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On Pencil of Bounded Linear Operators on Non-archimedean Banach Spaces
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abstract: In this paper, we introduce and check some properties of pseudospectrum and some approxi-
mation of a pencil of bounded linear operators on non-archimedean Banach spaces. Our main result extend
some results for a pencil of bounded linear operators on non-archimedean Banach spaces and we give some
examples to support our work.
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1. Introduction

Throughout this paper, X is a non-archimedean (n.a) Banach space over a (n.a) non trivially complete
valued field K with valuation | · |, L(X) denotes the set of all bounded linear operators on X, Qp is the
field of p-adic numbers (p ≥ 2 being a prime) equipped with p-adic valuation |.|p, Zp denotes the ring of
p-adic integers of Qp (is the unit ball of Qp). We denote the completion of algebraic closure of Qp under
the p-adic valuation | · |p by Cp. For more details, we refer to [4] and [8].
Remember that a free Banach space X is a non-archimedean Banach space for which there exists a
family (ei)i∈N in X\{0} such that every element x ∈ X can be written in the form of a convergent sum

x =
∑

i∈N

xiei, xi ∈ K and ‖x‖ = sup
i∈N

|xi|‖ei‖. The family (ei)i∈N is called an orthogonal basis. In free

Banach space X, each bounded linear operator A on X can be written in a unique fashion as a pointwise
convergent series, that is, there exists an infinite matrix (ai,j)(i,j)∈N×N with coefficients in K such that

A =
∑

i,j∈N

ai,je′
j ⊗ ei, and ∀j ∈ N, lim

i→∞
|ai,j |‖ei‖ = 0,

where (∀j ∈ N) e′
j (u) = uj (e′

j is the linear form associated with ej).

Moreover, for each j ∈ N, Aej =
∑

i∈N

aijei and its norm is defined by

‖ A ‖= sup
i,j

|aij |‖ei‖

‖ej‖
.

Also, recall that X is of countable type if it contains a countable set whose linear hull is dense in X. For
more details, we refer [4] and [8]. An unbounded linear operator A : D(A) ⊆ X → Y is said to be closed
if for all (xn)n∈N ⊂ D(A) such that ‖xn − x‖ → 0 and ‖Axn − y‖ → 0 as n → ∞, for some x ∈ X and
y ∈ Y, then x ∈ D(A) and y = Ax. The collection of closed linear operators from X into Y is denoted
by C(X, Y ). When X = Y, C(X, X) = C(X). If A ∈ L(X) and B is an unbounded linear operator, then
A + B is closed if and only if B is closed, for more details, we refer to [4].
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Definition 1.1. [4] Let ω = (ωi)i be a sequence of non-zero elements of K. We define Eω by

Eω = {x = (xi)i : ∀i ∈ N, xi ∈ K, and lim
i→∞

|ωi|
1

2 |xi| = 0},

and it is equipped with the norm

∀x ∈ Eω : x = (xi)i, ‖x‖ = sup
i∈N

(|ωi|
1

2 |xi|).

Remark 1.2. [4]

(i) The space
(

Eω , ‖ · ‖
)

is a non-archimedean Banach space.

(ii) If

〈·, ·〉 : Eω × Eω −→ K

(x, y) 7→
∞

∑

i=0

xiyiωi,

where x = (xi)i and y = (yi)i. Then, the space
(

Eω , ‖ · ‖, 〈·, ·〉
)

is called a p-adic (or non-

archimedean) Hilbert space.

(iii) The orthogonal basis {ei, i ∈ N} is called the canonical basis of Eω , where for all i ∈ N, ‖ei‖ = |ωi|
1

2 .

Definition 1.3. [7] Let X, Y, Z be three non-archimedean Banach spaces over K, let A ∈ B(X, Y ) and
B ∈ B(X, Z). Then A majorizes B, if there exists M > 0 such that

for all x ∈ X, ‖Bx‖ ≤ M‖Ax‖. (1.1)

Theorem 1.4. [7] Assume that, either field K is spherically complete or both Y and Z are countable
type Banach spaces over K. Let A ∈ B(X, Y ) and B ∈ B(X, Z). Then the statements are equivalent:

(1) R(A∗) ⊂ R(B∗);

(2) B majorizes A;

(3) there exists a continuous linear operator D : R(B) −→ Y, such that A = DB.

In this paper, we study the problem of finding the eigenvalues of the generalized eigenvalue problem

Ax = λBx

for λ ∈ K, x ∈ X, and A, B ∈ L(X).
Fore more basic concepts of non-archimedean operators theory, we refer to [4]. In [2], the authors
extended the notion of pseudospectrum of linear operator A on non-archimedean Banach space X as
follows.

Definition 1.5. [2] Let X be a non-archimedean Banach space over K and ε > 0. The pseudospectrum
of a linear operator A on X is defined by

σǫ(A) = σ(A) ∪ {λ ∈ K : ‖(λ − A)−1‖ > ε−1},

by convention ‖(λ − A)−1‖ = ∞ if, and only if, λ ∈ σ(A).
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2. Main results

We introduce the following definitions.

Definition 2.1. Let X be a non-archimedean Banach space over K. Let A, B ∈ L(X), the spectrum
σ(A, B) of a pencil of linear operator (A, B) is defined by

σ(A, B) = {λ ∈ K : A − λB is not invertible in L(X)},

= {λ ∈ K : 0 ∈ σ(A − λB)}.

The resolvent set ρ(A, B) of a pencil of bounded linear operator (A, B) is

ρ(A, B) = {λ ∈ K : R(λ, A, B) = (A − λB)−1 exists in L(X)}.

R(λ, A, B) is called the resolvent of pencil of bounded linear operator (A, B).

Definition 2.2. Let X be a non-archimedean Banach space over K. Let A, B ∈ L(X), the couple (A, B)
is said to be regular, if ρ(A, B) 6= ∅.

For a regular couple (A, B), we have the following definitions.

Definition 2.3. Let X be a non-archimedean Banach space over K, let A, B ∈ L(X) and ε > 0. The
pseudospectrum σε(A, B) of a pencil of bounded linear operator (A, B) on X is defined by

σε(A, B) = σ(A, B) ∪ {λ ∈ K : ‖(A − λB)−1‖ > ε−1}.

The pseudoresolvent ρε(A, B) of a pencil of bounded linear operator (A, B) is defined by

ρε(A, B) = ρ(A, B) ∩ {λ ∈ K : ‖(A − λB)−1‖ ≤ ε−1},

by convention ‖(A − λB)−1‖ = ∞ if, and only if, λ ∈ σ(A, B).

Definition 2.4. Let X be a non-archimedean Banach space over K, let A, B ∈ L(X) and ε > 0. The
generalized pseudospectrum of a pencil of bounded linear operator (A, B) on X is defined by

Σε(A, B) = σ(A, B) ∪ {λ ∈ K : ‖(A − λB)−1B‖ > ε−1}.

By convention ‖(A − λB)−1B‖ = ∞ if, and only if, λ ∈ σ(A, B).

Remark 2.5. Let X be a non-archimedean Banach space over K, let A, B ∈ L(X). Then

(i) If B = I, then, Σε(A, I) = σε(A) where σε(A) is the pseudospectrum of A.

(ii) Definition 2.3 is a natural generalization of Definition 1.5.

In the rest of this section, we suppose that (A, B) is regular. The next proposition gives a comparison
between σε(A, B) and Σε(A, B).

Proposition 2.6. Let X be a non-archimedean Banach space over K, let A, B ∈ L(X). Then for all
ε > 0,

Σε(A, B) ⊂ σε‖B‖(A, B).

Proof. Let ε > 0 and λ ∈ Σε(A, B), then λ ∈ σ(A, B) and

1

ε
< ‖(A − λB)−1B‖ (2.1)

≤ ‖(A − λB)−1‖‖B‖. (2.2)

Hence
1

‖B‖ε
< ‖(A − λB)−1‖.

Thus λ ∈ σε‖B‖(A, B). Consequently

Σε(A, B) ⊂ σε‖B‖(A, B).

�
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We have the following statements.

Lemma 2.7. Let X be a non-archimedean Banach space over K, let A, B ∈ L(X) such that ‖B‖ = 1.

Then for all ε > 0,

Σε(A, B) ⊂ σε(A, B).

Theorem 2.8. Let X be a non-archimedean Banach space over K, let A, B, C ∈ L(X) such that C−1 ∈
L(X). Then

(i) For all ε > 0, Σε(A, B) = Σε(CA, CB).

(ii) For all ε > 0, Σε(A, C) = σε(C−1A). In particular C = I, Σε(A, I) = σε(A).

Proof. (i) For all λ ∈ ρ(A, B), we have (A − λB)−1C−1 = (CA − λCB)−1. Then, σ(A, B) =
σ(CA, CB). In addition, it is clear that

‖(CA − λCB)−1CB‖ = ‖(A − λB)−1B‖. (2.3)

Hence λ ∈ Σε(A, B), if, and only if, λ ∈ Σε(CA, CB).

(ii) Assume that C is invertible, then (A − λC)−1C = (C−1A − λI)−1. Then λ ∈ Σε(A, C), if and only
if λ ∈ σε(C−1A).

�

Proposition 2.9. Let X be a non-archimedean Banach space over K, let A, B ∈ L(X). For all ε > 0,
we have

(i) σ(A, B) =
⋂

ε>0

Σε(A, B).

(ii) If 0 < ε1 ≤ ε2, then σ(A, B) ⊂ Σε1
(A, B) ⊂ Σε2

(A, B).

Proof. (i) By Definition 2.4, we have for all ε > 0, σ(A, B) ⊂ Σε(A, B). Conversely, if λ ∈
⋂

ε>0

Σε(A, B), then for all ε > 0, λ ∈ Σε(A, B). If λ 6∈ σ(A, B), then λ ∈ {λ ∈ K :

‖(A − λB)−1B‖ > ε−1}, taking limits as ε → 0+, we get ‖(A − λB)−1B‖ = ∞. Thus λ ∈ σ(A, B).

(ii) For 0 < ε1 ≤ ε2. Let λ ∈ σε1
(A, B), then ‖(A − λB)−1B‖ > ε−1

1 ≥ ε−1
2 . Hence λ ∈ σε2

(A, B).
�

Proposition 2.10. Let X be a non-archimedean Banach space over K, let X be a free Banach space over
K and let A ∈ L(X) be analytic operator with compact spectrum σ(A) 6= ∅, then there exists B, C ∈ L(X)
such that σ(A) = σ(B, C). In addition we have, for all ε > 0, Σε(B, C) = σε(A).

Proof. Let α ∈ ρ(A), we set C = (A − αI)−1 and B = A(A − αI)−1. Then

λ ∈ ρ(A) ⇐⇒ (A − λI)−1 ∈ L(X)

⇐⇒ (A − λI)(A − αI)−1 ∈ L(X)

⇐⇒ A(A − αI)−1 − λ(A − αI)−1 ∈ L(X)

⇐⇒ B − λC ∈ L(X)

⇐⇒ (B − λC)−1 ∈ L(X)

⇐⇒ λ ∈ ρ(B, C).

Thus, σ(A) = σ(B, C), let ε > 0, z ∈ σε(A), then z ∈ σ(A) and

1

ε
< ‖(A − zI)−1‖,

= ‖(B − zC)−1C‖.

Thus σε(A) = Σε(B, C). �
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Proposition 2.11. Let X be a non-archimedean Banach space over K and let A ∈ C(X) with ρ(A) 6= ∅,

then there exists B, C ∈ L(X) such that σ(A) = σ(B, C).

Proof. Similar to the proof of Proposition 2.10. �

We have the following examples.

Example 2.12. Let K = Qp. Let 2 × 2 square matrix A and B over Qp × Qp and a, b, c, d ∈ Q∗
p such

that a 6= b and c 6= d. Then:

(i) If

A =

(

0 0
0 1

)

and B =

(

a 0
0 0

)

.

It is easy to see that, for all λ ∈ Qp, det(A − λB) = −λa, then σ(A, B) = {0}. Simple calculation, we get

(A − λB)−1B =

(

−1
λ

0
0 0

)

,

thus, for all ε > 0, Σε(A, B) = {0} ∪ {λ ∈ Qp : |λ|p < ε}.

(ii) If

A =

(

a 0
0 b

)

and B =

(

c 0
0 d

)

.

Note that, for all λ ∈ Qp, det(A − λB) = (a − λc)(b − λd), then σ(A, B) = { a
c
, b

d
} and

‖(A − λB)−1B‖ = max
{ |c|p

|a − λc|p
,

|d|p
|b − λd|p

}

.

Hence, the generalized pseudospectrum of (A, B) is

Σε(A, B) = {
a

c
,

b

d
} ∪

{

λ ∈ Qp : max
{ 1

|ac−1 − λ|p
,

1

|bd−1 − λ|p

}

>
1

ε

}

.

Example 2.13. Let A, B ∈ L(Eω) be two diagonal operators such that for all i ∈ N, Aei = aiei and
Bei = biei, where ai, bi ∈ Qp and B is invertible and sup

i∈N

|ai|p and sup
i∈N

|bi|p are finite and 0 < inf
i∈N

|bi|p ≤

sup
i∈N

|bi|p ≤ 1. It is easy to see that

σ(A, B) = {λ ∈ Qp : inf
i∈N

|ai − λbi| = 0} = {λ ∈ Qp : inf
i∈N

|aib
−1
i − λ| = 0}

and for all λ ∈ ρ(A, B), we have

‖(A − λB)−1B‖ = sup
i∈N

‖(A − λB)−1Bei‖

‖ei‖

= sup
i∈N

∣

∣

∣

∣

bi

ai − λbi

∣

∣

∣

∣

=
1

inf
i∈N

|aib
−1
i − λ|

.

Hence,
{

λ ∈ Qp : ‖(A − λB)−1B‖ >
1

ε

}

=

{

λ ∈ Qp :
1

inf
i∈N

|aib
−1
i − λ|

>
1

ε

}

.

Consequently,

Σε(A, B) = {λ ∈ Qp : inf
i∈N

|aib
−1
i − λ| = 0} ∪

{

λ ∈ Qp : inf
i∈N

|aib
−1
i − λ| < ε

}

.
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We have the following results.

Theorem 2.14. Let X, Y be two non-Archimedean Banach spaces over K, let A ∈ C(X, Y ), B ∈ L(X, Y )
and λ ∈ K. If A − λB is one-to-one and onto, then (A − λB)−1 is closed linear operator.

Proof. Let λ ∈ K and a sequence (yn)n ⊂ Y such that yn converges to y in Y and (A−λB)−1yn converges
to x in X . Setting xn = (A−λB)−1yn, then xn ∈ D(A) and yn = (A−λB)xn ∈ Y. Since (A−λB)xn → y

and xn → x and A − λB is a closed linear operator wich implies that x ∈ D(A) and y = (A − λB)x, then
y ∈ Y and x = (A − λB)−1y. Thus (A − λB)−1 is closed linear operator. �

Corollary 2.15. Let X, Y be two non-Archimedean Banach spaces over K. Let A be a linear operator
from X into Y and B be a non null bounded linear operator from X into Y . If A is a non closed operator,
then σ(A, B) = K.

Proof. Let A be a linear operator which is not closed. We argue by contradiction. Suppose that ρ(A, B)
is not empty, then there exists λ ∈ K such that λ ∈ ρ(A, B), consequently, (A − λB)−1 is a bounded
operator. Hence, A − λB is a closed operator. In addition, we can write A = A − λB + λB. We conclude
that A is a closed operator, which is a contradiction. �

Corollary 2.16. Let X be a non-archimedean Banach space over K, let A, B ∈ L(X) such that σ(A, B) =
K, then A is not invertible.

Proposition 2.17. Let X be a non-archimedean Banach space over K, let A, B ∈ L(X) and B−1 ∈ L(X),
then σp(B−1A) = σp(A, B).

Proof. Let λ ∈ σp(A, B), then there exists x ∈ X\{0} such that Ax = λBx. Since B−1 ∈ L(X),
we have B−1Ax = λx, thus λ ∈ σp(B−1A), therefore σp(A, B) ⊆ σp(B−1A). Similarly, we obtain
σp(B−1A) ⊆ σp(A, B). Thus σp(A, B) = σp(B−1A). �

Theorem 2.18. Let A, B ∈ L(Kn). If A is invertible and A−1B or BA−1 is nilpotent, then σ(A, B) = ∅.

Proof. Assume that A is invertible and A−1B or BA−1 is nilpotent, then for all λ ∈ K, I − λA−1B or
I − λBA−1 is invertible, hence for all λ ∈ K, (A − λB)−1 exists in L(Kn). Thus, σ(A, B) = ∅. �

Theorem 2.19. Let X be a Banach space of countable type over Qp, let A, B ∈ L(X) such that B

majorizes A and B is not invertible, then σ(A, B) = Qp.

Proof. If B majorizes A. From Theorem 1.4, there exists a continuous linear operator D : R(B) −→ X

such that A = DB. then, for all λ ∈ Qp, A − λB = (D − λ)B, since B is not invertible then, for all
λ ∈ Qp, A − λB is not invertible. Thus, σ(A, B) = Qp. �

Proposition 2.20. Let X be a non-archimedean Banach space over K, let A, B ∈ L(X) such that
AB = BA and 0 ∈ ρ(A) ∩ ρ(B), then λ ∈ σ(A, B) if and only if 1

λ
∈ σ(A−1, B−1).

Proof. From A−λB = −λB(A−1−λ−1B−1)A, we obtain that λ ∈ σ(A, B) if and only if 1
λ

∈ σ(A−1, B−1).
�

Proposition 2.21. Let X be a non-archimedean Banach space over K, let A, B ∈ L(X) such that
AB = BA with σ(A, B) 6= ∅. If µ ∈ ρ(A, B), then λ ∈ σ(A, B) if and only if 1

λ−µ
∈ σ((A − µB)−1B).

Proof. Let A, B ∈ L(X) and µ ∈ ρ(A, B). For λ ∈ K with λ 6= µ, we have

A − λB = (A − µB)[(A − µB)−1B − (λ − µ)−1](µ − λ).

Hence λ ∈ σ(A, B) if and only if 1
λ−µ

∈ σ((A − µB)−1B). �
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3. Non-archimedean generalized spectrum approximation

In [1], the authors extended the following definitions to non-archimedean case.

Definition 3.1. [1] Let X be a non-archimedean Banach space over K and let A ∈ L(X).

(1) A sequence (An) of bounded linear operators on X is said to be norm convergent to A, denoted by
An → A, if lim

n→∞
‖An − A‖ = 0.

(2) A sequence (An) of bounded linear operators on X is said to be pointwise convergent to A, denoted

by An
p

→ A, if for all x ∈ X, lim
n→∞

‖Anx − Ax‖ = 0.

Definition 3.2. [1] Let X be a non-archimedean Banach space over K and let A ∈ L(X). A sequence

(An) of bounded linear operators on X is said to be ν-convergent to A, denoted by An
ν
→ A, if

(1) (‖An‖) is bounded,

(2) ‖(An − A)A‖ → 0 as n → ∞, and

(3) ‖(An − A)An‖ → 0 as n → ∞.

Definition 3.3. [1] Let X be a non-archimedean Banach space over a locally compact filed K and let
A ∈ L(X). A sequence (An) of bounded linear operators on X is said to be convergent to A in the

collectively compact convergence, denoted by An
c.c
→ A, if An

p
→ A, and for some positive integer N,

⋃

n≥N

{(An − A)x : x ∈ X, ‖x‖ ≤ 1}

has compact closure of X.

We have the following results.

Proposition 3.4. Let X be a non-archimedean Banach space over K, let A, An, B, Bn ∈ L(X). If
An → A or Bn → B, then for any C ∈ B(X), we have

‖(An − A)C(Bn − B)‖ → 0.

Proof. Since An → A or Bn → B, then for any C ∈ B(X), we have

‖(An − A)C(Bn − B)‖ ≤ ‖(An − A)‖‖C‖‖(Bn − B)‖ → 0.

�

Proposition 3.5. Let X be a non-archimedean Banach space over K, let A, An, B, Bn ∈ L(X). If

An
ν
→ A, Bn

ν
→ B and 0 ∈ ρ(A) ∩ ρ(B), then for all λ ∈ K, we have

An − λBn → A − λB.

Proof. Suppose that An
ν
→ A, Bn

ν
→ B, 0 ∈ ρ(A) ∩ ρ(B), and for all λ ∈ K, we have

‖
(

An − λBn

)

−
(

A − λB
)

‖ ≤ max
{

‖
(

An − A
)

‖; |λ|‖
(

Bn − B
)

‖
}

→ 0.

Since,

‖
(

An − A
)

‖ = ‖
(

An − A
)

AA−1‖

≤ ‖
(

An − A
)

A‖‖A−1‖

→ 0.

�
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Similarly, we obtain ‖
(

Bn − B
)

‖ → 0.

Proposition 3.6. Let X be a non-archimedean Banach space over Qp such that ‖X‖ ⊆ |Qp|, let

A, An, B, Bn ∈ L(X). If An
p

→ A and Bn
cc
→ B, then for any C ∈ L(X), we have

‖(An − A)C(Bn − B)‖ → 0.

Proof. Since An
p

→ A and Bn
cc
→ B, and ‖X‖ ⊆ |Qp|, hence An

p
→ A and Bn

p
→ B and

C
(

⋃

n≥N

{(Bn − B)x : x ∈ X, ‖x‖ ≤ 1}
)

has compact closure of X. Then

‖(An − A)C(Bn − B)‖ → 0.

�

The aim of the following results is to discuss the spectrum of a sequence of a pencil of linear operators
in a non-archimedean Banach space.

Theorem 3.7. Let X be a non-archimedean Banach space over K, let (An) be a sequence of bounded
linear operators on X and A ∈ L(X). If An → A, then there exists N ∈ N, we have

for all n ≥ N, σ(An) ⊂ σ(A).

Proof. Let λ ∈ ρ(A). Then for all n ∈ N, we have

λI − An = (λI − A)
(

I + (λI − A)−1(A − An)
)

.

Since An → A Then, lim
n→∞

‖An − A‖ = 0, hence for all ε > 0, there exists N ∈ N such that for all n ≥ N,

‖An − A‖ < ε. In particular, for ε = ‖(λ − A)−1‖−1, we have

for all n ≥ N, ‖An − A‖ < ‖(λ − A)−1‖−1.

Thus, for all n ≥ N, we have

‖(λI − A)−1(A − An)‖ ≤ ‖(λI − A)−1‖‖(A − An)‖

< 1.

Then for all n ≥ N,
(

I + (λI − A)−1(A − An)
)−1

∈ L(X), hence for all n ≥ N, (λ − An)−1 ∈ L(X).

Thus, for all n ≥ N, λ ∈ ρ(An). �

We have the following proposition.

Proposition 3.8. Let X be a non-archimedean Banach space over K, let A, B, C, D ∈ L(X) such that
ρ(A, C) 6= ∅. For all z ∈ ρ(A, C) such that ‖R(z, A, C)[(A − B) − z(C − D)]‖ < 1, we have z ∈ ρ(B, D).

Proof. Since, for all z ∈ ρ(A, C) such that ‖R(z, A, C)[(A − B) − z(C − D)]‖ < 1 and

B − zD = (A − zC)
[

I − R(z, A, C)
(

(A − B) − z(C − D)
)]

.

Hence (B − zD) is invertible and (B − zD)−1 ∈ L(X). Thus, z ∈ ρ(B, D). �

Theorem 3.9. Let X be a non-archimedean Banach space over K, let (An) and (Bn) be a sequences of
bounded linear operators on X and A, B ∈ L(X). If An → A and Bn → B, then there exists N ∈ N, we
have

for all n ≥ N, σ(An, Bn) ⊂ σ(A, B).
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Proof. Let λ ∈ ρ(A, B). Then for all n ∈ N, we can write

An − λBn =
(

I − (En − λFn)
)

(A − λB),

where En = (A − An)R(λ, A, B) and Fn = (B − Bn)R(λ, A, B). Since An → A and Bn → B, then for
all λ ∈ ρ(A, B), lim

n→∞
‖En −λFn‖ = 0. Hence there exists N ∈ N such that for all n ≥ N, ‖En −λFn‖ < 1.

Then, there exists N ∈ N such that for all n ≥ N,

(I − (En − λFn))−1 ∈ L(X).

Thus, there exists N ∈ N such that for all n ≥ N, An − λBn is invertible L(X). Then, for all n ≥ N,

λ ∈ ρ(An, Bn). �

Theorem 3.10. Let X be a non-archimedean Banach space over K, let (An), (Bn) be a sequences of
bounded linear operators on X and A, B ∈ L(X). If An → A and Bn → B, then for all λ ∈ ρ(A, B),
(An − λBn)−1 → (A − λB)−1.

Proof. Let λ ∈ ρ(A, B). Since An → A and Bn → B, then by using Theorem 3.9, there exists N ∈ N

such that for all n ≥ N, λ ∈ ρ(An, Bn). Then for all n ≥ N,

‖(An − λBn)−1 − (A − λB)−1‖ (3.1)

(3.1) = ‖(An − λBn)−1
(

(A − λB) − (An − λBn)
)

(A − λB)−1‖

= ‖(An − λBn)−1
(

(A − An) − λ(B − Bn)
)

(A − λB)−1‖

≤ max
{

‖(A − An)‖, |λ|‖(B − Bn)‖
}

‖(An − λBn)−1‖‖(A − λB)−1‖

Since An → A and Bn → B, and ‖(An − λBn)−1‖‖A − λB)−1‖ < ∞. Thus,

lim
n→∞

‖(An − λBn)−1 − (A − λB)−1‖ = 0.

�

Proposition 3.11. Let X be a non-archimedean Banach space over K, let (An) be a sequence of bounded

linear operators on X and A ∈ L(X). If An → A, then An
ν
→ A.

Proof. Ovbious. �

Theorem 3.12. Let X be a non-archimedean Banach space over K, let (An), (Bn) be a sequence of

bounded linear operators on X and A, B ∈ L(X). If An → A and Bn → B, then (An − λBn)−1 ν
→

(A − λB)−1 for all λ ∈ ρ(A, B).

Proof. It suffices to apply Theorem 3.10 and Proposition 3.11. �
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