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H-scatteredness in Minimal Spaces with Hereditary Classes
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abstract: Quite recently, a new minimal structure m⋆

H
has been introduced in [14] by using a minimal

structure m and a hereditary class H. In this paper, we introduce and investigate the notion of H-scattedness
in a hereditary minimal space (X, m,H).
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1. Introduction

The notion of ideals in topological spaces was introduced by Kuratowski [10]. Janković and Hamlett
[8] defined the local function on an ideal topological space (X, τ , I). By using it they obtained a new
topology τ⋆ for X and investigated relations between τ and τ⋆. In [14], Noiri and Popa introduced the
minimal local function on a minimal space (X, m) with a hereditary class H and constructed a minimal
structure m⋆

H which contains m. They showed that many properties related to τ and τ⋆ remain similarly
valid on m and m⋆

H .
In this paper, we introduce the notions of H-isolated points and H-accumulation points of a subset in

a hereditary minimal space (X, m,H). Moreover, we introduce the notion of H-scattedness in (X, m,H)
and obtain the characterizations and several properties of H-scattered spaces. Also papers [2,3,4,5] have
introduced some property related to minimal spaces with hereditary classes.

2. Minimal Structures

Definition 2.1. A subfamily m of the power set P(X) of a nonempty set X is called a minimal structure
(briefly m-structure) [15] on X if ∅ ∈ m and X ∈ m.

By (X, m), we denote a nonempty set X with a minimal structure m on X and call it an m-space.
Each member of m is said to be m-open and the complement of an m-open set is said to be m-closed.
For a point x ∈ X , the family {U : x ∈ U and U ∈ m} is denoted by m(x).

Definition 2.2. Let (X, m) be an m-space and A a subset of X . The m-closure mCl(A) of A [11] is
defined by mCl(A) = ∩{F ⊂ X : A ⊂ F, X \ F ∈ m}.

Lemma 2.3. (Maki et al. [11]).Let X be a nonempty set and m a minimal structure on X. For subsets
A and B of X, the following properties hold:

(1) A ⊂ mCl(A) and mCl(A) = A if A is m-closed,
(2) mCl(∅) = ∅, mCl(X) = X,
(3) If A ⊂ B, then mCl(A) ⊂ mCl(B),
(4) mCl(A) ∪ mCl(B) ⊂ mCl(A ∪ B),
(5) mCl(mCl(A)) = mCl(A).
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Definition 2.4. A minimal structure m on a set X is said to have
(1) property B [11] if the union of any collection of elements of m is an element of m,
(2) property F if m is closed under finite intersections.

Lemma 2.5. (Popa and Noiri [15]). Let (X, m) be an m-space and A a subset of X.
(1) x ∈ mCl(A) if and only if U ∩ A 6= ∅ for every U ∈ m(x).
(2) Let m have property B. Then the following properties hold:
(i) A is m-closed if and only if mCl(A) = A,
(ii) mCl(A) is m-closed.

Definition 2.6. A nonempty subfamily H of P(X) is called a hereditary class on X [7] if it satisfies
the following property: A ∈ H and B ⊂ A implies B ∈ H. A hereditary class H is called an ideal if it
satisfies the additional condition: A ∈ H and B ∈ H implies A ∪ B ∈ H.

A minimal space (X, m) with a hereditary class H on X is called a hereditary minimal space (briefly
hereditary m-space) and is denoted by (X, m,H).

Definition 2.7. [14] Let (X, m,H) be a hereditary m-space. For a subset A of X, the minimal local
function A⋆

mH(H, m) of A is defined as follows:

A⋆
mH(H, m) = {x ∈ X : U ∩ A /∈ H for every U ∈ m(x)}.

Hereafter, A⋆
mH(H, m) is simply denoted by A⋆

mH . Also mCl⋆
H(A) = A ∪ A⋆

mH .

Remark 2.8. [14] Let (X, m,H) be a hereditary m-space and A a subset of X. If H = {∅} (resp. P

(X)), then A⋆
mH = mCl(A) (resp. A⋆

mH = ∅).

Lemma 2.9. [14] Let (X, m,H) be a hereditary m-space. For subsets A and B of X, the following
properties hold:

1. If A ⊂ B, then A⋆
mH ⊂ B⋆

mH ,

2. A⋆
mH = mCl(A⋆

mH) ⊂ mCl(A),

3. A⋆
mH ∪ B⋆

mH ⊂ (A ∪ B)⋆
mH ,

4. (A⋆
mH)⋆

mH ⊂ (A ∪ A⋆
mH)⋆

mH = A⋆
mH ,

5. If A ∈ H, then A⋆
mH = ∅.

Similar study may also be considered through grill as well as generalized topological spaces [1,13].
Lemma 2.10. Let (X, m,H) be a hereditary m-space. If U ∈ m and U ∩ A ∈ H, then U ∩ A⋆

mH = ∅.

Definition 2.11. A subset A in a hereditary m-space (X, m,H) is said to be H-dense [12] (resp. m-
dense, m⋆

H-dense) if A∗
mH = X (resp. mCl(A) = X, mCl⋆

H(A) = X).

The collection of all H-dense (resp. m-dense, m⋆
H -dense) is denoted by DH(X, m) (resp. D(X, m),

D⋆
H(X, m)).

Example 2.12. Let X = {a, b, c, d}, m = {X, ∅, {c, d}, {b, c, d}, {a, c, d}} and H = {∅, {a}}. If A = {a, c}
then A⋆

mH = X. So that mCl⋆
H(A) = X and A is m⋆

H-dense.

Example 2.13. Let X = {a, b, c, d}, m = {X, ∅, {a}, {b}, {a, b}} and H = {∅, {c}}. If A = {a, c} then
A⋆

mH = {a, c, d}. So that mCl⋆
H(A) 6= X and A is not m⋆

H-dense.

Theorem 2.14. Let (X, m,H) be a hereditary m-space. Then the following properties hold:
(1) DH(X, m) ⊂ D⋆

H(X, m) ⊂ D(X, m),
(2) If for some U ∈ m, U ∩ D ∈ H implies U ∩ (X − D) /∈ H, then DH(X, m) = D⋆

H(X, m).
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Proof. (1) Let D ∈ DH(X, m). Then mCl∗
H(D) = D ∪ D∗

mH = X , i.e. D ∈ D⋆
H(X, m). There-

fore, DH(X, m) ⊆ D⋆
H(X, m). Since m ⊂ m⋆

H , mCl⋆
H(A) ⊂ mCl(A) for any subset A of X . Hence

D⋆
H(X, m) ⊂ D(X, m).

(2) Let D ∈ D⋆
H(X, m). Then mCl∗

H(D) = D ∪ D∗
mH = X . We prove that D∗

mH = X . Let x ∈ X
such that x /∈ D∗

mH . Then, there exists φ 6= U ∈ m(x) such that U ∩D ∈ H. Hence, U ∩(X −D) /∈ H and
hence U ∩ (X − D) 6= φ. Let x0 ∈ U ∩ (X − D). Then x0 /∈ D and also x0 /∈ D∗

mH . Because x0 ∈ D∗
mH

implies that U ∩ D /∈ H which is contrary to U ∩ D ∈ H. Thus x0 /∈ D ∪ D∗
mH = mCl∗

H(D) = X .
This is a contradiction. Therefore, we obtain D ∈ DH(X, m) and, D⋆

H(X, m) ⊆ DH(X, m). Hence
DH(X, m) = D⋆

H(X, m). �

Corollary 2.15. Let (X, m,H) be a hereditary m-space. Then for x ∈ X, X − {x} is H-dense if and
only if Γ∗

mH({x}) = ∅, where Γ∗
mH({A}) = X − (X − A)∗

mH for any subset A of X.

Proof. The proof follows from the definition of H-dense sets, since Γ∗
mH({x}) = X − (X − {x})∗

mH = ∅
if and only if X = (X − {x})∗

mH . �

3. H-isolated Points and H-derived Sets

Let (X, m) be an m-space and let x ∈ X and A ⊆ X . Then x is called an m-accumulation point of A
in X if U ∩ (A − {x}) 6= ∅ for every U ∈ m(x). The m-derived set of A in X , denoted by dm(A), is the
set of all m-accumulation points of A in X and x is called an m-isolated point of A in X if there exists
U ∈ m(x) such that U ∩ A = {x}. We denote the set of all m-isolated points of A in X by Im(A). It is
well known that Im(A) = A − dm(A) and mCl(A) = dm(A) ∪ A.

Now, we introduce the concepts of H-isolated points and H-derived sets in a hereditary m-space
(X, m,H).

Definition 3.1. Let (X, m,H) be a hereditary m-space and let x ∈ X and A ⊆ X.

1. x is called an H-isolated point of A in X if there exists U ∈ m∗
H(x) such that U ∩ A = {x}. We

denote the set of all H-isolated points of A in X by IH(A).

2. x is called an H-accumulation point of A in X if U ∩ (A − {x}) 6= ∅ for every U ∈ m∗
H(x). The

H-derived set of A in X, denoted by dH(A), is the set of all H-accumulation point of A in X.

Example 3.2. Let X = {a, b, c}, m = {X, ∅, {a}, {b}, {b, c}}.

1. If A = {a, b} then m-derived of A is dm(A) = {c}. So that m-isolated of A is Im(A) = A−dm(A) =
{a, b}.

2. If B = {a, c} then m-derived of B is dm(B) = ∅. So that m-isolated of B is Im(B) = B − dm(B) =
{a, c} .

3. If C = {b, c} then m-derived of C is dm(A) = {c}. So that m-isolated of C is Im(C) = C −dm(C) =
{b}.

Example 3.3. Let X = {a, b, c, d}, m = {X, ∅, {a}} with H = {∅, {a}}. Then m∗ = {X, ∅, {a}, {b, c, d}}.

1. If A = {a, b} then H-derived of A is dH(A) = {c, d}. So that H-isolated of A is IH(A) = A −
dH(A) = {a, b}.

2. If B = {b, c} then H-derived of B is dH(B) = {b, c, d}. So that H-isolated of B is IH(B) =
B − dH(B) = ∅ .

Proposition 3.4. Let (X, m,H) be a hereditary m-space and m have property F. Then for A, B ⊆ X,
the following properties hold:

1. IH(A) = A − dH(A).

2. Im(A) ⊆ IH(A) ⊆ A.
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3. (a) A = IH(A) ∪ [dH(A) ∩ A];

(b) dH(A) ∩ A = A − IH(A).

4. If A ∈ m∗
H − {∅} and A ⊆ B, then IH(A) ⊆ IH(B).

5. (a) IH(A) ∩ IH(B) ⊆ IH(A ∩ B);

(b) IH(A ∪ B) ⊆ IH(A) ∪ IH(B).

Proof. (1) Let x ∈ IH(A). Then U ∩ A = {x} for some U ∈ m∗
H(x). This implies U ∩ (A − {x}) = ∅.

Then x /∈ dH(A). Thus x ∈ A−dH(A) and so IH(A) ⊆ A−dH(A). Conversely, let x ∈ A−dH(A). Since
x /∈ dH(A), we have U ∩ (A − {x}) = ∅ for some U ∈ m∗

H(x). Note that U ∩ A = {x}. Then x ∈ IH(A)
and so A − dH(A) ⊆ IH(A). Hence IH(A) = A − dH(A).
(2) This is obvious.
(3) (a) For any x ∈ A and U ∈ m∗

H(x), U ∩ A = {x} or U ∩ (A − {x}) 6= ∅, then x ∈ IH(A) ∪ dH(A) and
A ⊆ IH(A)∪dH(A). Thus A ⊆ (IH(A)∪dH(A))∩A = IH(A)∪[dH(A)∩A]. And A ⊇ (IH(A)∪dH(A))∩A.
Hence A = IH(A) ∪ [dH(A) ∩ A].
(b) This holds by (1).
(4) Let x ∈ IH(A). Then U ∩ A = {x} for some U ∈ m∗

H(x). Since A ∈ m∗
H − {∅}, U ∩ A ∈ m∗

H − {∅}.
Note that (U ∩ A) ∩ B = {x}. Then x ∈ IH(B). Thus IH(A) ⊆ IH(B).
(5) This is obvious.

�

Proposition 3.5. Let (X, m,H) and (X, m, J) be two hereditary spaces with J ⊆ H. Then for A ⊆ X,
IJ(A) ⊆ IH(A).

Proof. Let x ∈ IJ(A). Then U ∩ A = {x} for some U ∈ m∗
J (x). It is clear that J ⊆ H implies that

m∗
J ⊆ m∗

H . So U ∈ m∗
H and thus x ∈ IH(A). Hence IJ(A) ⊆ IH(A). �

Proposition 3.6. Let (X, m,H) and (X, n,H) be two hereditary spaces with n ⊆ m. Then for A ⊆ X,
InH(A) ⊆ ImH(A).

Proof. Let x ∈ InH(A). Then U ∩A = {x} for some U ∈ n∗
H(x). It is clear that n ⊆ m implies n∗

H ⊆ m∗
H .

So U ∈ m∗
H and thus x ∈ ImH(A). Hence InJ(A) ⊆ ImH(A). �

Definition 3.7. A hereditary m-space (X, m,H) is said to be H-scattered if IH(A) 6= ∅ for any nonempty
A ∈ P(X).
Example 3.8. Let X = {a, b, c}, m = {X, ∅, {a}, {b}} and H = {∅, {c}}. Then

m∗ = {X, ∅, {a}, {b}, {a, b}}.

It is clear that m∗(a) = {X, {a}, {a, b}}, m∗(b) = {X, {b}, {a, b}} and m∗(c) = {X}.
Then a hereditary m-space (X, m,H) is H-scattered because IH(A) 6= ∅ for any nonempty A ∈ P(X)

as the following table.

dH(A) IH(A) = A − dH(A)
A = {a} dH(A) = {c} IH(A) = {a}
A = {b} dH(A) = {c} IH(A) = {b}
A = {c} dH(A) = ∅ IH(A) = {c}

A = {a, b} dH(A) = {c} IH(A) = {a, b}
A = {a, c} dH(A) = {c} IH(A) = {a}
A = {b, c} dH(A) = {c} IH(A) = {b}

A = {a, b, c} dH(A) = {c} IH(A) = {a, b}

Let (X, m,H) be a hereditary m-space. The family of all m⋆
H -dense of X is denoted by D∗

H =
D⋆

H(X, m). For the subspace (Y, mY ,HY ), the family of all m⋆
H -dense subsets of Y is denoted by

D⋆
H(Y ) = {A ⊆ Y : mCl∗

HY
(A) = Y }.
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Lemma 3.9. Let (X, m,H) be a hereditary m-space. Then A ⊆ X is m⋆
H-dense in X if and only if

U ∩ A 6= ∅ for every nonempty set U ∈ m∗
H .

Proof. Let A be m⋆
H -dense in X and let U be nonempty U ∈ m∗

H . Pick x ∈ U . Then x ∈ X =
mCl∗

H(A) = A ∪ A∗
mH . Then if x ∈ A, then x ∈ A ∩ U and A ∩ U 6= ∅. Suppose that x ∈ A∗

mH and
A ∩ U = ∅. Since X − U is m∗

H -closed in X , (X − U)∗
H ⊆ X − U . Then U ⊆ X − (X − U)∗

H . By x ∈ U ,
x /∈ (X − U)∗

H . It follows that V ∩ (X − U) ∈ H for some V ∈ m(x). By A ∩ U = ∅, A ⊆ X − U .
V ∩ A ⊆ V ∩ (X − U) ∈ H. Then V ∩ A ∈ H. Hence x /∈ A∗

mH . This is a contradiction. Thus, U ∩ A 6= ∅.
Conversely, suppose mCl∗

H(A) 6= X . Put U = X − mCl∗
H(A), then U is a nonempty set in m∗

H . But
U ∩ A = [X − mCl∗

H(A)] ∩ A = ∅. This is a contradiction.
�

Theorem 3.10. Let (X, m,H) be a hereditary m-space and m have property F. The following are
equivalent.

1. X is H-scattered;

2. IH(A) ∈ D⋆
H(A), for any nonempty set A ∈ P(X);

3. D ∈ D⋆
H(A) if and only if IH(A) ⊆ D, for any nonempty set A ∈ P(X);

4. dH(A) = dH[IH(A)] for any nonempty set A ∈ P(X);

5. If A is nonempty m∗
H-closed set, then IH(A) 6= ∅.

Proof. (1) ⇒ (2): Let ∅ 6= V ∈ m∗
H|A

. Then V = W ∩ A for some W ∈ m∗
H . Since X is H-scattered,

IH(V ) 6= ∅. Pick x ∈ IH(V ). Then U ∩ V = {x} for some U ∈ m∗
H(x). So (U ∩ W ) ∩ A = U ∩ (W ∩ A) =

U ∩ V = {x}. Note that U ∩ W ∈ m∗
H(x). This implies x ∈ IH(A). Then x ∈ V ∩ IH(A) and so

V ∩ IH(A) 6= ∅. By Lemma 3.9 mCl∗
HA

[IH(A)] = A. Thus IH(A) ∈ D⋆
H(A).

(2) ⇒ (3): Let IH(A) ⊆ D. By (2), A = mCl∗
HA

[IH(A)] ⊆ mCl∗
HA

[D]. Thus D ∈ D⋆
H(A). Conversely,

suppose IH(A) * D for some D ∈ D⋆
H(A). Then IH(A)−D 6= ∅. Pick x ∈ IH(A)−D. Then U ∩A = {x}

for some U ∈ m∗
H(x). Note that U ∩ A ∈ m∗

H|A
(x) and D ∈ D⋆

H(A). By Lemma 3.9, D ∩ (U ∩ A) 6= ∅.

But D ∩ (U ∩ A) = D ∩ {x} = ∅. This is a contradiction.
(3) ⇒ (4): Since IH(A) ⊆ A, dH[IH(A)] ⊆ dH(A). Suppose dH(A) * dH[IH(A)]. Then dH(A) −
dH[IH(A)] 6= ∅. Pick up x ∈ dH(A) − dH[IH(A)]. By Proposition 3.4(1), IH(A) = A − dH(A). Then
x /∈ IH(A) and x /∈ dH[IH(A)] implies U ∩ [IH(A)−{x}] = ∅ for some U ∈ m∗

H(x). Note that x /∈ IH(A).
Then (U ∩A)∩IH(A) ⊆ U ∩IH(A) = ∅ with U ∩A ∈ m∗

H|A
. By (3) IH(A) ∈ D⋆

H(A). Then V ∩IH(A) 6= ∅

for every V ∈ m∗
H|A

. This is a contradiction. Hence dH(A) ⊆ dH[IH(A)] and hence dH(A) = dH[IH(A)].

(4) ⇒ (1): Suppose IH(A) = ∅ for some nonempty set A ∈ P(X). By (4), dH(A) = dH[IH(A)] = dH(∅) =
∅. By Proposition 3.4(3), A = IH(A) ∪ [dH(A) ∩ A] = ∅, a contradiction. Hence X is H-scattered.
(1) ⇒ (5): This is obvious.
(5) ⇒ (1): Let ∅ 6= A ∈ P(X). Since mCl∗

H(A) is m∗
H -closed, by (5), IH[mCl∗

H(A)] 6= ∅. Pick x ∈
IH[mCl∗

H(A)]. Then U ∩ [mCl∗
H(A)] = {x} for some U ∈ m∗

H(x). Suppose U ∩ A = ∅. We have
A ⊆ X − U . Then mCl∗

H(A) ⊆ X − U . So U ∩ mCl∗
H(A) = ∅. This is a contradiction. Thus U ∩ A 6= ∅.

Since U ∩ A ⊆ U ∩ [mCl∗
H(A)] = {x}, we have U ∩ A = {x}. So x ∈ IH(A). This implies IH(A) 6= ∅.

Hence X is H-scattered. �

Definition 3.11. Let (X, m,H) be a hereditary m-space. Put X0 = X and X1 = {x ∈ X : x is not an
H-isolated point in X}. Let α be any order number. If Xβ is already defined for all order β < α, then
we put

Xα =











(Xβ)1, if α = β + 1 and β is an ordinal number;

∩
β<α

Xβ, if α is a limit ordinal number.

Remark 3.12.

1. X1 = X − IH(X) = X ∩ dH(X).
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2. Xβ ⊆ Xα whenever α ≤ β.

3. Xα = Xα−1 − IH(Xα−1) = Xα−1 ∩ dH(Xα−1) for any successor ordinal number α.

4. If α is a successor ordinal number and Xα = ∅, then X = ∪
β≤α−1

IH(Xβ).

Lemma 3.13. Let (X, m,H) be a hereditary m-space. If m has property F, the following properties
hold.

1. Xα is m∗
H-closed for any ordinal number α.

2. Y ⊆ X, then Y α ⊆ Xα for any ordinal number α.

Proof. 1. We use induction on α.
1) α = 1. Let x ∈ IH(X). Then Ux ∩ X = {x} for some Ux ∈ m∗

H(x). This implies {x} = Ux ∈ m∗
H .

Thus IH(X) = ∪
x∈IH(X)

{x} ∈ m∗
H . Thus X1 = X − IH(X) is m∗

H -closed.

2) Suppose Xβ is m∗
H -closed for any β < α. We will prove Xα is m∗

H -closed in the following cases.
(a) α is a successor ordinal number. Let x ∈ IH(Xα−1). Ux ∩ Xα−1 = {x} for some Ux ∈ m∗

H(x). By
Remark 3.12, Xα = Xα−1 − IH(Xα−1). So

Xα = Xα−1 − ∪
x∈IH(Xα−1)

{x} = [X − ∪
x∈IH(Xα−1)

Ux] ∩ Xα−1.

By induction hypothesis, Xα−1 is m∗
H -closed. Thus Xα is m∗

H -closed.
(b) α is a limit ordinal number. By induction hypothesis, Xβ is m∗

H -closed for any β < α. Thus
Xα = ∩

β<α
Xβ is m∗

H-closed.

2. Let Y ⊆ X . We will prove Y α ⊆ Xα for any ordinal number α.
1) Y 1 = Y ∩ dH(Y ) ⊆ X ∩ dH(X) = X1. This show Y α ⊆ Xα when α = 1.
2) Suppose Y β ⊆ Xβ for any β < α. We consider the following cases
(a) α is a successor ordinal number. By induction hypothesis, Y α−1 ⊆ Xα−1. By Remark 3.12, Y α =
Y α−1 ∩ dH(Y α−1) ⊆ Xα−1 ∩ dH(Xα−1) = Xα.
(b) α is a limit ordinal number. By induction hypothesis, Y β ⊆ Xβ for any β < α. Thus Y α = ∩

β<α
Y β ⊆

∩
β<α

Xβ = Xα. By 1) and 2) we have Y α ⊆ Xα for any ordinal number α.

�

Definition 3.14. Let (X, m,H) be a hereditary m-space.

1. An ordinal number β is called the derived length of X if β = min{α : Xα = ∅}. β is denoted by
δ(X).

2. X is said to have a derived length if there is an ordinal number α such that Xα = ∅.
Lemma 3.15. Xδ = Xδ+1 for some ordinal number δ.
Theorem 3.16. Let (X, m,H) be a hereditary m-space. Then X is H-scattered if and only if X has a
derived length.

Proof. Sufficiency. Suppose that X is not H-scattered. Then IH(A) = ∅ for some nonempty set A ⊆ X .
We claim A ⊆ Xα for any ordinal number α.
(1) Let x ∈ A and U ∈ m∗

H(x). Since IH(A) = ∅, U ∩ A 6= {x}. Note that x ∈ U ∩ A. Then |U ∩ A| ≥ 2
and so U ∩ (A − {x}) 6= ∅. Now U ∩ (A − {x}) ⊆ U ∩ (X − {x}). Then U ∩ (X − {x}) 6= ∅. This implies
x ∈ X ∩ dH(X). By Remark 3.12, x ∈ X1. Thus A ⊆ X − IH(X) = X1. i.e., A ⊆ Xα when α = 1.
(2) Suppose A ⊆ Xβ for any β < α. We will prove A ⊆ Xα in the following cases.
a) α is a successor ordinal number. Let x ∈ A and U ∈ m∗

H(x). By (1) U ∩ (A − {x}) 6= ∅. By
induction hypothesis, A ⊆ Xα−1. Then U ∩ (Xα−1 − {x}) 6= ∅. This implies x ∈ Xα−1 ∩ dH(Xα−1). By
Remark 3.12, x ∈ Xα. Hence A ⊆ Xα.
b) α is a limit ordinal number. By induction hypothesis, A ⊆ Xβ for any β < α. Then ∩

β<α
Xβ = Xα.

Since X has a derived length, Xδ = ∅ for some ordinal number δ. By claim, A ⊆ Xβ. Then A = ∅, a
contradiction.
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Necessity. Conversely, suppose that X has no derived length. By Lemma 3.15, Xδ+1 = Xδ and
Remark 3.12, Xδ+1 = Xδ − IH(Xδ). Then IH(Xδ) = ∅. Note that X has no derived length. Then
Xδ 6= ∅. It follows that X is not H-scattered. This is a contradiction.

�

4. Characterizations of Scattered Spaces

Corollary 4.1. (1) Let (X, m,H) and (X, m, J) be two hereditary spaces with J ⊆ H. If (X, m, J) is
J-scattered, then (X, m,H) is H-scattered.
(2) Let (X, m,H) and (X, n,H) be two hereditary spaces with n ⊆ m. If (X, n,H) is H-scattered, then
(X, m,H) is H-scattered.

Proof. These hold by Proposition 3.5 and Proposition 3.6. �

An m-space (X, m) is said to be scatted if Im(A) 6= ∅ for any nonempty set A ∈ P(X).

Theorem 4.2. Let (X, m,H) be a hereditary m-space. Then the following are equivalent.

1. (X, m) is scattered.

2. (X, m,H) is H-scattered for any hereditary H on X.

3. (X, m, {∅}) is {∅}-scattered

Proof. (1) ⇒ (2): This follows from Proposition 3.4 (2).
(2) ⇒ (3): The proof is obvious.
(3) ⇒ (1): Since m = m∗

H whenever H = {∅}, Im(A) = IH(A) 6= ∅. Thus (X, m) is scattered. �

Theorem 4.3. Let (X, m,H) be a hereditary m-space and Y be nonempty subset of X. If X is H-
scattered, then (Y, mY ,HY ) is HY -scattered.

Proof. Let A be nonempty set of Y . Since X is H-scattered, IH(A) 6= ∅. Pick x ∈ IH(A). Then
U ∩ A = {x} for some U ∈ m∗

H(x). Note that U ∩ Y ∈ mY
∗
H(x) and (U ∩ Y ) ∩ A = (U ∩ A) ∩ Y = {x}.

Then x ∈ IHY
(A) and so IHY

(A) 6= ∅. Hence (Y, mY ,HY ) is HY -scattered. �

Lemma 4.4. If every Hα is a hereditary on Xα (α ∈ ∆), then ∪
α∈∆

{Hα : Hα ∈ Hα} is a hereditary on

∪
α∈∆

Xα.

Definition 4.5. A hereditary m-space (X, m,H) is called H-resolvable if X has two disjoint H-dense
subsets. Otherwise, X is called H-irresolvable.

Example 4.6. Let X = {a, b, c, d}, m = {X, ∅, {c, d}, {b, c, d}, {a, c, d}} with H = {∅, {a}}. Then it is
clear that. If A = {a, c} then A∗ = X and if B = {b, d} then B∗ = X therefore, A and B is two disjoint
H-dense subsets of X. Hence, a hereditary m-space (X, m,H) is H-resolvable.
Proposition 4.7. Let (X, m,H) be a hereditary m-space. If X is H-scattered, then X is H-irresolvable.

Proof. Suppose that X is not H-irresolvable. Then X is H-resolvable. For some nonempty sets A, B ∈
P(X), we have A∗

H = B∗
H = X and A ∩ B = ∅. Since A, B ∈ D⋆

H(X), by Theorem 3.10, IH(X) ⊆ A, B,
and IH(X) ⊆ A ∩ B. Since X is H-scattered, IH(X) 6= ∅. So A ∩ B 6= ∅. Thus, X is H-irresolvable. �

It is clear that by Proposition 4.7 a hereditary m-space (X, m,H) in Example 3.8 is H-irresolvable.

Definition 4.8. A mapping f : (X, m,H) → (Y, n, J) is said to be H-closed if f(A) is n∗
J -closed in Y

for each m∗
H-closed subset A of X.

Theorem 4.9. Let (X, m,H) be H-scattered, (Y, n, J) be a hereditary n-space, where m and n has
property F, and let f : (X, m,H) → (Y, n, J) be H-closed. Suppose that f satisfies the following condition.
The set {β : Xβ ∩ f−1(y) 6= ∅} contains a largest element for any y ∈ Y . Then the following properties
hold:
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1. Y α ⊆ f(Xα) for every ordinal number α,

2. δ(Y ) ≤ δ(X),

3. Y is J-scattered.

Proof. Since (2) and (3) hold by (1) and Theorem 3.16, we only need to prove (1) i.e. Y α ⊆ f(Xα) for
every ordinal number α.
We use induction on α.

1. Since Y 0 = Y = f(X) = f(X0), then Y α ⊆ f(Xα) when α = 0.

2. Suppose Y β ⊆ f(Xβ) when β < α. It suffices to show Y α ⊆ f(Xα) in the following two cases,

(a) α = β + 1 for some ordinal number β.
Suppose Y α * f(Xα). Then Y α − f(Xα) 6= ∅. Pick y ∈ Y α − f(Xα). Then Xα ∩ f−1(y) 6= ∅. Put
F = Xβ − f−1(y).
Claim 1. F is m∗

H -closed in X . Put A = Xβ ∩ f−1(y). Then F = Xβ − A. Since Xα ∩ f−1(y) = ∅,
f−1(y) ⊆ X −Xα. This is implies A ⊆ Xβ ∩(X −Xα) = Xβ −Xα. By Remark 3.12, Xβ −Xα = IH(Xβ).
Thus A ⊆ IH(Xβ). For any x ∈ A, x ∈ IH(Xβ). Then U ∩ Xβ = {x} for some U ∈ m∗

H . Then
{x} ∈ m∗

H Xβ (relative space) and so A = ∪
x∈A

{x} ∈ m∗
H Xβ . This implies F = Xβ − A is m∗

H -closed

in Xβ. By Lemma 3.13 (1) F is m∗
H -closed in X . By induction hypothesis, Y β ⊆ f(Xβ). Then

Y β − {y} ⊆ f(Xβ) − {y}. Note that Xβ ⊆ F ∪ f−1(y). Then Y β − {y} ⊆ f [F ∪ f−1(y)] − {y} = f(F ).
Thus Y β − f(F ) ⊆ {y}. Conversely, by f−1(y) ∩ F = ∅, y /∈ f(F ). Note that y ∈ Y α ⊆ Y β . Then
{y} ⊆ Y β − f(F ). Hence {y} = Y β − f(F ). Since f is H-closed, by Claim 1., f(F ) is n∗

J -closed. Note
that y /∈ f(F ). Put U = Y − f(F ). Then U ∈ n∗

J(y). By U ∩ Y β = Y β − f(F ) = {y}, y ∈ IJ(Y β). By
Remark 3.12, Y β − Y α = IJ(Y β). This implies y /∈ Y α. This is a contradiction. Therefore, Y α ⊆ f(Xα).
(b) α is a limit ordinal number. Suppose Y α * f(Xα). Then Y α − f(Xα) 6= ∅. Pick y ∈ Y α − f(Xα).
Put π = max{β : Xβ ∩ f−1(y) 6= ∅}. By condition of hypothesis, we have Xπ ∩ f−1(y) 6= ∅. Since
Xα ∩ f−1(y) = ∅. We can claim π < α. Otherwise, we have π ≥ α. Since Xπ ∩ f−1(y) 6= ∅ and
Xπ ⊆ Xα, Xα ∩ f−1(y) 6= ∅. Thus y ∈ f(Xα). This is a contradiction. But Xπ+1 ∩ f−1(y) = ∅. Then
{y} ∩ f(Xπ+1) = ∅ and so f−1(y) ∩ f−1[f(Xπ+1)] = ∅. Put W = X − f−1[f(Xπ+1)]. Then f−1(y) ⊆ W .
By Lemma 3.13(1), Xπ+1 is m∗

H -closed. By f is H-closed, f(Xπ+1) is n∗
J -closed. Put Z = Y − f(Xπ+1).

Then Z is n∗
J -open and W = f−1(Z). Put g = f|W .

Claim 2. g = f|W : (W, mW ,HW ) → (Z, nZ , JZ) is HW -closed. Let K be m∗
H -closed in W . Then

K = F ∩ W for some m∗
H -closed set F in X . Since f is H-closed, f(F ) is n∗

H-closed in Y . Note that
g(K) = f(W ∩ F ) = f [f−1(Z) ∩ F ] = Z ∩ f(F ). Then g(K) is n∗

H -closed in Z. Then X is H-scattered,
by Theorem 4.3, W is HW -scattered. By Theorem 3.16, δ(W ) is existence.
Claim 3. δ(W ) ≤ π + 1. W π+1 ⊆ W ⊆ X − Xπ+1. By Lemma 3.13 (2), W π+1 ⊆ Xπ+1. Then
W π+1 ⊆ Xπ+1 ∩ [X − Xπ+1] = ∅. Thus δ(W ) ≤ π + 1.
Claim 4. Y α ∩ Z = Zα.

1. α = 0. We have Z0 = Z = Y ∩ Z = Y 0 ∩ Z.

2. Suppose Y β ∩ Z = Zβ for every β < α. We will prove Y α ∩ Z = Zα in the following cases.

(i) α is a successor ordinal number.
By induction hypothesis, Y α−1 ∩Z = Zα−1. By Zα ⊆ Y α and Zα ⊆ Z, we have Zα ⊆ Y α∩Z. Let y ∈

Y α ∩Z. By Remark 3.12, Y α = Y α−1 ∩dH(Y α−1). Then y ∈ dH(Y α−1)∩Y α−1 ∩Z = dH(Y α−1)∩Zα−1.
Note that Z is an n∗

J -open set containing y. y ∈ dH(Y α−1) implies that [U ∩Z]∩ [Y α−1 −{y}] 6= ∅ for any
n∗

J -open set U containing y. Then [U∩Z]∩[Y α−1−{y}] = U∩Z∩Y α−1∩[Y −{y}] = U∩Zα−1∩[Y −{y}] =
U ∩ [Zα−1 − {y}] 6= ∅. Thus, y ∈ dH(Zα−1). By Remark 3.12, Zα = Zα−1 ∩ dH(Zα−1). Then y ∈ Zα.
Hence Y α ∩ Z ⊆ Zα. Hence Y α ∩ Z = Zα.
(ii) α is a limit ordinal number.

By induction hypothesis, Y β ∩ Z = Zβ for any β < α. Then

Y α ∩ Z =
(

∩β<αY β
)

∩ Z = ∩β<α

(

Y β ∩ Z
)

= ∩β<αZβ = Zα.
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By Claim 2, g = f|W : (W, mW ,HW ) → (Z, nZ , JZ) is HW -closed. By repeating the proof of (a), we can

prove Zπ+1 ⊆ g(W π+1). By Claim 3, ∅ = W δ(W ) ⊇ W π+1. This implies Zπ+1 = ∅. By Remark 3.12(4),
Z = ∪

β≤π
IH(Zβ). Note that Xπ+1 ∩f−1(y) = ∅. Then y /∈ f(Xπ+1). So y ∈ Z = ∪

β≤π
IH(Zβ). We obtain

y ∈ IH(Zγ) for some γ ≤ π. It follows U ∩ Zγ = {y} for some U ∈ n∗
J(y). By Claim 4, Y γ ∩ Z = Zγ .

Then (U ∩ Z) ∩ Y γ = U ∩ Zγ = {y}. Since U ∩ Z ∈ n∗
J (y), we have y ∈ IH(Y γ) = Y γ − Y γ+1. Since

π < α and α is a limit ordinal, π + 1 < α. Then γ + 1 ≤ π + 1 < α. By Remark 3.12, Y γ+1 ⊃ Y α. Then
y /∈ Y α. This is a contradiction. Therefore, Y α ⊆ f(Xα).

�
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