A on non-archimedean Banach space X as follows.

Definition 1.5. [2] Let X be a non-archimedean Banach space over \mathbb{K} and $\varepsilon>0$. The pseudospectrum of a linear operator A on X is defined by

$$
\sigma_{\epsilon}(A)=\sigma(A) \cup\left\{\lambda \in \mathbb{K}:\left\|(\lambda-A)^{-1}\right\|>\varepsilon^{-1}\right\}
$$

by convention $\left\|(\lambda-A)^{-1}\right\|=\infty$ if, and only if, $\lambda \in \sigma(A)$.

2. Main results

We introduce the following definitions.
Definition 2.1. Let X be a non-archimedean Banach space over \mathbb{K}. Let $A, B \in \mathcal{L}(X)$, the spectrum $\sigma(A, B)$ of a pencil of linear operator (A, B) is defined by

$$
\begin{aligned}
\sigma(A, B) & =\{\lambda \in \mathbb{K}: A-\lambda B \text { is not invertible in } \mathcal{L}(X)\} \\
& =\{\lambda \in \mathbb{K}: 0 \in \sigma(A-\lambda B)\}
\end{aligned}
$$

The resolvent set $\rho(A, B)$ of a pencil of bounded linear operator (A, B) is

$$
\rho(A, B)=\left\{\lambda \in \mathbb{K}: \quad R(\lambda, A, B)=(A-\lambda B)^{-1} \text { exists in } \mathcal{L}(X)\right\}
$$

$R(\lambda, A, B)$ is called the resolvent of pencil of bounded linear operator (A, B).
Definition 2.2. Let X be a non-archimedean Banach space over \mathbb{K}. Let $A, B \in \mathcal{L}(X)$, the couple (A, B) is said to be regular, if $\rho(A, B) \neq \emptyset$.

For a regular couple (A, B), we have the following definitions.
Definition 2.3. Let X be a non-archimedean Banach space over \mathbb{K}, let $A, B \in \mathcal{L}(X)$ and $\varepsilon>0$. The pseudospectrum $\sigma_{\varepsilon}(A, B)$ of a pencil of bounded linear operator (A, B) on X is defined by

$$
\sigma_{\varepsilon}(A, B)=\sigma(A, B) \cup\left\{\lambda \in \mathbb{K}:\left\|(A-\lambda B)^{-1}\right\|>\varepsilon^{-1}\right\}
$$

The pseudoresolvent $\rho_{\varepsilon}(A, B)$ of a pencil of bounded linear operator (A, B) is defined by

$$
\rho_{\varepsilon}(A, B)=\rho(A, B) \cap\left\{\lambda \in \mathbb{K}:\left\|(A-\lambda B)^{-1}\right\| \leq \varepsilon^{-1}\right\}
$$

by convention $\left\|(A-\lambda B)^{-1}\right\|=\infty$ if, and only if, $\lambda \in \sigma(A, B)$.
Definition 2.4. Let X be a non-archimedean Banach space over \mathbb{K}, let $A, B \in \mathcal{L}(X)$ and $\varepsilon>0$. The generalized pseudospectrum of a pencil of bounded linear operator (A, B) on X is defined by

$$
\Sigma_{\varepsilon}(A, B)=\sigma(A, B) \cup\left\{\lambda \in \mathbb{K}:\left\|(A-\lambda B)^{-1} B\right\|>\varepsilon^{-1}\right\}
$$

By convention $\left\|(A-\lambda B)^{-1} B\right\|=\infty$ if, and only if, $\lambda \in \sigma(A, B)$.
Remark 2.5. Let X be a non-archimedean Banach space over \mathbb{K}, let $A, B \in \mathcal{L}(X)$. Then
(i) If $B=I$, then, $\Sigma_{\varepsilon}(A, I)=\sigma_{\varepsilon}(A)$ where $\sigma_{\varepsilon}(A)$ is the pseudospectrum of A.
(ii) Definition 2.3 is a natural generalization of Definition 1.5.

In the rest of this section, we suppose that (A, B) is regular. The next proposition gives a comparison between $\sigma_{\varepsilon}(A, B)$ and $\Sigma_{\varepsilon}(A, B)$.

Proposition 2.6. Let X be a non-archimedean Banach space over \mathbb{K}, let $A, B \in \mathcal{L}(X)$. Then for all $\varepsilon>0$,

$$
\Sigma_{\varepsilon}(A, B) \subset \sigma_{\varepsilon\|B\|}(A, B)
$$

Proof. Let $\varepsilon>0$ and $\lambda \in \Sigma_{\varepsilon}(A, B)$, then $\lambda \in \sigma(A, B)$ and

$$
\begin{align*}
\frac{1}{\varepsilon} & <\left\|(A-\lambda B)^{-1} B\right\| \tag{2.1}\\
& \leq\left\|(A-\lambda B)^{-1}\right\|\|B\| \tag{2.2}
\end{align*}
$$

Hence

$$
\frac{1}{\|B\| \varepsilon}<\left\|(A-\lambda B)^{-1}\right\|
$$

Thus $\lambda \in \sigma_{\varepsilon\|B\|}(A, B)$. Consequently

$$
\Sigma_{\varepsilon}(A, B) \subset \sigma_{\varepsilon\|B\|}(A, B)
$$

We have the following statements.
Lemma 2.7. Let X be a non-archimedean Banach space over \mathbb{K}, let $A, B \in \mathcal{L}(X)$ such that $\|B\|=1$. Then for all $\varepsilon>0$,

$$
\Sigma_{\varepsilon}(A, B) \subset \sigma_{\varepsilon}(A, B)
$$

Theorem 2.8. Let X be a non-archimedean Banach space over \mathbb{K}, let $A, B, C \in \mathcal{L}(X)$ such that $C^{-1} \in$ $\mathcal{L}(X)$. Then
(i) For all $\varepsilon>0, \Sigma_{\varepsilon}(A, B)=\Sigma_{\varepsilon}(C A, C B)$.
(ii) For all $\varepsilon>0, \Sigma_{\varepsilon}(A, C)=\sigma_{\varepsilon}\left(C^{-1} A\right)$. In particular $C=I, \Sigma_{\varepsilon}(A, I)=\sigma_{\varepsilon}(A)$.

Proof. (i) For all $\lambda \in \rho(A, B)$, we have $(A-\lambda B)^{-1} C^{-1}=(C A-\lambda C B)^{-1}$. Then, $\sigma(A, B)=$ $\sigma(C A, C B)$. In addition, it is clear that

$$
\begin{equation*}
\left\|(C A-\lambda C B)^{-1} C B\right\|=\left\|(A-\lambda B)^{-1} B\right\| . \tag{2.3}
\end{equation*}
$$

Hence $\lambda \in \Sigma_{\varepsilon}(A, B)$, if, and only if, $\lambda \in \Sigma_{\varepsilon}(C A, C B)$.
(ii) Assume that C is invertible, then $(A-\lambda C)^{-1} C=\left(C^{-1} A-\lambda I\right)^{-1}$. Then $\lambda \in \Sigma_{\varepsilon}(A, C)$, if and only if $\lambda \in \sigma_{\varepsilon}\left(C^{-1} A\right)$.

Proposition 2.9. Let X be a non-archimedean Banach space over \mathbb{K}, let $A, B \in \mathcal{L}(X)$. For all $\varepsilon>0$, we have
(i) $\sigma(A, B)=\bigcap_{\varepsilon>0} \Sigma_{\varepsilon}(A, B)$.
(ii) If $0<\varepsilon_{1} \leq \varepsilon_{2}$, then $\sigma(A, B) \subset \Sigma_{\varepsilon_{1}}(A, B) \subset \Sigma_{\varepsilon_{2}}(A, B)$.

Proof. (i) By Definition 2.4, we have for all $\varepsilon>0, \sigma(A, B) \subset \Sigma_{\varepsilon}(A, B)$. Conversely, if $\lambda \in$ $\bigcap_{\varepsilon>0} \Sigma_{\varepsilon}(A, B)$, then for all $\varepsilon>0, \lambda \in \Sigma_{\varepsilon}(A, B)$. If $\lambda \notin \sigma(A, B)$, then $\lambda \in\{\lambda \in \mathbb{K}$: $\left.\left\|(A-\lambda B)^{-1} B\right\|>\varepsilon^{-1}\right\}$, taking limits as $\varepsilon \rightarrow 0^{+}$, we get $\left\|(A-\lambda B)^{-1} B\right\|=\infty$. Thus $\lambda \in \sigma(A, B)$.
(ii) For $0<\varepsilon_{1} \leq \varepsilon_{2}$. Let $\lambda \in \sigma_{\varepsilon_{1}}(A, B)$, then $\left\|(A-\lambda B)^{-1} B\right\|>\varepsilon_{1}^{-1} \geq \varepsilon_{2}^{-1}$. Hence $\lambda \in \sigma_{\varepsilon_{2}}(A, B)$.

Proposition 2.10. Let X be a non-archimedean Banach space over \mathbb{K}, let X be a free Banach space over \mathbb{K} and let $A \in \mathcal{L}(X)$ be analytic operator with compact spectrum $\sigma(A) \neq \emptyset$, then there exists $B, C \in \mathcal{L}(X)$ such that $\sigma(A)=\sigma(B, C)$. In addition we have, for all $\varepsilon>0, \Sigma_{\varepsilon}(B, C)=\sigma_{\varepsilon}(A)$.
Proof. Let $\alpha \in \rho(A)$, we set $C=(A-\alpha I)^{-1}$ and $B=A(A-\alpha I)^{-1}$. Then

$$
\begin{aligned}
\lambda \in \rho(A) & \Longleftrightarrow(A-\lambda I)^{-1} \in \mathcal{L}(X) \\
& \Longleftrightarrow(A-\lambda I)(A-\alpha I)^{-1} \in \mathcal{L}(X) \\
& \Longleftrightarrow A(A-\alpha I)^{-1}-\lambda(A-\alpha I)^{-1} \in \mathcal{L}(X) \\
& \Longleftrightarrow B-\lambda C \in \mathcal{L}(X) \\
& \Longleftrightarrow(B-\lambda C)^{-1} \in \mathcal{L}(X) \\
& \Longleftrightarrow \lambda \in \rho(B, C) .
\end{aligned}
$$

Thus, $\sigma(A)=\sigma(B, C)$, let $\varepsilon>0, z \in \sigma_{\varepsilon}(A)$, then $z \in \sigma(A)$ and

$$
\begin{aligned}
\frac{1}{\varepsilon} & <\left\|(A-z I)^{-1}\right\| \\
& =\left\|(B-z C)^{-1} C\right\| .
\end{aligned}
$$

Thus $\sigma_{\varepsilon}(A)=\Sigma_{\varepsilon}(B, C)$.

Proposition 2.11. Let X be a non-archimedean Banach space over \mathbb{K} and let $A \in \mathcal{C}(X)$ with $\rho(A) \neq \emptyset$, then there exists $B, C \in \mathcal{L}(X)$ such that $\sigma(A)=\sigma(B, C)$.

Proof. Similar to the proof of Proposition 2.10.
We have the following examples.
Example 2.12. Let $\mathbb{K}=\mathbb{Q}_{p}$. Let 2×2 square matrix A and B over $\mathbb{Q}_{p} \times \mathbb{Q}_{p}$ and $a, b, c, d \in \mathbb{Q}_{p}^{*}$ such that $a \neq b$ and $c \neq d$. Then:
(i) If

$$
A=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)
$$

It is easy to see that, for all $\lambda \in \mathbb{Q}_{p}$, $\operatorname{det}(A-\lambda B)=-\lambda a$, then $\sigma(A, B)=\{0\}$. Simple calculation, we get

$$
(A-\lambda B)^{-1} B=\left(\begin{array}{cc}
\frac{-1}{\lambda} & 0 \\
0 & 0
\end{array}\right)
$$

thus, for all $\varepsilon>0, \Sigma_{\varepsilon}(A, B)=\{0\} \cup\left\{\lambda \in \mathbb{Q}_{p}:|\lambda|_{p}<\varepsilon\right\}$.
(ii) If

$$
A=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
c & 0 \\
0 & d
\end{array}\right)
$$

Note that, for all $\lambda \in \mathbb{Q}_{p}, \operatorname{det}(A-\lambda B)=(a-\lambda c)(b-\lambda d)$, then $\sigma(A, B)=\left\{\frac{a}{c}, \frac{b}{d}\right\}$ and

$$
\left\|(A-\lambda B)^{-1} B\right\|=\max \left\{\frac{|c|_{p}}{|a-\lambda c|_{p}}, \frac{|d|_{p}}{|b-\lambda d|_{p}}\right\}
$$

Hence, the generalized pseudospectrum of (A, B) is

$$
\Sigma_{\varepsilon}(A, B)=\left\{\frac{a}{c}, \frac{b}{d}\right\} \cup\left\{\lambda \in \mathbb{Q}_{p}: \max \left\{\frac{1}{\left|a c^{-1}-\lambda\right|_{p}}, \frac{1}{\left|b d^{-1}-\lambda\right|_{p}}\right\}>\frac{1}{\varepsilon}\right\}
$$

Example 2.13. Let $A, B \in \mathcal{L}\left(\mathbb{E}_{\omega}\right)$ be two diagonal operators such that for all $i \in \mathbb{N}, A e_{i}=a_{i} e_{i}$ and $B e_{i}=b_{i} e_{i}$, where $a_{i}, b_{i} \in \mathbb{Q}_{p}$ and B is invertible and $\sup _{i \in \mathbb{N}}\left|a_{i}\right|_{p}$ and $\sup _{i \in \mathbb{N}}\left|b_{i}\right|_{p}$ are finite and $0<\inf _{i \in \mathbb{N}}\left|b_{i}\right|_{p} \leq$ $\sup _{i \in \mathbb{N}}\left|b_{i}\right|_{p} \leq 1$. It is easy to see that

$$
\sigma(A, B)=\left\{\lambda \in \mathbb{Q}_{p}: \inf _{i \in \mathbb{N}}\left|a_{i}-\lambda b_{i}\right|=0\right\}=\left\{\lambda \in \mathbb{Q}_{p}: \inf _{i \in \mathbb{N}}\left|a_{i} b_{i}^{-1}-\lambda\right|=0\right\}
$$

and for all $\lambda \in \rho(A, B)$, we have

$$
\begin{aligned}
\left\|(A-\lambda B)^{-1} B\right\| & =\sup _{i \in \mathbb{N}} \frac{\left\|(A-\lambda B)^{-1} B e_{i}\right\|}{\left\|e_{i}\right\|} \\
& =\sup _{i \in \mathbb{N}}\left|\frac{b_{i}}{a_{i}-\lambda b_{i}}\right| \\
& =\frac{1}{\inf _{i \in \mathbb{N}}\left|a_{i} b_{i}^{-1}-\lambda\right|}
\end{aligned}
$$

Hence,

$$
\left\{\lambda \in \mathbb{Q}_{p}:\left\|(A-\lambda B)^{-1} B\right\|>\frac{1}{\varepsilon}\right\}=\left\{\lambda \in \mathbb{Q}_{p}: \frac{1}{\inf _{i \in \mathbb{N}}\left|a_{i} b_{i}^{-1}-\lambda\right|}>\frac{1}{\varepsilon}\right\}
$$

Consequently,

$$
\Sigma_{\varepsilon}(A, B)=\left\{\lambda \in \mathbb{Q}_{p}: \inf _{i \in \mathbb{N}}\left|a_{i} b_{i}^{-1}-\lambda\right|=0\right\} \cup\left\{\lambda \in \mathbb{Q}_{p}: \inf _{i \in \mathbb{N}}\left|a_{i} b_{i}^{-1}-\lambda\right|<\varepsilon\right\}
$$

We have the following results.
Theorem 2.14. Let X, Y be two non-Archimedean Banach spaces over \mathbb{K}, let $A \in \mathcal{C}(X, Y), B \in \mathcal{L}(X, Y)$ and $\lambda \in \mathbb{K}$. If $A-\lambda B$ is one-to-one and onto, then $(A-\lambda B)^{-1}$ is closed linear operator.

Proof. Let $\lambda \in \mathbb{K}$ and a sequence $\left(y_{n}\right)_{n} \subset Y$ such that y_{n} converges to y in Y and $(A-\lambda B)^{-1} y_{n}$ converges to x in X. Setting $x_{n}=(A-\lambda B)^{-1} y_{n}$, then $x_{n} \in D(A)$ and $y_{n}=(A-\lambda B) x_{n} \in Y$. Since $(A-\lambda B) x_{n} \rightarrow y$ and $x_{n} \rightarrow x$ and $A-\lambda B$ is a closed linear operator wich implies that $x \in D(A)$ and $y=(A-\lambda B) x$, then $y \in Y$ and $x=(A-\lambda B)^{-1} y$. Thus $(A-\lambda B)^{-1}$ is closed linear operator.

Corollary 2.15. Let X, Y be two non-Archimedean Banach spaces over \mathbb{K}. Let A be a linear operator from X into Y and B be a non null bounded linear operator from X into Y. If A is a non closed operator, then $\sigma(A, B)=\mathbb{K}$.

Proof. Let A be a linear operator which is not closed. We argue by contradiction. Suppose that $\rho(A, B)$ is not empty, then there exists $\lambda \in \mathbb{K}$ such that $\lambda \in \rho(A, B)$, consequently, $(A-\lambda B)^{-1}$ is a bounded operator. Hence, $A-\lambda B$ is a closed operator. In addition, we can write $A=A-\lambda B+\lambda B$. We conclude that A is a closed operator, which is a contradiction.

Corollary 2.16. Let X be a non-archimedean Banach space over \mathbb{K}, let $A, B \in \mathcal{L}(X)$ such that $\sigma(A, B)=$ \mathbb{K}, then A is not invertible.

Proposition 2.17. Let X be a non-archimedean Banach space over \mathbb{K}, let $A, B \in \mathcal{L}(X)$ and $B^{-1} \in \mathcal{L}(X)$, then $\sigma_{p}\left(B^{-1} A\right)=\sigma_{p}(A, B)$.

Proof. Let $\lambda \in \sigma_{p}(A, B)$, then there exists $x \in X \backslash\{0\}$ such that $A x=\lambda B x$. Since $B^{-1} \in \mathcal{L}(X)$, we have $B^{-1} A x=\lambda x$, thus $\lambda \in \sigma_{p}\left(B^{-1} A\right)$, therefore $\sigma_{p}(A, B) \subseteq \sigma_{p}\left(B^{-1} A\right)$. Similarly, we obtain $\sigma_{p}\left(B^{-1} A\right) \subseteq \sigma_{p}(A, B)$. Thus $\sigma_{p}(A, B)=\sigma_{p}\left(B^{-1} A\right)$.

Theorem 2.18. Let $A, B \in \mathcal{L}\left(\mathbb{K}^{n}\right)$. If A is invertible and $A^{-1} B$ or $B A^{-1}$ is nilpotent, then $\sigma(A, B)=\emptyset$.
Proof. Assume that A is invertible and $A^{-1} B$ or $B A^{-1}$ is nilpotent, then for all $\lambda \in \mathbb{K}, I-\lambda A^{-1} B$ or $I-\lambda B A^{-1}$ is invertible, hence for all $\lambda \in \mathbb{K},(A-\lambda B)^{-1}$ exists in $\mathcal{L}\left(\mathbb{K}^{n}\right)$. Thus, $\sigma(A, B)=\emptyset$.

Theorem 2.19. Let X be a Banach space of countable type over \mathbb{Q}_{p}, let $A, B \in \mathcal{L}(X)$ such that B majorizes A and B is not invertible, then $\sigma(A, B)=\mathbb{Q}_{p}$.

Proof. If B majorizes A. From Theorem 1.4, there exists a continuous linear operator $D: R(B) \longrightarrow X$ such that $A=D B$. then, for all $\lambda \in \mathbb{Q}_{p}, A-\lambda B=(D-\lambda) B$, since B is not invertible then, for all $\lambda \in \mathbb{Q}_{p}, A-\lambda B$ is not invertible. Thus, $\sigma(A, B)=\mathbb{Q}_{p}$.

Proposition 2.20. Let X be a non-archimedean Banach space over \mathbb{K}, let $A, B \in \mathcal{L}(X)$ such that $A B=B A$ and $0 \in \rho(A) \cap \rho(B)$, then $\lambda \in \sigma(A, B)$ if and only if $\frac{1}{\lambda} \in \sigma\left(A^{-1}, B^{-1}\right)$.

Proof. From $A-\lambda B=-\lambda B\left(A^{-1}-\lambda^{-1} B^{-1}\right) A$, we obtain that $\lambda \in \sigma(A, B)$ if and only if $\frac{1}{\lambda} \in \sigma\left(A^{-1}, B^{-1}\right)$.

Proposition 2.21. Let X be a non-archimedean Banach space over \mathbb{K}, let $A, B \in \mathcal{L}(X)$ such that $A B=B A$ with $\sigma(A, B) \neq \emptyset$. If $\mu \in \rho(A, B)$, then $\lambda \in \sigma(A, B)$ if and only if $\frac{1}{\lambda-\mu} \in \sigma\left((A-\mu B)^{-1} B\right)$.

Proof. Let $A, B \in \mathcal{L}(X)$ and $\mu \in \rho(A, B)$. For $\lambda \in \mathbb{K}$ with $\lambda \neq \mu$, we have

$$
A-\lambda B=(A-\mu B)\left[(A-\mu B)^{-1} B-(\lambda-\mu)^{-1}\right](\mu-\lambda)
$$

Hence $\lambda \in \sigma(A, B)$ if and only if $\frac{1}{\lambda-\mu} \in \sigma\left((A-\mu B)^{-1} B\right)$.

3. Non-archimedean generalized spectrum approximation

In [1], the authors extended the following definitions to non-archimedean case.
Definition 3.1. [1] Let X be a non-archimedean Banach space over \mathbb{K} and let $A \in \mathcal{L}(X)$.
(1) A sequence $\left(A_{n}\right)$ of bounded linear operators on X is said to be norm convergent to A, denoted by $A_{n} \rightarrow A$, if $\lim _{n \rightarrow \infty}\left\|A_{n}-A\right\|=0$.
(2) A sequence $\left(A_{n}\right)$ of bounded linear operators on X is said to be pointwise convergent to A, denoted by $A_{n} \xrightarrow{p} A$, if for all $x \in X, \lim _{n \rightarrow \infty}\left\|A_{n} x-A x\right\|=0$.
Definition 3.2. [1] Let X be a non-archimedean Banach space over \mathbb{K} and let $A \in \mathcal{L}(X)$. A sequence $\left(A_{n}\right)$ of bounded linear operators on X is said to be ν-convergent to A, denoted by $A_{n} \xrightarrow{\nu} A$, if
(1) $\left(\left\|A_{n}\right\|\right)$ is bounded,
(2) $\left\|\left(A_{n}-A\right) A\right\| \rightarrow 0$ as $n \rightarrow \infty$, and
(3) $\left\|\left(A_{n}-A\right) A_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Definition 3.3. [1] Let X be a non-archimedean Banach space over a locally compact filed \mathbb{K} and let $A \in \mathcal{L}(X)$. A sequence $\left(A_{n}\right)$ of bounded linear operators on X is said to be convergent to A in the collectively compact convergence, denoted by $A_{n} \xrightarrow{\text { c.c. }} A$, if $A_{n} \xrightarrow{p} A$, and for some positive integer N,

$$
\bigcup_{n \geq N}\left\{\left(A_{n}-A\right) x: x \in X,\|x\| \leq 1\right\}
$$

has compact closure of X.
We have the following results.
Proposition 3.4. Let X be a non-archimedean Banach space over \mathbb{K}, let $A, A_{n}, B, B_{n} \in \mathcal{L}(X)$. If $A_{n} \rightarrow A$ or $B_{n} \rightarrow B$, then for any $C \in B(X)$, we have

$$
\left\|\left(A_{n}-A\right) C\left(B_{n}-B\right)\right\| \rightarrow 0
$$

Proof. Since $A_{n} \rightarrow A$ or $B_{n} \rightarrow B$, then for any $C \in B(X)$, we have

$$
\left\|\left(A_{n}-A\right) C\left(B_{n}-B\right)\right\| \leq\left\|\left(A_{n}-A\right)\right\|\|C\|\left\|\left(B_{n}-B\right)\right\| \rightarrow 0
$$

Proposition 3.5. Let X be a non-archimedean Banach space over \mathbb{K}, let $A, A_{n}, B, B_{n} \in \mathcal{L}(X)$. If $A_{n} \xrightarrow{\nu} A, B_{n} \xrightarrow{\nu} B$ and $0 \in \rho(A) \cap \rho(B)$, then for all $\lambda \in \mathbb{K}$, we have

$$
A_{n}-\lambda B_{n} \rightarrow A-\lambda B
$$

Proof. Suppose that $A_{n} \xrightarrow{\nu} A, B_{n} \xrightarrow{\nu} B, 0 \in \rho(A) \cap \rho(B)$, and for all $\lambda \in \mathbb{K}$, we have

$$
\begin{aligned}
\left\|\left(A_{n}-\lambda B_{n}\right)-(A-\lambda B)\right\| & \leq \max \left\{\left\|\left(A_{n}-A\right)\right\| ;|\lambda|\left\|\left(B_{n}-B\right)\right\|\right\} \\
& \rightarrow 0
\end{aligned}
$$

Since,

$$
\begin{aligned}
\left\|\left(A_{n}-A\right)\right\| & =\left\|\left(A_{n}-A\right) A A^{-1}\right\| \\
& \leq\left\|\left(A_{n}-A\right) A\right\|\left\|A^{-1}\right\| \\
& \rightarrow 0
\end{aligned}
$$

Similarly, we obtain $\left\|\left(B_{n}-B\right)\right\| \rightarrow 0$.
Proposition 3.6. Let X be a non-archimedean Banach space over \mathbb{Q}_{p} such that $\|X\| \subseteq\left|\mathbb{Q}_{p}\right|$, let $A, A_{n}, B, B_{n} \in \mathcal{L}(X)$. If $A_{n} \xrightarrow{p} A$ and $B_{n} \xrightarrow{c c} B$, then for any $C \in \mathcal{L}(X)$, we have

$$
\left\|\left(A_{n}-A\right) C\left(B_{n}-B\right)\right\| \rightarrow 0
$$

Proof. Since $A_{n} \xrightarrow{p} A$ and $B_{n} \xrightarrow{c c} B$, and $\|X\| \subseteq\left|\mathbb{Q}_{p}\right|$, hence $A_{n} \xrightarrow{p} A$ and $B_{n} \xrightarrow{p} B$ and $\mathrm{C}\left(\bigcup_{n \geq N}\left\{\left(B_{n}-B\right) x: x \in X,\|x\| \leq 1\right\}\right)$ has compact closure of X. Then

$$
\left\|\left(A_{n}-A\right) C\left(B_{n}-B\right)\right\| \rightarrow 0
$$

The aim of the following results is to discuss the spectrum of a sequence of a pencil of linear operators in a non-archimedean Banach space.

Theorem 3.7. Let X be a non-archimedean Banach space over \mathbb{K}, let $\left(A_{n}\right)$ be a sequence of bounded linear operators on X and $A \in \mathcal{L}(X)$. If $A_{n} \rightarrow A$, then there exists $N \in \mathbb{N}$, we have

$$
\text { for all } n \geq N, \sigma\left(A_{n}\right) \subset \sigma(A)
$$

Proof. Let $\lambda \in \rho(A)$. Then for all $n \in \mathbb{N}$, we have

$$
\lambda I-A_{n}=(\lambda I-A)\left(I+(\lambda I-A)^{-1}\left(A-A_{n}\right)\right)
$$

Since $A_{n} \rightarrow A$ Then, $\lim _{n \rightarrow \infty}\left\|A_{n}-A\right\|=0$, hence for all $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $\left\|A_{n}-A\right\|<\varepsilon$. In particular, for $\varepsilon=\left\|(\lambda-A)^{-1}\right\|^{-1}$, we have

$$
\text { for all } n \geq N,\left\|A_{n}-A\right\|<\left\|(\lambda-A)^{-1}\right\|^{-1} .
$$

Thus, for all $n \geq N$, we have

$$
\begin{aligned}
\left\|(\lambda I-A)^{-1}\left(A-A_{n}\right)\right\| & \leq\left\|(\lambda I-A)^{-1}\right\|\left\|\left(A-A_{n}\right)\right\| \\
& <1
\end{aligned}
$$

Then for all $n \geq N,\left(I+(\lambda I-A)^{-1}\left(A-A_{n}\right)\right)^{-1} \in \mathcal{L}(X)$, hence for all $n \geq N,\left(\lambda-A_{n}\right)^{-1} \in \mathcal{L}(X)$. Thus, for all $n \geq N, \lambda \in \rho\left(A_{n}\right)$.

We have the following proposition.
Proposition 3.8. Let X be a non-archimedean Banach space over \mathbb{K}, let $A, B, C, D \in \mathcal{L}(X)$ such that $\rho(A, C) \neq \emptyset$. For all $z \in \rho(A, C)$ such that $\|R(z, A, C)[(A-B)-z(C-D)]\|<1$, we have $z \in \rho(B, D)$.

Proof. Since, for all $z \in \rho(A, C)$ such that $\|R(z, A, C)[(A-B)-z(C-D)]\|<1$ and

$$
B-z D=(A-z C)[I-R(z, A, C)((A-B)-z(C-D))]
$$

Hence $(B-z D)$ is invertible and $(B-z D)^{-1} \in \mathcal{L}(X)$. Thus, $z \in \rho(B, D)$.
Theorem 3.9. Let X be a non-archimedean Banach space over \mathbb{K}, let $\left(A_{n}\right)$ and $\left(B_{n}\right)$ be a sequences of bounded linear operators on X and $A, B \in \mathcal{L}(X)$. If $A_{n} \rightarrow A$ and $B_{n} \rightarrow B$, then there exists $N \in \mathbb{N}$, we have

$$
\text { for all } n \geq N, \sigma\left(A_{n}, B_{n}\right) \subset \sigma(A, B)
$$

Proof. Let $\lambda \in \rho(A, B)$. Then for all $n \in \mathbb{N}$, we can write

$$
A_{n}-\lambda B_{n}=\left(I-\left(E_{n}-\lambda F_{n}\right)\right)(A-\lambda B)
$$

where $E_{n}=\left(A-A_{n}\right) R(\lambda, A, B)$ and $F_{n}=\left(B-B_{n}\right) R(\lambda, A, B)$. Since $A_{n} \rightarrow A$ and $B_{n} \rightarrow B$, then for all $\lambda \in \rho(A, B), \lim _{n \rightarrow \infty}\left\|E_{n}-\lambda F_{n}\right\|=0$. Hence there exists $N \in \mathbb{N}$ such that for all $n \geq N,\left\|E_{n}-\lambda F_{n}\right\|<1$. Then, there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$
\left(I-\left(E_{n}-\lambda F_{n}\right)\right)^{-1} \in \mathcal{L}(X) .
$$

Thus, there exists $N \in \mathbb{N}$ such that for all $n \geq N, A_{n}-\lambda B_{n}$ is invertible $\mathcal{L}(X)$. Then, for all $n \geq N$, $\lambda \in \rho\left(A_{n}, B_{n}\right)$.

Theorem 3.10. Let X be a non-archimedean Banach space over \mathbb{K}, let $\left(A_{n}\right),\left(B_{n}\right)$ be a sequences of bounded linear operators on X and $A, B \in \mathcal{L}(X)$. If $A_{n} \rightarrow A$ and $B_{n} \rightarrow B$, then for all $\lambda \in \rho(A, B)$, $\left(A_{n}-\lambda B_{n}\right)^{-1} \rightarrow(A-\lambda B)^{-1}$.

Proof. Let $\lambda \in \rho(A, B)$. Since $A_{n} \rightarrow A$ and $B_{n} \rightarrow B$, then by using Theorem 3.9, there exists $N \in \mathbb{N}$ such that for all $n \geq N, \lambda \in \rho\left(A_{n}, B_{n}\right)$. Then for all $n \geq N$,

$$
\begin{align*}
&\left\|\left(A_{n}-\lambda B_{n}\right)^{-1}-(A-\lambda B)^{-1}\right\| \tag{3.1}\\
&=\left\|\left(A_{n}-\lambda B_{n}\right)^{-1}\left((A-\lambda B)-\left(A_{n}-\lambda B_{n}\right)\right)(A-\lambda B)^{-1}\right\| \tag{3.1}\\
&=\left\|\left(A_{n}-\lambda B_{n}\right)^{-1}\left(\left(A-A_{n}\right)-\lambda\left(B-B_{n}\right)\right)(A-\lambda B)^{-1}\right\| \\
& \leq \max \left\{\left\|\left(A-A_{n}\right)\right\|, \mid \lambda\| \|\left(B-B_{n}\right) \|\right\}\left\|\left(A_{n}-\lambda B_{n}\right)^{-1}\right\|\left\|(A-\lambda B)^{-1}\right\|
\end{align*}
$$

Since $A_{n} \rightarrow A$ and $B_{n} \rightarrow B$, and $\left.\left\|\left(A_{n}-\lambda B_{n}\right)^{-1}\right\| \| A-\lambda B\right)^{-1} \|<\infty$. Thus,

$$
\lim _{n \rightarrow \infty}\left\|\left(A_{n}-\lambda B_{n}\right)^{-1}-(A-\lambda B)^{-1}\right\|=0
$$

Proposition 3.11. Let X be a non-archimedean Banach space over \mathbb{K}, let $\left(A_{n}\right)$ be a sequence of bounded linear operators on X and $A \in \mathcal{L}(X)$. If $A_{n} \rightarrow A$, then $A_{n} \xrightarrow{\nu} A$.

Proof. Ovbious.
Theorem 3.12. Let X be a non-archimedean Banach space over \mathbb{K}, let $\left(A_{n}\right),\left(B_{n}\right)$ be a sequence of bounded linear operators on X and $A, B \in \mathcal{L}(X)$. If $A_{n} \rightarrow A$ and $B_{n} \rightarrow B$, then $\left(A_{n}-\lambda B_{n}\right)^{-1} \xrightarrow{\nu}$ $(A-\lambda B)^{-1}$ for all $\lambda \in \rho(A, B)$.

Proof. It suffices to apply Theorem 3.10 and Proposition 3.11.

References

1. A. Ammar, A. Bouchekouaa, A. Jeribi, Some approximation results in a non-Archimedean Banach space, faac 12 (1) (2020), 33-50.
2. A. Ammar, A. Bouchekouaa, A. Jeribi, Pseudospectra in a Non-Archimedean Banach Space and Essential Pseudospectra in E_{ω}, Filomat 33, no 12 (2019), 3961-3976.
3. P. M. Anselone, Collectively compact operator approximation theory and applications to integral equations, 1971.
4. T. Diagana, F. Ramaroson, Non-archimedean Operators Theory, Springer, 2016.
5. G. Karishna Kumar, S. H. Lui, Pseudospectrum and condition spectrum, Operators and Matrices (2015), 121-145.
6. A. Khellaf, H. Guebbai, S. Lemita, Z. Aissaoui, On the Pseudo-spectrum of Operator Pencils, Asian European Journal of Mathematics, 2019.
7. W. PengHui, Z. Xu, Range inclusion of operators on non-archimedean Banach space, Science China Mathematics, Vol. 53 No. 12 (2010), 3215-3224.
8. A. C. M. van Rooij, Non-Archimedean functional analysis, Monographs and Textbooks in Pure and Applied Math., 51. Marcel Dekker, Inc., New York, 1978.
9. L. N. Trefethen, M. Embree, Spectra and pseudospectra. The behavior of nonnormal matrices and operators, Princeton University Press, Princeton, 2005.

1 Department of Mathematics and Computer Science, Sidi Mohamed Ben Abdellah University,
Faculty of Sciences Dhar El Mahraz,
Fez, Morocco.
E-mail address: abdelkhalek.elamrani@usmba.ac.ma; jawad.ettayb@gmail.com
and
2 Department of Mathematics,
Sidi Mohamed Ben Abdellah University,
ENS B. P. 5206 Bensouda-Fez, Morocco.
E-mail address: aziz.blali@usmba.ac.ma

[^0]: 2010 Mathematics Subject Classification: 47A10, 47S10.
 Submitted February 09, 2022. Published August 20, 2022

