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Generalized Solutions for Time -Fractional Evolution Equations
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ABSTRACT: This paper, focuses on the fractional system of semilinear evolution equations with initial data
is singular generalized functions, the fractional derivative (C)DI‘Z is ¢p—Caputo derivative of order o, 1 < o < 2,
which we will prove to be inside Colombeau algebra. The notion of 1—Cosine family is introduced and
demonstrated in Colombeau algebra. Using Banach’s fixed point theorem and Laplace transforms, we gave
the integral solution of the problem. In Colombeau’s algebra, The existence and uniqueness of the solution
are demonstrated using the Gronwall lemma.
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1. Introduction

Colombeau proposed the best approach for solving the issues that Schwartz theory of distributions is
concerned with (1984, 1985) [9,10]. He created a generalized function sequential differential algebra. G(R)
, it includes the distribution space D'(R) as a subspace. Colombeau’s idea of generalized functions really
generalizes the notion of Schwartz distributions, these novel Colombeau generalized functions can be dis-
tinguished in the same manner as distributions can, but with regard to multiplication and other nonlinear
operations. It is notable that the results of these operations are always represented as Colombeau gen-
eralized functions in this algebra. These new generalized functions are closely connected to distributions
in the sense that their description may be viewed as a natural extension of Schwartz’s distribution concept.

The fractional evolution equations have gained significant attention due to their ability to describe
complex phenomena in various fields, ranging from physics and engineering to biology and finance. One
of the primary motivations behind studying fractional evolution equations is their capability to capture
non-local and memory-dependent behavior, which cannot be adequately modeled by classical differential
equations. These equations incorporate fractional derivatives, allowing for the incorporation of long-term
memory effects and non-local interactions into the mathematical model. By considering fractional evo-
lution equations, researchers aim to develop a deeper understanding of intricate dynamics and improve
predictions in systems exhibiting anomalous diffusion, viscoelasticity, or power-law decay. Furthermore,
the study of fractional evolution equations also contributes to the advancement of mathematical analy-
sis, numerical methods, and the development of novel tools for solving and simulating these equations
efficiently.
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Our main goal is to look at the next abstract fractional semi-linear problem

{ §Dgu(x,t) = Au(z,t) + F (t,u(z,t)), t€[0,T] (1)

u(x,0) = ap(x) ’
Where ay is singular generalized functions, §Dy is 1)—Caputo derivative of order o, 1 < o < 2, which we
will prove to be inside Colombeau algebra, F satisfies L>° logarithmic type and A is an operator defined
from the Colombeau algebra into itself. Our goal will be to give a systematic and general treatment of
(1.1) from the standpoint of existence, uniqueness, and smoothness of solutions and we presented the
definition of the generalized -cosine family this principle is used to prove the foregoing. The pioneering
work on (1.1) (for the normal and caputo fractional derivatives in Colombeau algebra), was done by
A Benmerrous and Al in [4] [2], and our development follows his approach. Our results extend those of
[24] [4] [2] in several respects. First, we allow for a more general linear term A, in that we assume A is
the infinitesimal generator of an arbitrary strongly continuous cosine family. Second, we analyze various
hypotheses on the nonlinear term F, some of which are more general than found in [4,2]. Third, it is
demonstrated that distribution solutions to some classes of such equations exist.

The paper is structured as follows, in section 2 we mention some notions of Colombeau’s algebra, in
section 3 we will prove the existence of ¢»—Caputo derivative of order a in Colombeau algebra, in section
4, in the first part we clarify the expression of generalized -cosine family by gave the integral solution
of the problem, in section 5, we demonstrated the existence and uniqueness of the mild solution of the
problem.

2. Preliminaries

Here we list some notations and formulas to be used later. The elements of Colombeau algebras G are
equivalence classes of regularizations, i.e., sequences of smooth functions satisfying asymptotic conditions
in the regularization parameter . Therefore, for any set X, the family of sequences (u.)-¢c[o;1] of elements
of a set X will be denoted by X% such sequences will also be called nets and simply written as u..
Let D(R™) be the space of all smooth functions ¢ : R™ — C with compact support.

For ¢ € N we denote:

A (R™) = {cp €D (]R”)//go(x)dx - land/xo‘cp(x)dx —Oforl<a< q} .

The elements of the set A, are called test functions.
It is obvious that Ay D Ay ... . Colombeau in his books has proved that the sets Ay are non empty
for all k € N.

For ¢ € Ag(R™) and € > 0 it is denoted as ¢ (z) = 1¢ (£) for ¢ € D (R") and ¢(z) = p(—x).

We denote by:
E(R") ={u:A; x R" = C/ with u(p, z) is € to the second variable z},
u(pe,v) =us(x) Yo e A,
Enr (R™) ={(uc).op C E(R™) /VK CR",Va € N,IN € N such that
sup [ D% (z)|| = O (V) as e — 0},
reK
N(R™) ={(uc).op € € (R") /VK C R",Va € N,Vp € N such that
sup [|[D%u.(z)|| = O (e¥) as ¢ — 0},
zeK

The generalized functions of Colombeau are elements of the quotient algebra G (R™) = &,/ [R™] /N [R"],
where the elements of the set €, (R™) are moderate while the elements of the set N (R™) are negligible.

The meaning of the term ‘association’ in G(R) is given with the next two definitions.
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Definition 2.1. Generalized functions f,g € G(R) are said to be associated, denoted [ =~ g, if for
each representative f(p.,x) and g(e.,x) and arbitrary ¥ (z) € D(R) there is a ¢ € N such that for any
p(x) € Ag(R), we have:

tim, [ 117(per) = gl ) [0(a)dz =0,

e—0+

Definition 2.2. Generalized functions f € G(R) is said to admit some as u € D (R) ‘associated distri-
bution’, denoted [ =~ u, if for each representative f(¢.,x) of f and any (x) € D(R) there is a ¢ € N such
that for any o(x) € Ay4(R), we have:

lim / F (e 2)(@)dz = (u, ).

e—0t

3. p—Fractional Derivative in §

Let (fe(t)), be a representative of a Colombeau generalized function f(¢t) € G(R") and let n — 1 <
a < n, 1 € C"(RY) be an increasing function with ¢'(t) #0 for all t € R™.

The 1-Caputo fractional derivative of (fc(t)),, is defined by

W f(f(@[}(t) - Z/J(S))”*a*lfe[n](s)w/(s)ds, n—1<a<n,
@) = £ = (g ) ), a=mn,

oDy fe(t) = {

n e N,ee€ (0,1).

Lemma 3.1. Let (fc(t))c be a representative of f(t) € G(RT). Then, for every a > 0, sup,epor
6D fe(t) | has a moderate bound.

Proof. Fix e € (0,1).
Letn—1<a<n, neN.

Then,
sUpyefo,r) | 608 () |< mray sWPepoir Jo | () = ()L ()0 (s) | ds

1 ((t) = (0))"
b [n] ‘
T —a) SESE(lJPT]IfE (s) |teb[ltl)%“]| — |
1 TTL—O[
sup | fI"(s) |

T T(n—a)n—a .o
Since f(t) € §([0, +00)), as a result sup,¢(o 7 | fe["} (s) | has a moderate bound.
Thus, AM € N, such that

sup | §Dg fe(t) |[= O (e™), e—o.
te[0,T

Then, supc(o 1) | §D¢ fe(t) | has a moderate bound, Vo > 0.
|

Lemma 3.2. Let (fie(t))., (f2¢(t)), be two distinct representatives of f(t) € G(RT). Then, for every
a >0, supieio 1) | 605 f1e(t) — §D5 fae(t) | is negligible.
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Proof. Fix e € (0,1).
Letn—1<a<n, neN.
Then,

T A . ]
sup | §DS fre(t) — D fae(t) |< =————— sup | fiV(s) — f2(s) .
tE[O,T]|O wh1e(t) = 5D fae() | F(n—a)n—ase[o,ﬂ'fl (s) = fac (s) |

Since (f1e(t))e and (fac(t)), represent the same Colombeau generalized function f(t), so supep 7] |
1[7:](5) - fz[z} (s) | is negligible, then for all pe N
sup | (C)Difle(t) — (C)Dgfge(t) |=0 (sfp) , €—0.
t€[0,T]
Therefore, supycio 1) | 6D f1e(t) — Dy f2¢(t) | is negligible. O

We may now initiate the 1-Caputo fractional derivative of a Colombeau generalized function on RT
after establishing the first two lemmas.

Definition 3.1. Let f(t) € S(R™') be a Colombeau function on RY.
The v— Caputo fractional derivative of f(t), using the notation

6Dy f(t) = [<8sz’jf6(t)) }, a >0, is the component of G(R™) satisfying (3.1).

Remark 3.2. Fora € (n—1,n), néeN.
The first derivative of (d/dt)§Dy; fe(t) is

c Do t s n m .
(d/dt)§Dg fe(t) = F(llfa) [fo ((w(t)fzz(s)))aﬂ_n i H](s)) ds + W | ](O) and it is not de-
fined in zero, unless fe[m] (0) =0.

Theorem 3.3. Let f(t) € § be a Colombeau generalized function. The 1»— Caputo fractional derivative
6D f(t) is a Colombeau generalized function, if fé[n} (0) = fe[nH] (0) = fg[nﬁ] 0)=---=0.

Proof. Letn —1<a<n, neN.
In Lemma 1, we proved that sup,cio ) | §D5fe(t) | has a moderate limit for indefinite Colombeau
generalized function. To get a moderate limit for the initial derivative (d/d ¢)§Dy fe(t) we utilize the

expression acquired in Remark 1 and for f" (0) = 0, we obtain

vr(S)
— @)

@/angsfe = ra-a) [ (oo ) ) ds.

Now, in the same way as in Lemma 1 we acquires a moderate limit for sup,co 7 | (d/dt)§Dy fe(?) |-

Using the conditions, higher-order derivatives can be estimated similarly. fe[n} (0) = fe["H] (0) = fe["“]
0)=---=0.

Finally, if fe["] (0) = 0, therefore, it follows that for each a > 0, all derivatives of § Dy} fe(t) have moderate
representations. O

Definition 3.4. Let (f(t)), be a representative of ft) € G(R™).
The regularized 1— Caputo fractional derivative of (fc(t))., is given by

(SDife(t) * @5) t), n—l<a<n

cDozfE t) =
oL 0 = 10 = (P @), a=n,

(3.2)

neN,ee€ (0,1).
where §Dy fe(t) is provided by (3.1).

The convolution in (3.2) is ((C)sz’jfe (t) * 806) )= [~ 6D fe()pe(t — s)ds.
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4. Generalized 1)-cosine family
4.1. The notion

Let (X,].]|) denote a Banach space, and £(X) denote the space of all linear continuous mappings.
Before we define the generalized ©—cosine family, we will state that an application from § — G must
be linear.

Definition 4.1. Let X be a locally conver space with a semi-norm familly (q;);c;-

We define Enr by the set of (ye). C X such that there exist n € N and for alli € I C N, ¢; (y-) =
Oe—)O (E_n)

And
N(X) by (ye). € X such that for all m € N and for alli€ I CN, q;(ye) = Oco (7).

Then the Colombeau generalized function type by:
X = &4 (X)/N(X)

Initially, using a provided family (Ag)EE[OJ] of maps Ae : X — X we want to see if we can define a
map A: X — X , A, € L(X) .

The next lemma expresses the basic requirement:

Lemma 4.1. Let (A.), represent a family of maps Ac : X — X.

€

For each (z.), € Ep(X) and (y.). € N(X), suppose that:
1) (Acze), € Enm(X)
2) (Ae (e + o)) — (Acwe), € N(X)

So
e X —X
| oz =z — Az = [Acz]
is clearly stated.

Proof. The first attribute reveals that the class [(Acz.) ] € X.
Let z. + y. should serve as another example of x = [x.], we have from the second property:

(Ae (ze +ye)) . — (Aexe), € N(X)

and
[(AE (xe =+ yE))e] = [(Aexe))e] in X

So A is well defined. O

We shall now introduce the idea of the generalized 1-cosine family(Convolution-type cosine family).
Definition 4.2.

Ery (R, L(X)) :={Cy.e: RY = L(X),e €]0,1[/VT > 0,3a € R such that
sup [[Cype(t)]| = O (%) as & — 0} (4.1)
te[0,7]

Ny (R, C(X)) :={N: : [0, +00[— £L(X),e €] 0,1[/VT > 0,¥b € R such that
sup [|[No(t)]| = O (¢") as e — 0} (4.2)
te[0,7]
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Proposition 4.3. Ny (R", £(X)) is an ideal of Enry(RT, £(X)) and En(RT, £(X)) is an algebra with
respect to composition.

Proof. Let (Sy..(t)), € Eary (R, £(X)) , (N.(t)), € Ny(R*, £(X)).
We shall solely establish the first argument, which is that:
(S (N (1)), (Ne(t)Sy.e(t)). € Ny(RT, £(X))

where Sy ()N (t) denotes the composition.
Let € €]0,1[. By (3) and (4), Ja € R, Vb € R such that:

18y, (N < 1Sy [IN()]| = O () as e —0.
The same applies to :

IN-()Sy, (O]l < [N ISy, (D] = O (27°)  as e 0.

Definition 4.4. The Colombenu type algebra define by:
G(RY,L(X)) = Enrp(RT, £(X)) /Ny (RT, L(X))

Remark 4.5. Let Cy € G([0, +o0], L(X)).
We denoted by Cy = [(Cy.e)] with Cy - € Eng ([0, +00], L(X)).

Definition 4.6. Cy, = [(C.)] with C. € Eny(RT,L(E)) say the generalized 1 — cosine family if:

1) C.(0) = 1.

2) §D5Cy = AC,

3) Ce(t)z is continuous in t on RT, x € X.

Definition 4.7. Cy, = [(Cy.c)] is say the generalized cosine family associated with Sy = [(Sy.c)] gener-
alized sine family if Ve €]0, 1],

we have:

Syo(t) = /0 Cope(7)dr.

Proposition 4.8. S=/(Sy . € G(R",L(X)))]

Proof. Let Cy = [(Cy.c)] generalized cosine family and ¢ € [0, T] we have:

Sye(t) = /O Cpo(7)dr

Then,
sup [|Sy ()| <T sup [|Cy(t)]
te[0,7] t€[0,7]
As
Cw’g € EM#,(RJF,L(X)) then Sw’a S EM#,(RJF,L(X))
finally:

Sy = [(Sy.c)] € GRT, L(X))
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Proposition 4.9. Let Cy = [(Cy )], be a strongly continuous generalized cosine family with associated
generalized sine family Sy = [(Sy.e)], we have:

(1) Sy.e(t)x is continuous in t on R for each fived x € X

(2) there exist constants M and w > 0 such that:

|Cye()] < Met!

) t
1Sy.c () = Se ()] < M|/ evlslds| Vi € RY.
t/

(4) Cyp.c(8), Sp.e(5), Cy.c(t), and Sy (t) commute for all s,t € RT.
Definition 4.10. Let Xo . := {x € X it — §DgCy c(t)x is continuous in t € R}

We use the lemma 3 the infinitesimal generator of a strongly continuous generalized cosine family
Cy = [(Cye)],t € RT, is the operator A = [(A.)]

Acx =Dy C(0)z

with:
D(A.) =X,

In the next paragraph, we will explain in detail the expression of each of Cy . and Sy ..
4.2. The integral solution
Definition 4.11. [1}] Define the Mittag-Leffler function by:

+oo xk
Fes®) =0 By

Definition 4.12. Describe the Laplace transform of a function g by

—+o0
Lol = [ gl
0
Proposition 4.13. Let f and g two functions, we have

L((fxg)(@)) (s) = £ (f(2)) (s)£ (9(z)) (s)-
Definition 4.14. [1}]

1. The Gamma function is given by
—+o0
I(x) = / t"te~tdt,Vr > 0
0
2. The B function is described by
1
Va,y >0, B(z,y) = / 71— )Y L.
0
Proposition 4.15. [1/]

1 Yo,y € RY X RY, B(z,y) = H0W.




8 A. BENMERROUS, L. s. CHADLI, A. MOUJAHID, M. ELOMARI AND S. MELLIANI

2. Forallz >0, T'(z+1) = 2l'(x).
Definition 4.16. The Wright type function is represented by
N ()"
Yal) = nz:% nl(—an+1— «)

_ Z (—2)"T'(a(n + 1)) sin(w(n + 1)a)

n!

n=0
fora €(0,1) and x € C.

Proposition 4.17. The Wright function ¢,, is a complete function with the following characteristics:

(i) Jo 0a(6)07d0 = Flz(lfir)) forr > —1;
(ii) o (0) >0 for 0 >0 and [~ ¢, (0)df =1
(iii) [y ¢ (0)e *?d0 = Eo(—2), z€C;

(iv) o [ 00, (0)e*%d = Eyo(—2), z€C.
Definition 4.18. We proceed with the observed one-sided steady probability density in

k!

>q

1 & [(ak+1
—Z Y= 10_0‘]“_1Msin(kﬂ'o¢), 0 € (0,00)

And we have,
/ e Mp (0)d0 = e, where o € (0,1). (4.3)
0

Lemma 4.2. Let f: C(J,X) — C(J, X) be continuous.

The issue (1.1) is equal to the mild equation

1 t 1 ,
u(t) = uo + o) /0 W) = w(s))l—o‘w (s)(Au(s) + F(s,u(s))ds, teJ, (4.4)

With:
u: D(A) — D(A) offered that the integral in 4.4 exists.

We will need the following lemma.

Lemma 4.3. For alla €ln—1,n] n €N and s >0, and let ¢ € C"(RT) be an increasing function with
¢'(t) #0  for allt € RY. We have,

o S (o

2) (s = A) X(5) = £( (] i cupa(0) =gl (totrizgt)
u(s)(b/(s)dﬁds) )( )
Wzth

= [ e OO () (5)ds.

Proof. 1) For s > 0,

sl (s®—A) T =571 [Fe T)dr = o f° (st) e~ (DT (fo) at
Where {T}tZO s Cp— Sengroup defined by

Az = lim;__g+ T(tffm and (AT —A)~'a = [[° exp(—A")T(t)xdt
Putting t= ¢(t) — $(0), we have
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= a [57 s (1) — ¢(0))* e BRI 5 T ((g(t) — (0))™) ¥/ (t)dt
= Jo —5 (e CLOZON) T ((6(1) — 6(0))") dt.
Using (4), we get
= 55 J5T 0pa(0)e==CO=0ON T ((6(t) — $(0)*) ¥/ (t)dOdt
= [ ems(6()=6(0) (f o ()T ((as(t);f(o»“) dg) o (t)dt

=L(fy" pa(O)T (7(“‘)“’;5(0”0‘) do) (s).
2) For s > 0,

:a/ 707 Le= (TN (39) X (s)dr
0

Where {T}hi>o is Co— semigroup defined by
T(t)x —x

t—0t T

A\ — A) e = /DO exp(—=A\"t)T(t)xdt
0

and

Putting &= ¢(t) — $(0), we have
= /DO a(p(r) — ¢(0))*~Le~ (s(e(m—e(O))”
0
x T ((p(1) — ¢(0))*) ¢' (1) X (s)dT
=/Oo h a(p(r) — ¢(0))*~Le~(3(4(M) =60
0 0
T ((p(1) — ¢(0))%) x 6_(A(¢(T)_¢(O)))U(T)¢/(T’)¢I(7)drd7',

Using (4), we get

= IS JoT ald(r) = 6(0))7 7 p,, (0)e =2 @I=4ONIT (((r) — (0)))
x e~ s =)y (1) ¢/ (1)@’ (T)dOdrdT

o0 (oo OO —s(p(T r)— T)—¢(0)* !
= [ ST [ aes@n+elr) 2¢(0))%pa(9)
x T (7(4)(7)55(0)) ) u(r)¢'(r)¢’ (1)dfdrdr

= [ [ [ eS80 (g)LO=SO) (<¢<t>;f<o>>“)
u (¢~ (¢(r) = 6(t) + 6(0)))
&' (1) (t)dOdrdt

o ae=s(@(M=9(0), () (¢>(t)fg>§0))‘*‘ T((¢(f);g(0))“)

u (¢7H(o(r) = 6(t) + 6(0))) ¢'(7)
¢ (t)dodtdr

= [ o—5(6(1)—(0)) (f I ap., B(r)— ¢(r)) T((«b(f);{?(f))‘*)
u(r)g'(r)dddr) x ¢'(r)dr




10 A. BENMERROUS, L. s. CHADLI, A. MOUJAHID, M. ELOMARI AND S. MELLIANI

- L( (IOT fooo ap,(0) (4)(7)_357’))&71 T ((4)(7)555(7’))0‘)
u(r)g' (r)dfdr) ) (s)

Proposition 4.19. If

holds, then we have

u(t) = E(tyuo + o fy E()((t) = (5) 107 F (s, u(s))¢ (s)ds.

With,
= Jo @a(O)T ((¥(t) = (0)*0™") df

Proof. Since u(t) = ug + F(a fo W¢ (s)(Au(s) + F(s,u(s)))ds, using the Laplace transform,
we obtain

L(u(t))(s) = L(uo + F(la) /0 W@ = ;(7))170‘ Y (1) (Au(s) + F(s, u(s)))dT) (s)

1 t 1 ,
:L(uo)(s)—i—ﬁ(r(a)/o (w(t)_¢(T))1_a¢(T)(Au(s)-I-F(s,u(s)))dT)(s)

_@ ! t L /’7' us S, u(s TS
-2t /Ow(t)_w(ml,aw()m (5)+ Fs,u(s)))dr) )

_ —A / M H Oy 5)y () + - 1A / HO=HO) B(s, u(s))) ()ds

We can deduce
L(u(t))(s) = s (s — A) Lug + (s* — A) 7 X (s).
Now, use the lemma 4.3, then

L)) = £(J5* pal®)T (LOFEDY dp) (5)ug +

L( (foT fooo ap.(0) (w(ﬂ—;i(s))afl T (w(ﬂg;p(s))a)
F(s,u(s))y' (s)dfds) ) (s)

We can now invert the Laplace transform to obtain the result.

Vo € X, characterize operators Sy (t, s) and Ty o(t, s) by

St 5) = / " 0u(O)T ((0(1) — 0(s))°0) udf

And
Tyalt,s)z = o / 06, ()T (((t) — (s))6) udé

for0<s<t<T. O

Lemma 4.4. Sy o and Ty o provide the following characteristics :
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(1) The operators Sy o(t,s) and Ty o(t,s) are strongly continuous for all t > s > 0, that is, for every
zeX and 0 < s <ty <ty <T we have

| Sy (t2,8)x — Sy.o (t1,8) || = 0 and | Ty o (t2, ) — Ty (t1,s)z]] =0

as ty — to.

(it) For any fized t > s > 0, Sy o(t,s) and Ty o(t,s) are bounded linear operators with

| Sy.altss) (@) < M| and || Ty,a(t, s)(z) ]l = ]

”*F<1+ ) <>

forallz € X.

5. Existence and Uniqueness of the Solution in colombeau algebra §

In this section consider the following problem:

{ §DGu(w,t) + Au(z,t) = F (t,u(z,t)), te[0,T] (5.1)

u(0,z) = ap(x)
with ag(z) € D' (R™).

Now we will transform the problem in the Colombeau algebra by using section 2, we have:

{ §DJuc(t, ) + Acuc(t,x) = Fe (tuc(t,z)) z€R", >0
ue(0, ) = ag.e(2)

with ag ¢ (2) is the regularizetion of ag(z), and as stated definition (4.6) A = [(A.)] is the infinitesimal
generator of generalized 1—cosine family Cy, = [(Cy <)]-

Definition 5.1. Let f € G[R"™], f is said L> logarithmic type if it has a representative (f:). € Enr [R"]
such that

1l o oy = OClog(e))  as £ —0

Theorem 5.2. Let VF, is L™ log-type and the generalized operators Sy, o and Ty o verify the Lemma
(4.4). Then the problem (5.1) has a unique solution in G (RT x R™).

Proof. Existence results
The integral solution of the problem (4.3) is:

f() ¢5 a (( s(t) - ws (0))&9) U’E,Odg
+O[ f() f() ¢5 a s(t) - ws(s))a_lT ((¢s(t) - ¢s(0))a9) fE(Sa UE(S))w/s(S)deS

= Sy,ac(t, 8)uco + fo (¥ (t) — @bs(s))ailTw,ae(tv s) fe(s, UE(S))wlst
Which implies that:

Jrae )< ISae (8 Ozl + fy | (0e®) = 6o()2 TG o (8 ) (5, ua(5)) 1L (5) | s
< M fucll + fy (6o(t) = () 1HT$,E<t, $)J- (5. ue(s) | 0l (5)ds

< M [lucoll + w55 Jo W (t) = ()27 | fe (s,us(s) ]| ¢L(s)ds
The first approximation of F; :

F. (s,uc(s,.)) = F:(s,0) + VE:ucs(s,.) + Ne(s)

with N. € N (RT)
Then
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Jue(t, )| < M ||ueo|| + 55 Jo (o (1) = e(9)2 71 || F (5,0) | L (s)ds

+p(a IVE: ||f0 t) = ¥e(s)* 7 lue(s, )l ¥L(s)ds
+rLs Jo @ —%( )N IN N Y(s)ds
We get

e (t, ) < M Jueoll + ey 1= (5, 0)]| (¥ (T) — v (0))*

L VR L 0o(8) = a(5)2 (s, )| wh()ds + ps [N (0 (T) — 6.(0))°.
So,

||us( M < Mlfucoll + meady 1F: (5,0)[| (90 (T) = 9.(0))*

gy IV (0 (T) = %.(0)*

+%IIVFellf(f(%/Je(t)—%be(S))"‘ e (s, ) 9L (s)ds

By the Granwall’s inequality

l[eve (s )| ooy < (Mllasoll + I1E= (5, 0)| (o(T) = 9(0))*

M
Mt 1)
g IVl 60 - 0. 0)7)

M o
< exp (m IVE ] (6.(T) — 6.(0)) ) |

Since ¥, € G(RT), ao€ §(R™) (N:). € N(RT) and VF is L>°— logtype there exist K € N such
that

sup_[[ue(t, )| poo gy = 0 (675), =0
t€[0,T

Uniqueness.
Let’s say there are two solutions w1 ¢(¢,.), uz(t,.) to problem (5.1), consequently :

(C)Df‘pulﬁe(t, x) + Acuy (t,x) — 6D u2,e (t,x) — Acug (t, x)
=F, (t,u1,e(t,z)) — Fe (t,uze(t, x))
r€eR™ t>0

u1,6(0,2) —u2.(0,2) = Ny ()

Then:

0Dy (u1,e(t, @) —uz e(t, @) + Ae (ur,e(t, ) —uz (t, 7)) = Fe (t,u1 (¢, 7))

— Fe (t,uz,(t,x))
reR", t>0
u1,e(0, ) — u2,(0, ) = No.(x)

(5.3)

With (No,c), € N(RT).
The integral solution of the equation (5.3) is:

) = / 6 (O (6o(t) — .(0))%0) Noo(x)d8
ta / / T a0 (1) — ()T (1) — .(0))76)
X (fe(s,u1,e(s)) = fe(s,u2,(5))) w;(s)ded&

= Sy,ae(t, 5)No,e(x) +/0 ($=(t) = ()" Tpac(t, 5)
X (fe(s,u1,6(s)) = fo(s,u2,(5))) ids
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Then
ure(t;.) = u2,e(t, M oo gy < 199,ae(t; 0)No. ()]

+/0 [(e(t) = () Ty ac(t, s) (fe(s,u1.e(5)) = fe(s, uze(s)) wi(s)]| ds

< M ||Noe ()]l +/O (e (t) = () 1 Tp ety s) (fo(s,u1,e(5)) = fo(s, uze(s)))]

x L (s)ds
< M Noo ()] + % / () — () | (e (5101.0(5)) — Fol, ume(s)))]
x 1 (s)ds

The initial estimate of Fy (s,u1.(s,.)) — Fz (s,u2.(s,.)) is provided by

F (5,u1.0(5,.)) = Fe (5,2.0(5,.)) = IVEI| (un.e(s,) —us,e(5,.)) + No(s),
With (N.). € N (RT).
s0

lure(t, ) = ug,e(t, )l ooy < M [|No,e ()]

M [t - L S .
+ m/o W) =¥ ()* T NUIVEL (ur,e(s,.) —uz.e(s,.)) + Ne(s))[ vz (s)d
< M N0 Ol + Fray IVl 0(T) = w2 0)°+

M / (o () — 0o (8)* I VE| (tr.6(5..) —tuze(s, )0 (s)ds
0

I()
Using the Granwall’s inequality:

lure(t,) = uz.e(t, )l ooy < (M||No,e<.>||+F L ws(T)—@bE(o»a)

CESY
M @
< exp (m IVEL] (6.(T) — .(0)) ) |

Since
P, € G(RT), (Noec)e € NRT), (No)e € N(RY) and VF is L™ - logtype and for every ¢ € N such
that:
sup [ure(t,.) —uge(t,.)]| ;0 =0(c?) =0
t€[0,T]

O
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