

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 on LINE SPM: www.spm.uem.br/bspm (3s.) **v. 2024 (42)** : 1–9. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.66632

\mathcal{H} -scatteredness in Minimal Spaces with Hereditary Classes

Ahmad Al-Omari 问 and Takashi Noiri 问

ABSTRACT: Quite recently, a new minimal structure m_H^{\star} has been introduced in [14] by using a minimal structure m and a hereditary class \mathcal{H} . In this paper, we introduce and investigate the notion of \mathcal{H} -scattedness in a hereditary minimal space (X, m, \mathcal{H}) .

Key Words: Minimal structure, hereditary class, H-isolated, H-accumulation, H-scattered.

Contents

1	Introduction	1
2	Minimal Structures	1
3	H-isolated Points and H-derived Sets	3
4	Characterizations of Scattered Spaces	7

1. Introduction

The notion of ideals in topological spaces was introduced by Kuratowski [10]. Janković and Hamlett [8] defined the local function on an ideal topological space (X, τ, \mathfrak{I}) . By using it they obtained a new topology τ^* for X and investigated relations between τ and τ^* . In [14], Noiri and Popa introduced the minimal local function on a minimal space (X, m) with a hereditary class \mathcal{H} and constructed a minimal structure m_H^* which contains m. They showed that many properties related to τ and τ^* remain similarly valid on m and m_H^* .

In this paper, we introduce the notions of \mathcal{H} -isolated points and \mathcal{H} -accumulation points of a subset in a hereditary minimal space (X, m, \mathcal{H}) . Moreover, we introduce the notion of \mathcal{H} -scattedness in (X, m, \mathcal{H}) and obtain the characterizations and several properties of \mathcal{H} -scattered spaces. Also papers [2,3,4,5] have introduced some property related to minimal spaces with hereditary classes.

2. Minimal Structures

Definition 2.1. A subfamily m of the power set $\mathcal{P}(X)$ of a nonempty set X is called a *minimal structure* (briefly *m*-structure) [15] on X if $\emptyset \in m$ and $X \in m$.

By (X, m), we denote a nonempty set X with a minimal structure m on X and call it an *m*-space. Each member of m is said to be *m*-open and the complement of an *m*-open set is said to be *m*-closed. For a point $x \in X$, the family $\{U : x \in U \text{ and } U \in m\}$ is denoted by m(x).

Definition 2.2. Let (X, m) be an *m*-space and *A* a subset of *X*. The *m*-closure mCl(*A*) of *A* [11] is defined by mCl(*A*) = $\cap \{F \subset X : A \subset F, X \setminus F \in m\}$.

Lemma 2.3. (Maki et al. [11]). Let X be a nonempty set and m a minimal structure on X. For subsets A and B of X, the following properties hold:

- (1) $A \subset \mathrm{mCl}(A)$ and $\mathrm{mCl}(A) = A$ if A is m-closed,
- (2) $\mathrm{mCl}(\emptyset) = \emptyset, \mathrm{mCl}(X) = X,$
- (3) If $A \subset B$, then $\operatorname{mCl}(A) \subset \operatorname{mCl}(B)$,
- (4) $\mathrm{mCl}(A) \cup \mathrm{mCl}(B) \subset \mathrm{mCl}(A \cup B),$
- (5) $\mathrm{mCl}(\mathrm{mCl}(A)) = \mathrm{mCl}(A)$.

²⁰¹⁰ Mathematics Subject Classification: 54A05, 54C10. Submitted January 11, 2023. Published June 17, 2023

Definition 2.4. A minimal structure m on a set X is said to have

- (1) property \mathcal{B} [11] if the union of any collection of elements of m is an element of m,
- (2) property \mathcal{F} if m is closed under finite intersections.

Lemma 2.5. (Popa and Noiri [15]). Let (X, m) be an m-space and A a subset of X.

- (1) $x \in \mathrm{mCl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m(x)$.
- (2) Let m have property B. Then the following properties hold:
- (i) A is m-closed if and only if mCl(A) = A,
- (ii) mCl(A) is m-closed.

Definition 2.6. A nonempty subfamily \mathcal{H} of $\mathcal{P}(X)$ is called a *hereditary class* on X [7] if it satisfies the following property: $A \in \mathcal{H}$ and $B \subset A$ implies $B \in \mathcal{H}$. A hereditary class \mathcal{H} is called an *ideal* if it satisfies the additional condition: $A \in \mathcal{H}$ and $B \in \mathcal{H}$ implies $A \cup B \in \mathcal{H}$.

A minimal space (X, m) with a hereditary class \mathcal{H} on X is called a *hereditary minimal space* (briefly *hereditary m-space*) and is denoted by (X, m, \mathcal{H}) .

Definition 2.7. [14] Let (X, m, \mathcal{H}) be a hereditary m-space. For a subset A of X, the minimal local function $A_{mH}^{*}(\mathcal{H}, m)$ of A is defined as follows:

 $A_{mH}^{\star}(\mathcal{H}, m) = \{ x \in X : U \cap A \notin \mathcal{H} \text{ for every } U \in m(x) \}.$

Hereafter, $A_{mH}^{\star}(\mathcal{H}, m)$ is simply denoted by A_{mH}^{\star} . Also $mCl_{H}^{\star}(A) = A \cup A_{mH}^{\star}$.

Remark 2.8. [14] Let (X, m, \mathcal{H}) be a hereditary *m*-space and *A* a subset of *X*. If $\mathcal{H} = \{\emptyset\}$ (resp. $\mathcal{P}(X)$), then $A_{mH}^* = \mathrm{mCl}(A)$ (resp. $A_{mH}^* = \emptyset$).

Lemma 2.9. [14] Let (X, m, \mathcal{H}) be a hereditary m-space. For subsets A and B of X, the following properties hold:

- 1. If $A \subset B$, then $A_{mH}^{\star} \subset B_{mH}^{\star}$,
- 2. $A_{mH}^{\star} = \mathrm{mCl}(A_{mH}^{\star}) \subset \mathrm{mCl}(A),$
- 3. $A_{mH}^{\star} \cup B_{mH}^{\star} \subset (A \cup B)_{mH}^{\star}$,
- 4. $(A_{mH}^{\star})_{mH}^{\star} \subset (A \cup A_{mH}^{\star})_{mH}^{\star} = A_{mH}^{\star},$
- 5. If $A \in \mathcal{H}$, then $A_{mH}^{\star} = \emptyset$.

Similar study may also be considered through grill as well as generalized topological spaces [1,13]. Lemma 2.10. Let (X, m, \mathcal{H}) be a hereditary m-space. If $U \in m$ and $U \cap A \in \mathcal{H}$, then $U \cap A_{mH}^* = \emptyset$.

Definition 2.11. A subset A in a hereditary m-space (X, m, \mathcal{H}) is said to be \mathcal{H} -dense [12] (resp. m-dense, m_H^* -dense) if $A_{mH}^* = X$ (resp. mCl(A) = X, $mCl_H^*(A) = X$).

The collection of all \mathcal{H} -dense (resp. *m*-dense, m_H^* -dense) is denoted by $D_{\mathcal{H}}(X,m)$ (resp. D(X,m), $D_{\mathcal{H}}^*(X,m)$).

Example 2.12. Let $X = \{a, b, c, d\}$, $m = \{X, \emptyset, \{c, d\}, \{b, c, d\}, \{a, c, d\}\}$ and $\mathcal{H} = \{\emptyset, \{a\}\}$. If $A = \{a, c\}$ then $A_{mH}^{\star} = X$. So that $mCl_{H}^{\star}(A) = X$ and A is m_{H}^{\star} -dense.

Example 2.13. Let $X = \{a, b, c, d\}$, $m = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\mathcal{H} = \{\emptyset, \{c\}\}$. If $A = \{a, c\}$ then $A_{mH}^{\star} = \{a, c, d\}$. So that $mCl_{H}^{\star}(A) \neq X$ and A is not m_{H}^{\star} -dense.

Theorem 2.14. Let (X, m, \mathcal{H}) be a hereditary *m*-space. Then the following properties hold: (1) $D_{\mathcal{H}}(X,m) \subset D^{\star}_{\mathcal{H}}(X,m) \subset D(X,m)$,

(2) If for some $U \in m$, $U \cap D \in \mathfrak{H}$ implies $U \cap (X - D) \notin \mathfrak{H}$, then $D_{\mathfrak{H}}(X, m) = D_{\mathfrak{H}}^{\star}(X, m)$.

Proof. (1) Let $D \in D_{\mathcal{H}}(X,m)$. Then $mCl_{H}^{*}(D) = D \cup D_{mH}^{*} = X$, i.e. $D \in D_{\mathcal{H}}^{*}(X,m)$. Therefore, $D_{\mathcal{H}}(X,m) \subseteq D_{\mathcal{H}}^{*}(X,m)$. Since $m \subset m_{H}^{*}$, $mCl_{H}^{*}(A) \subset mCl(A)$ for any subset A of X. Hence $D_{\mathcal{H}}^{*}(X,m) \subset D(X,m)$.

(2) Let $D \in D^*_{\mathcal{H}}(X,m)$. Then $mCl^*_H(D) = D \cup D^*_{mH} = X$. We prove that $D^*_{mH} = X$. Let $x \in X$ such that $x \notin D^*_{mH}$. Then, there exists $\phi \neq U \in m(x)$ such that $U \cap D \in \mathcal{H}$. Hence, $U \cap (X - D) \notin \mathcal{H}$ and hence $U \cap (X - D) \neq \phi$. Let $x_0 \in U \cap (X - D)$. Then $x_0 \notin D$ and also $x_0 \notin D^*_{mH}$. Because $x_0 \in D^*_{mH}$ implies that $U \cap D \notin \mathcal{H}$ which is contrary to $U \cap D \in \mathcal{H}$. Thus $x_0 \notin D \cup D^*_{mH} = mCl^*_H(D) = X$. This is a contradiction. Therefore, we obtain $D \in D_{\mathcal{H}}(X,m)$ and, $D^*_{\mathcal{H}}(X,m) \subseteq D_{\mathcal{H}}(X,m)$. Hence $D_{\mathcal{H}}(X,m) = D^*_{\mathcal{H}}(X,m)$.

Corollary 2.15. Let (X, m, \mathcal{H}) be a hereditary *m*-space. Then for $x \in X$, $X - \{x\}$ is \mathcal{H} -dense if and only if $\Gamma_{mH}^*(\{x\}) = \emptyset$, where $\Gamma_{mH}^*(\{A\}) = X - (X - A)_{mH}^*$ for any subset A of X.

Proof. The proof follows from the definition of \mathcal{H} -dense sets, since $\Gamma_{mH}^*(\{x\}) = X - (X - \{x\})_{mH}^* = \emptyset$ if and only if $X = (X - \{x\})_{mH}^*$.

3. H-isolated Points and H-derived Sets

Let (X, m) be an *m*-space and let $x \in X$ and $A \subseteq X$. Then *x* is called an *m*-accumulation point of *A* in *X* if $U \cap (A - \{x\}) \neq \emptyset$ for every $U \in m(x)$. The *m*-derived set of *A* in *X*, denoted by $d_m(A)$, is the set of all *m*-accumulation points of *A* in *X* and *x* is called an *m*-isolated point of *A* in *X* if there exists $U \in m(x)$ such that $U \cap A = \{x\}$. We denote the set of all *m*-isolated points of *A* in *X* by $I_m(A)$. It is well known that $I_m(A) = A - d_m(A)$ and $mCl(A) = d_m(A) \cup A$.

Now, we introduce the concepts of \mathcal{H} -isolated points and \mathcal{H} -derived sets in a hereditary *m*-space (X, m, \mathcal{H}) .

Definition 3.1. Let (X, m, \mathcal{H}) be a hereditary m-space and let $x \in X$ and $A \subseteq X$.

- 1. x is called an \mathcal{H} -isolated point of A in X if there exists $U \in m_H^*(x)$ such that $U \cap A = \{x\}$. We denote the set of all \mathcal{H} -isolated points of A in X by $I_{\mathcal{H}}(A)$.
- 2. x is called an \mathcal{H} -accumulation point of A in X if $U \cap (A \{x\}) \neq \emptyset$ for every $U \in m_H^*(x)$. The \mathcal{H} -derived set of A in X, denoted by $d_{\mathcal{H}}(A)$, is the set of all \mathcal{H} -accumulation point of A in X.

Example 3.2. Let $X = \{a, b, c\}, m = \{X, \emptyset, \{a\}, \{b\}, \{b, c\}\}.$

- 1. If $A = \{a, b\}$ then m-derived of A is $d_m(A) = \{c\}$. So that m-isolated of A is $I_m(A) = A d_m(A) = \{a, b\}$.
- 2. If $B = \{a, c\}$ then m-derived of B is $d_m(B) = \emptyset$. So that m-isolated of B is $I_m(B) = B d_m(B) = \{a, c\}$.
- 3. If $C = \{b, c\}$ then m-derived of C is $d_m(A) = \{c\}$. So that m-isolated of C is $I_m(C) = C d_m(C) = \{b\}$.

Example 3.3. Let $X = \{a, b, c, d\}$, $m = \{X, \emptyset, \{a\}\}$ with $\mathcal{H} = \{\emptyset, \{a\}\}$. Then $m^* = \{X, \emptyset, \{a\}, \{b, c, d\}\}$.

- 1. If $A = \{a, b\}$ then \mathcal{H} -derived of A is $d_{\mathcal{H}}(A) = \{c, d\}$. So that \mathcal{H} -isolated of A is $I_{\mathcal{H}}(A) = A d_{\mathcal{H}}(A) = \{a, b\}$.
- 2. If $B = \{b, c\}$ then \mathcal{H} -derived of B is $d_{\mathcal{H}}(B) = \{b, c, d\}$. So that \mathcal{H} -isolated of B is $I_{\mathcal{H}}(B) = B d_{\mathcal{H}}(B) = \emptyset$.

Proposition 3.4. Let (X, m, \mathcal{H}) be a hereditary *m*-space and *m* have property \mathcal{F} . Then for $A, B \subseteq X$, the following properties hold:

1.
$$I_{\mathcal{H}}(A) = A - d_{\mathcal{H}}(A)$$

2. $I_m(A) \subseteq I_{\mathcal{H}}(A) \subseteq A$.

- 3. (a) $A = I_{\mathcal{H}}(A) \cup [d_{\mathcal{H}}(A) \cap A];$ (b) $d_{\mathcal{H}}(A) \cap A = A - I_{\mathcal{H}}(A).$
- 4. If $A \in m_H^* \{\emptyset\}$ and $A \subseteq B$, then $I_{\mathcal{H}}(A) \subseteq I_{\mathcal{H}}(B)$.
- 5. (a) $I_{\mathcal{H}}(A) \cap I_{\mathcal{H}}(B) \subseteq I_{\mathcal{H}}(A \cap B);$ (b) $I_{\mathcal{H}}(A \cup B) \subseteq I_{\mathcal{H}}(A) \cup I_{\mathcal{H}}(B).$

Proof. (1) Let $x \in I_{\mathcal{H}}(A)$. Then $U \cap A = \{x\}$ for some $U \in m_H^*(x)$. This implies $U \cap (A - \{x\}) = \emptyset$. Then $x \notin d_{\mathcal{H}}(A)$. Thus $x \in A - d_{\mathcal{H}}(A)$ and so $I_{\mathcal{H}}(A) \subseteq A - d_{\mathcal{H}}(A)$. Conversely, let $x \in A - d_{\mathcal{H}}(A)$. Since $x \notin d_{\mathcal{H}}(A)$, we have $U \cap (A - \{x\}) = \emptyset$ for some $U \in m_H^*(x)$. Note that $U \cap A = \{x\}$. Then $x \in I_{\mathcal{H}}(A)$ and so $A - d_{\mathcal{H}}(A) \subseteq I_{\mathcal{H}}(A)$. Hence $I_{\mathcal{H}}(A) = A - d_{\mathcal{H}}(A)$. (2) This is obvious.

(3) (a) For any $x \in A$ and $U \in m_H^*(x)$, $U \cap A = \{x\}$ or $U \cap (A - \{x\}) \neq \emptyset$, then $x \in I_{\mathcal{H}}(A) \cup d_{\mathcal{H}}(A)$ and $A \subseteq I_{\mathcal{H}}(A) \cup d_{\mathcal{H}}(A)$. Thus $A \subseteq (I_{\mathcal{H}}(A) \cup d_{\mathcal{H}}(A)) \cap A = I_{\mathcal{H}}(A) \cup [d_{\mathcal{H}}(A) \cap A]$. And $A \supseteq (I_{\mathcal{H}}(A) \cup d_{\mathcal{H}}(A)) \cap A$. Hence $A = I_{\mathcal{H}}(A) \cup [d_{\mathcal{H}}(A) \cap A]$.

(b) This holds by (1). (4) Let $x \in I_{\mathcal{H}}(A)$. Then $U \cap A = \{x\}$ for some $U \in m_H^*(x)$. Since $A \in m_H^* - \{\emptyset\}$, $U \cap A \in m_H^* - \{\emptyset\}$. Note that $(U \cap A) \cap B = \{x\}$. Then $x \in I_{\mathcal{H}}(B)$. Thus $I_{\mathcal{H}}(A) \subseteq I_{\mathcal{H}}(B)$. (5) This is obvious.

Proposition 3.5. Let (X, m, \mathcal{H}) and (X, m, \mathcal{J}) be two hereditary spaces with $\mathcal{J} \subseteq \mathcal{H}$. Then for $A \subseteq X$, $I_{\mathcal{J}}(A) \subseteq I_{\mathcal{H}}(A)$.

Proof. Let $x \in I_{\mathcal{J}}(A)$. Then $U \cap A = \{x\}$ for some $U \in m_J^*(x)$. It is clear that $\mathcal{J} \subseteq \mathcal{H}$ implies that $m_J^* \subseteq m_H^*$. So $U \in m_H^*$ and thus $x \in I_{\mathcal{H}}(A)$. Hence $I_{\mathcal{J}}(A) \subseteq I_{\mathcal{H}}(A)$.

Proposition 3.6. Let (X, m, \mathcal{H}) and (X, n, \mathcal{H}) be two hereditary spaces with $n \subseteq m$. Then for $A \subseteq X$, $I_{n\mathcal{H}}(A) \subseteq I_{m\mathcal{H}}(A)$.

Proof. Let $x \in I_{n\mathcal{H}}(A)$. Then $U \cap A = \{x\}$ for some $U \in n_H^*(x)$. It is clear that $n \subseteq m$ implies $n_H^* \subseteq m_H^*$. So $U \in m_H^*$ and thus $x \in I_{m\mathcal{H}}(A)$. Hence $I_{n\mathcal{J}}(A) \subseteq I_{m\mathcal{H}}(A)$.

Definition 3.7. A hereditary m-space (X, m, \mathcal{H}) is said to be \mathcal{H} -scattered if $I_{\mathcal{H}}(A) \neq \emptyset$ for any nonempty $A \in \mathcal{P}(X)$.

Example 3.8. Let $X = \{a, b, c\}, m = \{X, \emptyset, \{a\}, \{b\}\}$ and $\mathcal{H} = \{\emptyset, \{c\}\}$. Then

$$m^* = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}.$$

It is clear that $m^*(a) = \{X, \{a\}, \{a, b\}\}, m^*(b) = \{X, \{b\}, \{a, b\}\}$ and $m^*(c) = \{X\}.$

Then a hereditary m-space (X, m, \mathcal{H}) is \mathcal{H} -scattered because $I_{\mathcal{H}}(A) \neq \emptyset$ for any nonempty $A \in \mathcal{P}(X)$ as the following table.

	$d_{\mathcal{H}}(A)$	$I_{\mathcal{H}}(A) = A - d_{\mathcal{H}}(A)$
$A = \{a\}$	$d_{\mathcal{H}}(A) = \{c\}$	$I_{\mathcal{H}}(A) = \{a\}$
$A = \{b\}$	$d_{\mathcal{H}}(A) = \{c\}$	$I_{\mathcal{H}}(A) = \{b\}$
$A = \{c\}$	$d_{\mathcal{H}}(A) = \emptyset$	$I_{\mathcal{H}}(A) = \{c\}$
$A = \{a, b\}$	$d_{\mathcal{H}}(A) = \{c\}$	$I_{\mathcal{H}}(A) = \{a, b\}$
$A = \{a, c\}$	$d_{\mathcal{H}}(A) = \{c\}$	$I_{\mathcal{H}}(A) = \{a\}$
$A = \{b, c\}$	$d_{\mathcal{H}}(A) = \{c\}$	$I_{\mathcal{H}}(A) = \{b\}$
$A = \{a, b, c\}$	$d_{\mathcal{H}}(A) = \{c\}$	$I_{\mathcal{H}}(A) = \{a, b\}$

Let (X, m, \mathcal{H}) be a hereditary *m*-space. The family of all m_H^* -dense of X is denoted by $D_{\mathcal{H}}^* = D_{\mathcal{H}}^*(X, m)$. For the subspace (Y, m_Y, \mathcal{H}_Y) , the family of all m_H^* -dense subsets of Y is denoted by $D_{\mathcal{H}}^*(Y) = \{A \subseteq Y : mCl_{\mathcal{H}_Y}^*(A) = Y\}.$

4

Lemma 3.9. Let (X, m, \mathcal{H}) be a hereditary *m*-space. Then $A \subseteq X$ is m_H^* -dense in X if and only if $U \cap A \neq \emptyset$ for every nonempty set $U \in m_H^*$.

Proof. Let A be m_H^* -dense in X and let U be nonempty $U \in m_H^*$. Pick $x \in U$. Then $x \in X = mCl_H^*(A) = A \cup A_{mH}^*$. Then if $x \in A$, then $x \in A \cap U$ and $A \cap U \neq \emptyset$. Suppose that $x \in A_{mH}^*$ and $A \cap U = \emptyset$. Since X - U is m_H^* -closed in X, $(X - U)_H^* \subseteq X - U$. Then $U \subseteq X - (X - U)_H^*$. By $x \in U$, $x \notin (X - U)_H^*$. It follows that $V \cap (X - U) \in \mathcal{H}$ for some $V \in m(x)$. By $A \cap U = \emptyset$, $A \subseteq X - U$. $V \cap A \subseteq V \cap (X - U) \in \mathcal{H}$. Then $V \cap A \in \mathcal{H}$. Hence $x \notin A_{mH}^*$. This is a contradiction. Thus, $U \cap A \neq \emptyset$. Conversely, suppose $mCl_H^*(A) \neq X$. Put $U = X - mCl_H^*(A)$, then U is a nonempty set in m_H^* . But $U \cap A = [X - mCl_H^*(A)] \cap A = \emptyset$. This is a contradiction.

Theorem 3.10. Let (X, m, \mathcal{H}) be a hereditary *m*-space and *m* have property \mathcal{F} . The following are equivalent.

- 1. X is H-scattered;
- 2. $I_{\mathcal{H}}(A) \in D^{\star}_{\mathcal{H}}(A)$, for any nonempty set $A \in \mathcal{P}(X)$;
- 3. $D \in D^{\star}_{\mathcal{H}}(A)$ if and only if $I_{\mathcal{H}}(A) \subseteq D$, for any nonempty set $A \in \mathcal{P}(X)$;
- 4. $d_{\mathcal{H}}(A) = d_{\mathcal{H}}[I_{\mathcal{H}}(A)]$ for any nonempty set $A \in \mathcal{P}(X)$;
- 5. If A is nonempty m_H^* -closed set, then $I_{\mathcal{H}}(A) \neq \emptyset$.

Proof. (1) \Rightarrow (2): Let $\emptyset \neq V \in m_{H|_A}^*$. Then $V = W \cap A$ for some $W \in m_H^*$. Since X is \mathcal{H} -scattered, $I_{\mathcal{H}}(V) \neq \emptyset$. Pick $x \in I_{\mathcal{H}}(V)$. Then $U \cap V = \{x\}$ for some $U \in m_H^*(x)$. So $(U \cap W) \cap A = U \cap (W \cap A) = U \cap V = \{x\}$. Note that $U \cap W \in m_H^*(x)$. This implies $x \in I_{\mathcal{H}}(A)$. Then $x \in V \cap I_{\mathcal{H}}(A)$ and so $V \cap I_{\mathcal{H}}(A) \neq \emptyset$. By Lemma 3.9 $mCl_{H_A}^*[I_{\mathcal{H}}(A)] = A$. Thus $I_{\mathcal{H}}(A) \in D_{\mathcal{H}}^*(A)$.

 $(2) \Rightarrow (3): \text{ Let } I_{\mathcal{H}}(A) \subseteq D. \text{ By } (2), A = mCl_{H_A}^*[I_{\mathcal{H}}(A)] \subseteq mCl_{H_A}^*[D]. \text{ Thus } D \in D_{\mathcal{H}}^*(A). \text{ Conversely,} \\ \text{suppose } I_{\mathcal{H}}(A) \nsubseteq D \text{ for some } D \in D_{\mathcal{H}}^*(A). \text{ Then } I_{\mathcal{H}}(A) - D \neq \emptyset. \text{ Pick } x \in I_{\mathcal{H}}(A) - D. \text{ Then } U \cap A = \{x\} \\ \text{for some } U \in m_H^*(x). \text{ Note that } U \cap A \in m_{H|_A}^*(x) \text{ and } D \in D_{\mathcal{H}}^*(A). \text{ By Lemma } 3.9, D \cap (U \cap A) \neq \emptyset. \\ \text{But } D \cap (U \cap A) = D \cap \{x\} = \emptyset. \text{ This is a contradiction.}$

 $\begin{array}{l} (3) \Rightarrow (4): \mbox{ Since } I_{\mathcal{H}}(A) \subseteq A, \ d_{\mathcal{H}}[I_{\mathcal{H}}(A)] \subseteq d_{\mathcal{H}}(A). \ \mbox{ Suppose } d_{\mathcal{H}}(A) \not\subseteq d_{\mathcal{H}}[I_{\mathcal{H}}(A)]. \ \mbox{ Then } d_{\mathcal{H}}(A) = \\ d_{\mathcal{H}}[I_{\mathcal{H}}(A)] \neq \emptyset. \ \mbox{ Pick up } x \in d_{\mathcal{H}}(A) - d_{\mathcal{H}}[I_{\mathcal{H}}(A)]. \ \mbox{ By Proposition } \mathbf{3.4}(1), \ I_{\mathcal{H}}(A) = A - d_{\mathcal{H}}(A). \ \mbox{ Then } \\ x \notin I_{\mathcal{H}}(A) \ \mbox{ and } x \notin d_{\mathcal{H}}[I_{\mathcal{H}}(A)] \ \mbox{ implies } U \cap [I_{\mathcal{H}}(A) - \{x\}] = \emptyset \ \mbox{ for some } U \in m_{H}^{*}(x). \ \mbox{ Note that } x \notin I_{\mathcal{H}}(A). \ \mbox{ Then } \\ (U \cap A) \cap I_{\mathcal{H}}(A) \subseteq U \cap I_{\mathcal{H}}(A) = \emptyset \ \mbox{ with } U \cap A \in m_{H|_{A}}^{*}. \ \mbox{ By } (3) \ I_{\mathcal{H}}(A) \in D_{\mathcal{H}}^{*}(A). \ \mbox{ Then } V \cap I_{\mathcal{H}}(A) \neq \emptyset \\ \mbox{ for every } V \in m_{H|_{A}}^{*}. \ \mbox{ This is a contradiction. Hence } \\ d_{\mathcal{H}}(A) \subseteq d_{\mathcal{H}}[I_{\mathcal{H}}(A)] \ \mbox{ and hence } \\ d_{\mathcal{H}}(A) = d_{\mathcal{H}}[I_{\mathcal{H}}(A)]. \ \mbox{ and hence } \\ d_{\mathcal{H}}(A) = d_{\mathcal{H}}[I_{\mathcal{H}}(A)] = \\ d_{\mathcal{H}}(\emptyset) = \\ \emptyset. \ \mbox{ By Proposition } \mbox{ 3.4}(3), \ A = I_{\mathcal{H}}(A) \cup [d_{\mathcal{H}}(A) \cap A] = \emptyset, \ \mbox{ contradiction. Hence } X \ \mbox{ is } \mathcal{H}\ \mbox{ scattered.} \\ \mbox{ (1) } \Rightarrow (5): \ \mbox{ This is obvious.} \end{aligned}$

 $(5) \Rightarrow (1): \text{ Let } \emptyset \neq A \in \mathfrak{P}(X). \text{ Since } mCl_{H}^{*}(A) \text{ is } m_{H}^{*}\text{-closed, by } (5), I_{\mathcal{H}}[mCl_{H}^{*}(A)] \neq \emptyset. \text{ Pick } x \in I_{\mathcal{H}}[mCl_{H}^{*}(A)]. \text{ Then } U \cap [mCl_{H}^{*}(A)] = \{x\} \text{ for some } U \in m_{H}^{*}(x). \text{ Suppose } U \cap A = \emptyset. \text{ We have } A \subseteq X - U. \text{ Then } mCl_{H}^{*}(A) \subseteq X - U. \text{ So } U \cap mCl_{H}^{*}(A) = \emptyset. \text{ This is a contradiction. Thus } U \cap A \neq \emptyset. \text{ Since } U \cap A \subseteq U \cap [mCl_{H}^{*}(A)] = \{x\}, \text{ we have } U \cap A = \{x\}. \text{ So } x \in I_{\mathcal{H}}(A). \text{ This implies } I_{\mathcal{H}}(A) \neq \emptyset. \text{ Hence } X \text{ is } \mathcal{H}\text{-scattered.}$

Definition 3.11. Let (X, m, \mathcal{H}) be a hereditary *m*-space. Put $X^0 = X$ and $X^1 = \{x \in X : x \text{ is not an } \mathcal{H}\text{-isolated point in } X\}$. Let α be any order number. If X^{β} is already defined for all order $\beta < \alpha$, then we put

$$X^{\alpha} = \begin{cases} (X^{\beta})^{1}, & \text{if } \alpha = \beta + 1 \text{ and } \beta \text{ is an ordinal number;} \\ & \bigcap_{\beta < \alpha} X^{\beta}, & \text{if } \alpha \text{ is a limit ordinal number.} \end{cases}$$

Remark 3.12.

1. $X^1 = X - I_{\mathcal{H}}(X) = X \cap d_{\mathcal{H}}(X).$

- 2. $X^{\beta} \subset X^{\alpha}$ whenever $\alpha < \beta$.
- 3. $X^{\alpha} = X^{\alpha-1} I_{\mathcal{H}}(X^{\alpha-1}) = X^{\alpha-1} \cap d_{\mathcal{H}}(X^{\alpha-1})$ for any successor ordinal number α .

4. If α is a successor ordinal number and $X^{\alpha} = \emptyset$, then $X = \bigcup_{\beta \leq \alpha - 1} I_{\mathcal{H}}(X^{\beta})$.

Lemma 3.13. Let (X, m, \mathcal{H}) be a hereditary m-space. If m has property \mathcal{F} , the following properties hold.

- 1. X^{α} is m_{H}^{*} -closed for any ordinal number α .
- 2. $Y \subseteq X$, then $Y^{\alpha} \subseteq X^{\alpha}$ for any ordinal number α .

Proof. 1. We use induction on α .

1) $\alpha = 1$. Let $x \in I_{\mathcal{H}}(X)$. Then $U_x \cap X = \{x\}$ for some $U_x \in m_H^*(x)$. This implies $\{x\} = U_x \in m_H^*$. Thus $I_{\mathcal{H}}(X) = \bigcup_{x \in I_{\mathcal{H}}(X)} \{x\} \in m_{H}^{*}$. Thus $X^{1} = X - I_{\mathcal{H}}(X)$ is m_{H}^{*} -closed.

2) Suppose X^{β} is m_{H}^{*} -closed for any $\beta < \alpha$. We will prove X^{α} is m_{H}^{*} -closed in the following cases. (a) α is a successor ordinal number. Let $x \in I_{\mathcal{H}}(X^{\alpha-1})$. $U_{x} \cap X^{\alpha-1} = \{x\}$ for some $U_{x} \in m_{H}^{*}(x)$. By Remark 3.12, $X^{\alpha} = X^{\alpha-1} - I_{\mathcal{H}}(X^{\alpha-1})$. So

$$X^{\alpha} = X^{\alpha-1} - \bigcup_{x \in I_{\mathcal{H}}(X^{\alpha-1})} \{x\} = [X - \bigcup_{x \in I_{\mathcal{H}}(X^{\alpha-1})} U_x] \cap X^{\alpha-1}$$

By induction hypothesis, $X^{\alpha-1}$ is m_H^* -closed. Thus X^{α} is m_H^* -closed. (b) α is a limit ordinal number. By induction hypothesis, X^{β} is m_H^* -closed for any $\beta < \alpha$. Thus $X^{\alpha} = \bigcap_{\beta < \alpha} X^{\beta}$ is m_H^* -closed.

2. Let $Y \subseteq X$. We will prove $Y^{\alpha} \subseteq X^{\alpha}$ for any ordinal number α .

1) $Y^1 = Y \cap d_{\mathcal{H}}(Y) \subseteq X \cap d_{\mathcal{H}}(X) = X^1$. This show $Y^{\alpha} \subseteq X^{\alpha}$ when $\alpha = 1$.

2) Suppose $Y^{\beta} \subseteq X^{\beta}$ for any $\beta < \alpha$. We consider the following cases

(a) α is a successor ordinal number. By induction hypothesis, $Y^{\alpha-1} \subseteq X^{\alpha-1}$. By Remark 3.12, $Y^{\alpha} =$ $Y^{\alpha-1} \cap d_{\mathcal{H}}(Y^{\alpha-1}) \subseteq X^{\alpha-1} \cap d_{\mathcal{H}}(X^{\alpha-1}) = X^{\alpha}.$

(b) α is a limit ordinal number. By induction hypothesis, $Y^{\beta} \subseteq X^{\beta}$ for any $\beta < \alpha$. Thus $Y^{\alpha} = \bigcap_{\alpha \in Y} Y^{\beta} \subseteq Y^{\beta}$ $\bigcap_{\beta < \alpha} X^{\beta} = X^{\alpha}.$ By 1) and 2) we have $Y^{\alpha} \subseteq X^{\alpha}$ for any ordinal number α .

Definition 3.14. Let (X, m, \mathcal{H}) be a hereditary m-space.

1. An ordinal number β is called the derived length of X if $\beta = \min\{\alpha : X^{\alpha} = \emptyset\}$. β is denoted by $\delta(X).$

2. X is said to have a derived length if there is an ordinal number α such that $X^{\alpha} = \emptyset$.

Lemma 3.15. $X^{\delta} = X^{\delta+1}$ for some ordinal number δ .

Theorem 3.16. Let (X, m, \mathcal{H}) be a hereditary m-space. Then X is \mathcal{H} -scattered if and only if X has a derived length.

Proof. Sufficiency. Suppose that X is not \mathcal{H} -scattered. Then $I_{\mathcal{H}}(A) = \emptyset$ for some nonempty set $A \subseteq X$. We claim $A \subseteq X^{\alpha}$ for any ordinal number α .

(1) Let $x \in A$ and $U \in m_H^*(x)$. Since $I_{\mathcal{H}}(A) = \emptyset$, $U \cap A \neq \{x\}$. Note that $x \in U \cap A$. Then $|U \cap A| \geq 2$ and so $U \cap (A - \{x\}) \neq \emptyset$. Now $U \cap (A - \{x\}) \subseteq U \cap (X - \{x\})$. Then $U \cap (X - \{x\}) \neq \emptyset$. This implies $x \in X \cap d_{\mathcal{H}}(X)$. By Remark 3.12, $x \in X^1$. Thus $A \subseteq X - I_{\mathcal{H}}(X) = X^1$. i.e., $A \subseteq X^{\alpha}$ when $\alpha = 1$. (2) Suppose $A \subseteq X^{\beta}$ for any $\beta < \alpha$. We will prove $A \subseteq X^{\alpha}$ in the following cases.

a) α is a successor ordinal number. Let $x \in A$ and $U \in m_H^*(x)$. By (1) $U \cap (A - \{x\}) \neq \emptyset$. By induction hypothesis, $A \subseteq X^{\alpha-1}$. Then $U \cap (X^{\alpha-1} - \{x\}) \neq \emptyset$. This implies $x \in X^{\alpha-1} \cap d_{\mathcal{H}}(X^{\alpha-1})$. By Remark 3.12, $x \in X^{\alpha}$. Hence $A \subseteq X^{\alpha}$.

b) α is a limit ordinal number. By induction hypothesis, $A \subseteq X^{\beta}$ for any $\beta < \alpha$. Then $\bigcap_{\beta < \alpha} X^{\beta} = X^{\alpha}$.

Since X has a derived length, $X^{\delta} = \emptyset$ for some ordinal number δ . By claim, $A \subseteq X^{\beta}$. Then $A = \emptyset$, a contradiction.

Necessity. Conversely, suppose that X has no derived length. By Lemma 3.15, $X^{\delta+1} = X^{\delta}$ and Remark 3.12, $X^{\delta+1} = X^{\delta} - I_{\mathcal{H}}(X^{\delta})$. Then $I_{\mathcal{H}}(X^{\delta}) = \emptyset$. Note that X has no derived length. Then $X^{\delta} \neq \emptyset$. It follows that X is not \mathcal{H} -scattered. This is a contradiction.

7

4. Characterizations of Scattered Spaces

Corollary 4.1. (1) Let (X, m, \mathcal{H}) and (X, m, \mathcal{J}) be two hereditary spaces with $\mathcal{J} \subseteq \mathcal{H}$. If (X, m, \mathcal{J}) is \mathcal{J} -scattered, then (X, m, \mathcal{H}) is \mathcal{H} -scattered.

(2) Let (X, m, \mathcal{H}) and (X, n, \mathcal{H}) be two hereditary spaces with $n \subseteq m$. If (X, n, \mathcal{H}) is \mathcal{H} -scattered, then (X, m, \mathcal{H}) is \mathcal{H} -scattered.

Proof. These hold by Proposition 3.5 and Proposition 3.6.

An *m*-space (X, m) is said to be scatted if $I_m(A) \neq \emptyset$ for any nonempty set $A \in \mathcal{P}(X)$.

Theorem 4.2. Let (X, m, \mathcal{H}) be a hereditary m-space. Then the following are equivalent.

- 1. (X, m) is scattered.
- 2. (X, m, \mathcal{H}) is \mathcal{H} -scattered for any hereditary \mathcal{H} on X.
- 3. $(X, m, \{\emptyset\})$ is $\{\emptyset\}$ -scattered

Proof. $(1) \Rightarrow (2)$: This follows from Proposition 3.4 (2).

 $(2) \Rightarrow (3)$: The proof is obvious.

(3) \Rightarrow (1): Since $m = m_H^*$ whenever $\mathcal{H} = \{\emptyset\}$, $I_m(A) = I_{\mathcal{H}}(A) \neq \emptyset$. Thus (X, m) is scattered.

Theorem 4.3. Let (X, m, \mathcal{H}) be a hereditary *m*-space and *Y* be nonempty subset of *X*. If *X* is \mathcal{H} -scattered, then (Y, m_Y, \mathcal{H}_Y) is \mathcal{H}_Y -scattered.

Proof. Let A be nonempty set of Y. Since X is \mathcal{H} -scattered, $I_{\mathcal{H}}(A) \neq \emptyset$. Pick $x \in I_{\mathcal{H}}(A)$. Then $U \cap A = \{x\}$ for some $U \in m_H^*(x)$. Note that $U \cap Y \in m_{Y_H^*}(x)$ and $(U \cap Y) \cap A = (U \cap A) \cap Y = \{x\}$. Then $x \in I_{\mathcal{H}_Y}(A)$ and so $I_{\mathcal{H}_Y}(A) \neq \emptyset$. Hence (Y, m_Y, \mathcal{H}_Y) is \mathcal{H}_Y -scattered. \Box

Lemma 4.4. If every \mathfrak{H}_{α} is a hereditary on X_{α} ($\alpha \in \Delta$), then $\bigcup_{\alpha \in \Delta} \{H_{\alpha} : H_{\alpha} \in \mathfrak{H}_{\alpha}\}$ is a hereditary on $\bigcup_{\alpha \in \Delta} X_{\alpha}$.

Definition 4.5. A hereditary m-space (X, m, \mathcal{H}) is called \mathcal{H} -resolvable if X has two disjoint \mathcal{H} -dense subsets. Otherwise, X is called \mathcal{H} -irresolvable.

Example 4.6. Let $X = \{a, b, c, d\}, m = \{X, \emptyset, \{c, d\}, \{b, c, d\}, \{a, c, d\}\}$ with $\mathcal{H} = \{\emptyset, \{a\}\}$. Then it is clear that. If $A = \{a, c\}$ then $A^* = X$ and if $B = \{b, d\}$ then $B^* = X$ therefore, A and B is two disjoint \mathcal{H} -dense subsets of X. Hence, a hereditary m-space (X, m, \mathcal{H}) is \mathcal{H} -resolvable.

Proposition 4.7. Let (X, m, \mathcal{H}) be a hereditary m-space. If X is \mathcal{H} -scattered, then X is \mathcal{H} -irresolvable.

Proof. Suppose that X is not \mathcal{H} -irresolvable. Then X is \mathcal{H} -resolvable. For some nonempty sets $A, B \in \mathcal{P}(X)$, we have $A_H^* = B_H^* = X$ and $A \cap B = \emptyset$. Since $A, B \in D_{\mathcal{H}}^*(X)$, by Theorem 3.10, $I_{\mathcal{H}}(X) \subseteq A, B$, and $I_{\mathcal{H}}(X) \subseteq A \cap B$. Since X is \mathcal{H} -scattered, $I_{\mathcal{H}}(X) \neq \emptyset$. So $A \cap B \neq \emptyset$. Thus, X is \mathcal{H} -irresolvable. \Box

It is clear that by Proposition 4.7 a hereditary *m*-space (X, m, \mathcal{H}) in Example 3.8 is \mathcal{H} -irresolvable.

Definition 4.8. A mapping $f : (X, m, \mathcal{H}) \to (Y, n, \mathcal{J})$ is said to be \mathcal{H} -closed if f(A) is n_J^* -closed in Y for each m_H^* -closed subset A of X.

Theorem 4.9. Let (X, m, \mathcal{H}) be \mathcal{H} -scattered, (Y, n, \mathcal{J}) be a hereditary n-space, where m and n has property \mathcal{F} , and let $f : (X, m, \mathcal{H}) \to (Y, n, \mathcal{J})$ be \mathcal{H} -closed. Suppose that f satisfies the following condition. The set $\{\beta : X^{\beta} \cap f^{-1}(y) \neq \emptyset\}$ contains a largest element for any $y \in Y$. Then the following properties hold:

- 1. $Y^{\alpha} \subseteq f(X^{\alpha})$ for every ordinal number α ,
- 2. $\delta(Y) \leq \delta(X)$,
- 3. Y is J-scattered.

Proof. Since (2) and (3) hold by (1) and Theorem 3.16, we only need to prove (1) i.e. $Y^{\alpha} \subseteq f(X^{\alpha})$ for every ordinal number α .

We use induction on α .

- 1. Since $Y^0 = Y = f(X) = f(X^0)$, then $Y^{\alpha} \subseteq f(X^{\alpha})$ when $\alpha = 0$.
- 2. Suppose $Y^{\beta} \subseteq f(X^{\beta})$ when $\beta < \alpha$. It suffices to show $Y^{\alpha} \subseteq f(X^{\alpha})$ in the following two cases,

(a) $\alpha = \beta + 1$ for some ordinal number β . Suppose $Y^{\alpha} \notin f(X^{\alpha})$. Then $Y^{\alpha} - f(X^{\alpha}) \neq \emptyset$. Pick $y \in Y^{\alpha} - f(X^{\alpha})$. Then $X^{\alpha} \cap f^{-1}(y) \neq \emptyset$. Put $F = X^{\beta} - f^{-1}(y)$.

Claim 1. F is m_H^* -closed in X. Put $A = X^{\beta} \cap f^{-1}(y)$. Then $F = X^{\beta} - A$. Since $X^{\alpha} \cap f^{-1}(y) = \emptyset$, $f^{-1}(y) \subseteq X - X^{\alpha}$. This is implies $A \subseteq X^{\beta} \cap (X - X^{\alpha}) = X^{\beta} - X^{\alpha}$. By Remark 3.12, $X^{\beta} - X^{\alpha} = I_{\mathcal{H}}(X^{\beta})$. Thus $A \subseteq I_{\mathcal{H}}(X^{\beta})$. For any $x \in A$, $x \in I_{\mathcal{H}}(X^{\beta})$. Then $U \cap X^{\beta} = \{x\}$ for some $U \in m_H^*$. Then $\{x\} \in m_{HX^{\beta}}^*$ (relative space) and so $A = \bigcup_{x \in A} \{x\} \in m_{HX^{\beta}}^*$. This implies $F = X^{\beta} - A$ is m_H^* -closed in X^{β} . By Lemma 3.13 (1) F is m_H^* -closed in X. By induction hypothesis, $Y^{\beta} \subseteq f(X^{\beta})$. Then $Y^{\beta} - \{y\} \subseteq f(X^{\beta}) - \{y\}$. Note that $X^{\beta} \subseteq F \cup f^{-1}(y)$. Then $Y^{\beta} - \{y\} \subseteq f[F \cup f^{-1}(y)] - \{y\} = f(F)$. Thus $Y^{\beta} - f(F) \subseteq \{y\}$. Conversely, by $f^{-1}(y) \cap F = \emptyset$, $y \notin f(F)$. Note that $y \in Y^{\alpha} \subseteq Y^{\beta}$. Then $\{y\} \subseteq Y^{\beta} - f(F)$. Hence $\{y\} = Y^{\beta} - f(F)$. Since f is \mathcal{H} -closed, by Claim 1., f(F) is n_J^* -closed. Note that $y \notin f(F)$. Put U = Y - f(F). Then $U \in n_J^*(y)$. By $U \cap Y^{\beta} = Y^{\beta} - f(F) = \{y\}$, $y \in I_{\delta}(Y^{\beta})$. By Remark 3.12, $Y^{\beta} - Y^{\alpha} = I_{\delta}(Y^{\beta})$. This implies $y \notin Y^{\alpha}$. This is a contradiction. Therefore, $Y^{\alpha} \subseteq f(X^{\alpha})$. (b) α is a limit ordinal number. Suppose $Y^{\alpha} \nsubseteq f(X^{\alpha})$. Then $Y^{\alpha} - f(X^{\alpha}) \neq \emptyset$. Pick $y \in Y^{\alpha} - f(X^{\alpha})$. Put $\pi = \max\{\beta : X^{\beta} \cap f^{-1}(y) \neq \emptyset\}$. By condition of hypothesis, we have $X^{\pi} \cap f^{-1}(y) \neq \emptyset$. Since $X^{\alpha} \cap f^{-1}(y) = \emptyset$. We can claim $\pi < \alpha$. Otherwise, we have $\pi \ge \alpha$. Since $X^{\pi} \cap f^{-1}(y) \neq \emptyset$ and $X^{\pi} \subseteq X^{\alpha}, X^{\alpha} \cap f^{-1}(y) \neq \emptyset$. Thus $y \in f(X^{\alpha})$. This is a contradiction. But $X^{\pi+1} \cap f^{-1}(y) = \emptyset$. Then $\{y\} \cap f(X^{\pi+1}) = \emptyset$ and so $f^{-1}(y) \cap f^{-1}[f(X^{\pi+1})] = \emptyset$. Put $W = X - f^{-1}[f(X^{\pi+1})]$. Then $f^{-1}(y) \subseteq W$. By Lemma 3.13(1), $X^{\pi+1}$ is m_H^* -closed. By f is \mathcal{H} -closed, $f(X^{\pi+1})$ is n_J^* -closed. Put $Z = Y - f(X^{\pi+1})$. Then Z is n_J^* -open and $W = f^{-1}(Z)$. Put $g = f_{|W}$.

Claim 2. $g = f_{|W} : (W, m_W, \mathcal{H}_W) \to (Z, n_Z, \mathcal{J}_Z)$ is \mathcal{H}_W -closed. Let K be m_H^* -closed in W. Then $K = F \cap W$ for some m_H^* -closed set F in X. Since f is \mathcal{H} -closed, f(F) is n_H^* -closed in Y. Note that $g(K) = f(W \cap F) = f[f^{-1}(Z) \cap F] = Z \cap f(F)$. Then g(K) is n_H^* -closed in Z. Then X is \mathcal{H} -scattered, by Theorem 4.3, W is \mathcal{H}_W -scattered. By Theorem 3.16, $\delta(W)$ is existence.

Claim 3. $\delta(W) \leq \pi + 1$. $W^{\pi+1} \subseteq W \subseteq X - X^{\pi+1}$. By Lemma 3.13 (2), $W^{\pi+1} \subseteq X^{\pi+1}$. Then $W^{\pi+1} \subseteq X^{\pi+1} \cap [X - X^{\pi+1}] = \emptyset$. Thus $\delta(W) \leq \pi + 1$.

Claim 4. $Y^{\alpha} \cap Z = Z^{\alpha}$.

- 1. $\alpha = 0$. We have $Z^0 = Z = Y \cap Z = Y^0 \cap Z$.
- 2. Suppose $Y^{\beta} \cap Z = Z^{\beta}$ for every $\beta < \alpha$. We will prove $Y^{\alpha} \cap Z = Z^{\alpha}$ in the following cases.

(i) α is a successor ordinal number.

By induction hypothesis, $Y^{\alpha-1} \cap Z = Z^{\alpha-1}$. By $Z^{\alpha} \subseteq Y^{\alpha}$ and $Z^{\alpha} \subseteq Z$, we have $Z^{\alpha} \subseteq Y^{\alpha} \cap Z$. Let $y \in Y^{\alpha} \cap Z$. By Remark 3.12, $Y^{\alpha} = Y^{\alpha-1} \cap d_{\mathcal{H}}(Y^{\alpha-1})$. Then $y \in d_{\mathcal{H}}(Y^{\alpha-1}) \cap Y^{\alpha-1} \cap Z = d_{\mathcal{H}}(Y^{\alpha-1}) \cap Z^{\alpha-1}$. Note that Z is an n_{J}^{*} -open set containing y. $y \in d_{\mathcal{H}}(Y^{\alpha-1})$ implies that $[U \cap Z] \cap [Y^{\alpha-1} - \{y\}] \neq \emptyset$ for any n_{J}^{*} -open set U containing y. Then $[U \cap Z] \cap [Y^{\alpha-1} - \{y\}] = U \cap Z \cap Y^{\alpha-1} \cap [Y - \{y\}] = U \cap Z^{\alpha-1} \cap [Y - \{y\}] = U \cap Z^{\alpha-1} \cap [Y - \{y\}] = U \cap [Z^{\alpha-1} - \{y\}] \neq \emptyset$. Thus, $y \in d_{\mathcal{H}}(Z^{\alpha-1})$. By Remark 3.12, $Z^{\alpha} = Z^{\alpha-1} \cap d_{\mathcal{H}}(Z^{\alpha-1})$. Then $y \in Z^{\alpha}$. Hence $Y^{\alpha} \cap Z \subseteq Z^{\alpha}$. Hence $Y^{\alpha} \cap Z = Z^{\alpha}$.

(ii) α is a limit ordinal number.

By induction hypothesis, $Y^{\beta} \cap Z = Z^{\beta}$ for any $\beta < \alpha$. Then

$$Y^{\alpha} \cap Z = \left(\cap_{\beta < \alpha} Y^{\beta} \right) \cap Z = \cap_{\beta < \alpha} \left(Y^{\beta} \cap Z \right) = \cap_{\beta < \alpha} Z^{\beta} = Z^{\alpha}.$$

By Claim 2, $g = f_{|W} : (W, m_W, \mathfrak{H}_W) \to (Z, n_Z, \mathfrak{J}_Z)$ is \mathcal{H}_W -closed. By repeating the proof of (a), we can prove $Z^{\pi+1} \subseteq g(W^{\pi+1})$. By Claim 3, $\emptyset = W^{\delta(W)} \supseteq W^{\pi+1}$. This implies $Z^{\pi+1} = \emptyset$. By Remark 3.12(4), $Z = \bigcup_{\beta \leq \pi} I_{\mathcal{H}}(Z^{\beta})$. Note that $X^{\pi+1} \cap f^{-1}(y) = \emptyset$. Then $y \notin f(X^{\pi+1})$. So $y \in Z = \bigcup_{\beta \leq \pi} I_{\mathcal{H}}(Z^{\beta})$. We obtain $y \in I_{\mathcal{H}}(Z^{\gamma})$ for some $\gamma \leq \pi$. It follows $U \cap Z^{\gamma} = \{y\}$ for some $U \in n_J^*(y)$. By Claim 4, $Y^{\gamma} \cap Z = Z^{\gamma}$. Then $(U \cap Z) \cap Y^{\gamma} = U \cap Z^{\gamma} = \{y\}$. Since $U \cap Z \in n_J^*(y)$, we have $y \in I_{\mathcal{H}}(Y^{\gamma}) = Y^{\gamma} - Y^{\gamma+1}$. Since $\pi < \alpha$ and α is a limit ordinal, $\pi + 1 < \alpha$. Then $\gamma + 1 \leq \pi + 1 < \alpha$. By Remark 3.12, $Y^{\gamma+1} \supset Y^{\alpha}$. Then $y \notin Y^{\alpha}$. This is a contradiction. Therefore, $Y^{\alpha} \subseteq f(X^{\alpha})$.

 \square

Acknowledgments

The authors thank the referees for useful comments and suggestions.

References

- A. Al-omari, S. Modak and T. Noiri, On θ-modifications of generalized topologies via hereditary classes, Commun. Korean Math. Soc. 31 (2016), No. 4, 857-868. http://dx.doi.org/10.4134/CKMS.c160002.
- A. Al-omari and T. Noiri, Operators in minimal spaces with hereditary classes, Mathematica, 61 (84) (2), (2019), 101-110.
- 3. A. Al-omari and T. Noiri, Properties of γH -compact spaces with hereditary classes, Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali, **98** No. 2 (2020), A4 [11 pages].
- A. Al-omari and T. Noiri, Generalizations of Lindelöf spaces via hereditary classes, Acta Univ. Sapientie Math., 13 (2021), No. 2, 281-291.
- A. Al-omari and Mohd. Salmi Md. Noorani, Decomposition of continuity via b-open aet, Bol. Soc. Paran. Mat., 26(1-2)(2008), 53-64.
- 6. Á. Császár, Generalized topology, generalied continuity, Acta Math. Hungar., 96 (2002), 351-357.
- 7. Á. Császár, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115(1-2) (2007), 29-35.
- 8. D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- Y. K. Kim and W. K. Min, On operations induced by hereditary clsses on generlized topological spaces, Acta Math. Hungar., 137(1-2) (2012), 130–138.
- 10. K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- H. Maki, K. C. Rao and A. Nagoor Gani, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49 (1999), 17–29.
- S. Modak, Dense sets in weak structure and minimal structure, Commun. Korean Math. Soc. 28 (2013), No. 3, 589–596. doi: http://dx.doi.org/10.4134/CKMS.2013.28.3.589.
- S. Modak, Minimal spaces with a mathematical structure, J. Ass. Arab Univ. Basic Appl. Sci., 22:1 (2016), 98–101. DOI: 10.1016/j.jaubas.2016.05.005.
- T. Noiri and V. Popa, Generalizations of closed sets in minimal spaces with hereditary classes, Ann. Univ. Sci. Budapest., Sec. Math., 61 (2018), 69-83.
- V. Popa and T. Noiri, On M-continuous functions, An. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor. (2), 43(23) (2000), 31–41.
- V. Renukadevi and P. Vimaladevi, Note on generalized topological spaces with hereditary classes, Bol. Soc. Paran. Mat. (3), 32(1) (2014), 89–97.

Ahmad Al-omari, Al al-Bayt University, Department of Mathematics, Jordan. E-mail address: omarimutah1@yahoo.com

and

Takashi Noiri 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan. E-mail address: t.noiri@nifty.com