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abstract: We establish some results on the existence of multiple nontrivial solutions for a general anisotropic
elliptic equations. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces,
combined with adequate variational methods and a variant of the Mountain Pass lemma.
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1. Introduction

In the last few decades, one of the topics from the field of partial differential equations that has
continuously attracted interest is that concerning the Sobolev space with variable exponents, W 1,p(.)

(where p(.) is a function depending on x), see for example the monograph [4] and the references therein.
Naturally, problems involving the p(x)-Laplacian operator were intensively studied.

On the other hand, it has been experimentally shown that the above-mentioned fluids may have
their viscosity undergoing a significant change, see [1]. Consequently, the mathematical modelling of
such fluids requires the introduction of the so-called anisotropic variable spaces. Indeed, there is by now
a large number of papers and increasing interest about anisotropic problems. With no hope of being
complete, let us mention some pioneering works on anisotropic Sobolev spaces [12,15]. Therefore, in the
recent years, the study of various mathematical problems modeled by quasilinear elliptic and parabolic
equations with both anisotropic and variable exponent has received considerable attention.

Let Ω ⊂ R
N (N ≥ 2) be a bounded domain with smooth boundary. In this paper we study the

following nonlinear anisotropic elliptic equations

(P)

{

−△−→p (x)(u) = f(x, u) in Ω
u = 0 on ∂Ω,

where △−→p (.) represents the −→p (.)-Laplace operator, that is,

△−→p (x)(u) =
N

∑

i=1

∂xi
(|∂xi

u|pi(x)−2∂xi
u),

f : Ω × R → R be a Caratheodory function, −→p (x) = (p1(x), p2(x), ..., pN (x)) ,

pM (x) = max
i∈{1,2,...,N}

pi(x), pm(x) = min
i∈{1,2,...,N}

pi(x)

and for i = 1, ..., N , we assume that pi is a continuous function on Ω such that inf
Ω

pi(x) > 1.

We set,
C+(Ω) = {h ∈ C(Ω)| min

x∈Ω
h(x) > 1}.
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For any h ∈ C+(Ω), we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

Moreover, let’s put the positive real numbers P +
M , P +

m , P −
m which defined as the following

P +
M = max{p+

1 , ..., p+
N }, P +

m = max{p−
1 , ..., p−

N }, P −
m = min{p−

1 , ..., p−
N}.

Throughout this paper, we assume that
N

∑

i=1

1

p−
i

> 1, (1.1)

Define P ∗
−, P−,∞ ∈ R

+ by

P ∗
− =

N
∑N

i=1
1

p
−

i

− 1
, P−,∞ = max{P +

m , P ∗
−}.

The △−→p (.)-Laplacian problems on a bounded domain have been investigated and some interesting results
have been obtained (see [6,8,13,14] and references therein).

Inspired by the above references and the work in [7], we prove that there exist two nontrivial solutions
for (P).

Let F (x, t) =
∫ t

0
f(x, s) ds, and we assume that f satisfies the following conditions:

(F0) |f(x, t)| ≤ c(1 + |t|q(x)−1), ∀t ∈ R, a.e. x ∈ Ω,
for some c > 0, q ∈ C(Ω̄) and 1 < q(x) < P−,∞, ∀x ∈ Ω̄.
(F1) There exist θ > P +

M and M > 0 such that

| t |≥ M ⇒ 0 < θF (x, t) ≤ tf(x, t)

for a.e. x ∈ Ω and each t ∈ R.
(F2) f(x, t) = o(| t |P

+

M
−1) as t → 0 and uniformly for x ∈ Ω, with q− > P +

M .
Now, we can state the following result.

Theorem 1.1. Suppose (F0), (F1), (F2) and f(x, 0) = 0 for a.e. x ∈ Ω. Then the problem (P) has at
least two nontrivial solutions, in which one is non-negative and one is non-positive.

The △−→p (.)- laplacian operator possesses more complicated nonlinearities than the p -laplacian oper-
ator, mainly due to the fact that it is not homogeneous.

This paper contains three sections. We will first introduce some basic preliminary results and lemmas
in section 2. In section 3, we will give the proof of our main result.

2. Preliminary results

We recall in this section some definitions and basic properties of the variable exponent Lebesgue-

Sobolev spaces Lp(x)(Ω) and W
1,p(x)
0 (Ω), where Ω is a bounded domain in R

N .
Throughout this paper, we assume that p(x) > 1, p(x) ∈ C0,α(Ω̄) with α ∈ (0, 1).
For any p(x) ∈ C+(Ω̄), we define the variable exponent Lebesgue space

Lp(x)(Ω) = {u : Ω → R mesurable and

∫

Ω

| u(x) |p(x) dx < ∞}.

We define a norm, the so-called Luxemburg norm, on this space by the formula

| u |p(x)= inf{µ > 0;

∫

Ω

|
u(x)

µ
|p(x) dx ≤ 1}.

Variable exponent Lebesgue space resemble classical Lebesgue space in many respects: they are Banach
spaces, the Hölder inequality holds, they are reflexive if and only if 1 < p− ≤ p+ < ∞ and continuous
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functions are dense, if p+ < ∞. The inclusion between Lebesgue spaces also generalizes naturally: if
0 <| Ω |< ∞ and p1, p2 are variable exponents so that p1(x) ≤ p2(x) almost everywhere in Ω then there
exists the continuous embedding Lp2(x)(Ω) →֒ Lp1(x)(Ω).

We denote by Lq(x)(Ω) the conjugate space of Lp(x)(Ω), where 1
p(x) + 1

q(x) = 1. For any u ∈ Lp(x)(Ω)

and v ∈ Lq(x)(Ω), the Hölder type inequality

|

∫

Ω

uv dx |≤ (
1

p−
+

1

q−
) | u |p(x)| v |q(x),

holds true. For more details, we can refer to [11].
An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the Modular

of the Lp(x)(Ω) space, which is the mapping J : Lp(x)(Ω) → R defined by

J(u) =

∫

Ω

| u |p(x) dx.

If (un), u ∈ Lp(x)(Ω) and p+ < ∞ then the following relations hold true

| u |p(x)> 1 ⇒| u |p
−

p(x)≤ J(u) ≤| u |p
+

p(x), (2.1)

| u |p(x)< 1 ⇒| u |p
+

p(x)≤ J(u) ≤| u |p
−

p(x), (2.2)

| un − u |p(x)→ 0 ⇔ J(un − u) → 0, (2.3)

| u |p(x)< 1(resp. = 1; > 1) ⇔ J(u) < 1(resp. = 1; > 1). (2.4)

Spaces with p+ = ∞ have been studied by [5].

Next, we define W
1,−→p (.)
0 (Ω), the anisotropic variable exponent Sobolev space, as the closure of C∞

0 (Ω)
with respect to the norm

‖ u ‖=‖ u ‖−→p (.)=

N
∑

i=1

|∂xi
u|pi(.). (2.5)

The space (W
1,−→p (.)
0 (Ω), ‖ . ‖) is a separable and reflexive Banach space (see [3,6]). We note that if

q ∈ C+(Ω̄) and q(x) < P−,∞ for all x ∈ Ω̄, then the embedding W
1,−→p (.)
0 (Ω) →֒ Lq(x)(Ω) is compact and

continuous. We refer to [2,14] for further properties of variable exponent Lebesgue- anisotropic sobolev
spaces.

Recall that the weak solutions of (P) are the critical points of the associated energy functional Φ,
given by

Φ(u) =

∫

Ω

N
∑

i=1

|∂xi
u|pi(x)

pi(x)
dx −

∫

Ω

F (x, u) dx

acting on the generalized Sobolev space W
1,−→p (.)
0 (Ω). It is well known that under (F0), Φ is well defined

and is a C1 functional with derivative given by

〈Φ′(u), v〉 =

∫

Ω

N
∑

i=1

|∂xi
u|pi(x)−2∂xi

u∂xi
v dx −

∫

Ω

f(x, u)v dx,

for all u, v ∈ W
1,−→p (.)
0 (Ω).

Now, we consider the truncated problem

(P±)

{

−
∑N

i=1 ∂xi
(|∂xi

u|pi(x)−2∂xi
u) = f±(x, u) in Ω,

u = 0 on ∂Ω,

where

f±(x, t) =

{

f(x, t) if ± t ≥ 0,

0 otherwise.

We denote by u+ = max(u, 0) and u− = max(−u, 0) the positive and negative parts of u.
We need the following lemmas.
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Lemma 2.1. 1. If u ∈ W
1,−→p (.)
0 (Ω) then u+, u− ∈ W

1,−→p (.)
0 (Ω) and

∇u+ =

{

∇u, if [u > 0],
0, if [u ≤ 0],

∇u− =

{

0, if [u ≥ 0],
∇u, if [u < 0].

2. The mappings u 7→ u± are continuous on W
1,−→p (.)
0 (Ω).

Proof. 1. Let u ∈ W
1,−→p (.)
0 (Ω) be fixed. Then there exists a sequence (φn) ∈ C∞

0 (Ω) such that

| ∂xi
(φn − u) |pi(.)→ 0, for i ∈ {1, ..., N}.

Since 1 < P −
m < pi(x) for all x ∈ Ω, it follows that Lpi(x) is continuously embedded in LP −

m (Ω) and
thus

| ∂xi
(φn − u) |P −

m
→ 0.

Hence u ∈ W
1,P −

m

0 (Ω). We obtain

u+, u− ∈ W
1,P −

m

0 (Ω) ⊂ W
1,1
0 (Ω). (2.6)

On the other hand, Theorem 7.6 in [10] implies

∇u+ =

{

∇u, if [u > 0],
0, if [u ≤ 0],

∇u− =

{

0, if [u ≥ 0],
∇u, if [u < 0].

By the above equalities we deduce that

| u+(x) |pM (x)≤| u(x) |pM (x), | ∂xi
u+(x) |pi(x)≤| ∂xi

u(x) |pi(x) (2.7)

and
| u−(x) |pM (x)≤| u(x) |pM (x), | ∂xi

u−(x) |pi(x)≤| ∂xi
u(x) |pi(x), (2.8)

for a.e. x ∈ Ω.
Since u ∈ W

1,−→p (.)
0 (Ω) we have

| u(x) |pM (x), | ∂xi
u(x) |pi(x)∈ L1(Ω). (2.9)

By (2.7), (2.8) and (2.9) and Lebesgue theorem we obtain that

u+, u− ∈ W 1,−→p (.)(Ω), (2.10)

where W 1,−→p (.)(Ω) = {u ∈ LpM (x)(Ω); ∂xi
u ∈ Lpi(x)(Ω), ∀i ∈ {1, ...., N}}.

By (2.6) and (2.10) we conclude that

u+, u− ∈ W 1,−→p (.)(Ω) ∩ W
1,1
0 (Ω).

Since pi ∈ C0,α(Ω̄), Theorem 2.6 and Remark 2.9 in [9] show that

W
1,−→p (.)
0 (Ω) = W 1,−→p (.)(Ω) ∩ W

1,1
0 (Ω). Thus u+, u− ∈ W

1,−→p (.)
0 (Ω).

2. Since u± = 1
2 (| u | ±u), it suffices to prove that the mapping u 7→| u | is continuous on W

1,−→p (.)
0 (Ω)

i.e. un → u implies | un |→| u |. We have | un |→| u | in LpM (x)(Ω) and | un | is bounded in

W
1,−→p (.)
0 (Ω). Thus, from reflexivity of W

1,−→p (.)
0 (Ω), | un |⇀ z in W

1,−→p (.)
0 (Ω) for a subsequence. Hence

z =| u | and | un |⇀| u | for the whole sequence. On the other hand, we have ∂xi
| u |= sgn(u)∂xi

u,

for i = 1, 2, ..., N and ‖| u |‖=‖ u ‖. By uniform convexity of W
1,−→p (.)
0 (Ω) it follows that | un |→| u |

in W
1,−→p (.)
0 (Ω). Thus, the lemma follows.

�

Lemma 2.2. All solutions of (P+) (resp. (P−)) are non-negative (resp. non-positive) solutions of (P).



Multiplicity of Solutions for Anisotropic Dirichlet Problem With Variable Exponent 5

Proof. Define Φ± : W
1,−→p (.)
0 (Ω) → R,

Φ±(u) =

∫

Ω

N
∑

i=1

|∂xi
u|pi(x)

pi(x)
dx −

∫

Ω

F±(x, u) dx

=

∫

Ω

N
∑

i=1

|∂xi
u|pi(x)

pi(x)
dx −

∫

Ω

F (x, u±) dx,

where F±(x, s) =
∫ s

0
f±(x, t) dt. It is well known that from lemma 2.1 and the condition (F0), Φ± is well

defined on W
1,−→p (.)
0 (Ω), weakly lower semi-continuous and C1-functionals.

Let u be a solution of (P+), or equivalently, u be a critical point of Φ+. Taking v = u− in

〈Φ′
+(u), v〉 =

∫

Ω

(

N
∑

i=1

(|∂xi
u|pi(x)−2∂xi

u)∂xi
v − f+(x, u)v) dx = 0,

shows that
∫

Ω

∑N

i=1 |∂xi
u−|pi(x) dx = 0. In view of (2.1) and (2.2) we have ‖ u− ‖= 0, so u− = 0 and

u = u+ is also a critical point of Φ with critical value Φ(u) = Φ+(u).
Similarly, nontrivial critical points of Φ− are non-positive solutions of (P). This ends the proof. �

3. Proof of main result

To apply the mountain pass theorem, we will do separate studies of the compactness of Φ± and its
geometry.

Lemma 3.1. Under (F0) and (F1), the functional Φ+ satisfies the (PS) condition.

Proof. Let (un)n be a (PS) sequence for the functional Φ+: Φ+(un) bounded and Φ′
+(un) → 0. Let us

show that (un)n is bounded in W
1,−→p (.)
0 (Ω). Using the hypothesis (F1), since Φ+(un) is bounded, we have

C1 ≥

∫

Ω

N
∑

i=1

|∂xi
un|pi(x)

pi(x)
dx −

∫

Ω

F (x, u+
n ) dx

≥
1

P +
M

∫

Ω

N
∑

i=1

|∂xi
un|pi(x) dx −

∫

Ω

u+
n

θ
f(x, u+

n ) dx + C2,

where C1 and C2 are two constants. Note that

〈Φ′
+(un), un〉 =

∫

Ω

N
∑

i=1

|∂xi
un|pi(x) dx −

∫

Ω

f(x, u+
n )un dx

=

∫

Ω

N
∑

i=1

|∂xi
un|pi(x) dx −

∫

Ω

f(x, u+
n )u+

n dx,

which implies

C1 ≥ (
1

P +
M

−
1

θ
)

∫

Ω

N
∑

i=1

|∂xi
un|pi(x) dx +

1

θ
〈Φ′

+(un), un〉 + C2. (3.1)

Suppose, by contradiction that (un)n unbounded in W
1,−→p (.)
0 (Ω), so ‖ un ‖≥ 1 for rather large values

of n. For each i ∈ {1, ..., N} and n we define

αi,n =

{

P +
M if |∂xi

un|pi(.) < 1,

P −
m if |∂xi

un|pi(.) > 1.
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Using relations (2.1) and (2.2) we have

∫

Ω

N
∑

i=1

|∂xi
un|pi(x) dx ≥

N
∑

i=1

|∂xi
un|

P −

m

pi(.) −
∑

{i:αi,n=P
+

M
}

(|∂xi
un|

P −

m

pi(.) − |∂xi
un|

P
+

M

pi(.))

≥
1

NP −

m

‖ un ‖P −

m −N.

Furthermore, Φ′
+(un) → 0 assure that there exists C3 > 0 such that

−C3 ‖ un ‖≤ 〈Φ′
+(un), un〉 ≤ C3 ‖ un ‖

for rather large values of n. Consequently,

C1 ≥ (
1

P +
M

−
1

θ
)

1

NP
−

m

‖ un ‖P −

m −(
1

P +
M

−
1

θ
)N −

C3

θ
‖ un ‖ +C2.

Since P −
m > 1 and ( 1

P
+

M

− 1
θ
) > 0, we have

(
1

P +
M

−
1

θ
)

1

NP
−

m

‖ un ‖P −

m −(
1

P +
M

−
1

θ
)N −

C3

θ
‖ un ‖ +C2 → +∞ as n → +∞,

what is a contradiction. So (un)n is a bounded sequence in W
1,−→p (.)
0 (Ω). The proof of lemma 3.1 is

complete. �

Lemma 3.2. There exist r > 0 and α > 0 such that Φ+(u) ≥ α, for all u ∈ W
1,−→p (.)
0 (Ω) with ‖ u ‖= r.

Proof. The conditions (F0) and (F2) assure that

| F (x, t) |≤ ε | t |P
+

M +C(ε) | t |q(x) for all (x, t) ∈ Ω × R.

For ‖ u ‖ small enough, we have

Φ+(u) ≥
1

P +
M

∫

Ω

N
∑

i=1

|∂xi
u|pi(x) dx −

∫

Ω

F (x, u+) dx (3.2)

For such an element u we have |∂xi
u|pi(.) < 1 and , by relation (2.2), we obtain

‖ u ‖P
+

M

NP
+

M
−1

= N(

∑N

i=1 |∂xi
u|pi(.)

N
)P

+

M ≤

N
∑

i=1

|∂xi
u|

P +

M

pi(.) ≤

N
∑

i=1

|∂xi
u|

p
+

i

pi(.) ≤

∫

Ω

N
∑

i=1

|∂xi
u|pi(x) dx (3.3)

Relations (3.2)-(3.3) imply

Φ+(u) ≥
1

P +
M NP

+

M
−1

‖ u ‖P
+

M −ε

∫

Ω

| u+ |P
+

M dx − C(ε)

∫

Ω

| u+ |q(x) dx

≥
1

P +
M NP

+

M
−1

‖ u ‖P
+

M −ε

∫

Ω

| u |P
+

M dx − C(ε)

∫

Ω

| u |q(x) dx. (3.4)

By the condition (F0), it follows

P +
M < q− ≤ q(x) < P−,∞

then

W
1,−→p (.)
0 (Ω) ⊂ LP

+

M (Ω) and W
1,−→p (.)
0 (Ω) ⊂ Lq(x)(Ω),
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with a continuous and compact embedding, what implies the existence of C4, C5 > 0 such that

‖ u ‖
L

P
+

M

≤ C4 ‖ u ‖ and | u |q(x)≤ C5 ‖ u ‖

for all u ∈ W
1,−→p (.)
0 (Ω). Since ‖ u ‖ is small enough, we deduce

∫

Ω

| u |q(x)≤| u |q
−

q(x)≤ C6 ‖ u ‖q−

.

Replacing in (3.4), it results that

Φ+(u) ≥
1

P +
M NP

+

M
−1

‖ u ‖P
+

M −εC
P +

M

4 ‖ u ‖P
+

M −C7 ‖ u ‖q−

,

with Ci are positives constants. Let us choose ε > 0 such that εC
P

+

M

4 ≤ 1

2P
+

M
N

P
+

M
−1

, we obtain

Φ+(u) ≥
1

2P +
MNP

+

M
−1

‖ u ‖P
+

M −C7 ‖ u ‖q−

≥ ‖ u ‖P
+

M (
1

2P +
M NP

+

M
−1

− C7 ‖ u ‖q−−P
+

M ).

Since P +
M < q−, the function t → ( 1

2P
+

M
N

P
+

M
−1

− C7tq−−P
+

M ) is strictly positive in a neighborhood of zero.

It follows that there exist r > 0 and α > 0 such that

Φ+(u) ≥ α ∀u ∈ W
1,−→p (.)
0 (Ω) : ‖ u ‖= r.

The proof is completed. �

Proof of theorem 1.1. In order to apply the Mountain Pass Theorem, we must prove that

Φ+(su) → −∞ as s → +∞,

for a certain u ∈ W
1,−→p (.)
0 (Ω). From the condition (F1), we obtain

F (x, t) ≥ c | t |θ for all (x, t) ∈ Ω̄ × R.

Let u ∈ W
1,−→p (.)
0 (Ω) and s > 1 we have

Φ+(su) =

∫

Ω

N
∑

i=1

spi(x)

pi(x)
|∂xi

u|pi(x) dx −

∫

Ω

F (x, (su)+) dx,

≤ sP
+

M

∫

Ω

N
∑

i=1

|∂xi
u|pi(x)

pi(x)
dx − csθ

∫

Ω

| u+ |θ dx.

The fact θ > P +
M , gives that

Φ+(su) → −∞ as s → +∞.

It follows that there exists e ∈ W
1,−→p (.)
0 (Ω) such that ‖ e ‖> r and Φ+(e) < 0.

According to the Mountain Pass Theorem, Φ+ admits a critical value µ ≥ α which is characterized by

µ = inf
h∈Λ

sup
t∈[0,1]

Φ+(h(t))

where
Λ = {h ∈ C([0, 1], W

1,−→p (.)
0 (Ω)) : h(0) = 0 and h(1) = e}.

Then, the functional Φ+ has a critical point u+ with Φ+(u+) ≥ α. But, Φ+(0) = 0, that is, u+ 6= 0.
Therefore, the problem (P+) has a nontrivial solution which, by lemma 2.2, is a non-negative solution of
the problem (P).

Similarly, using Φ−, we show that there exists furthermore a non-positive solution. The proof of
theorem 1.1 is now complete. �
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