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About the Image of Strongly Generalized Derivations of Order n

Amin Hosseini

abstract: Let A and B be two algebras. A linear mapping ∆ : A → B is called a strongly generalized
derivation of order n, if there exist the families of linear mappings {Ek : A → B}n

k=1
, {Fk : A → B}n

k=1
,

{Gk : A → B}n

k=1
and {Hk : A → B}n

k=1
which satisfy ∆(ab) =

∑

n

k=1
[Ek(a)Fk(b) + Gk(a)Hk(b)] for all

a, b ∈ A. The main purpose of this paper is to study the image of such derivations. Our main result on the
image of strongly generalized derivations of order one reads as follows:
Let A be a unital, commutative Banach algebra and let ∆ : A → A be a continuous strongly generalized
derivation of order one; that is, there exist the linear mappings E, F, G, H : A → A satisfying ∆(ab) =
E(a)F (b)+G(a)H(b) for all a, b ∈ A. Let E, F , G and H be continuous linear mappings. We prove that, under
certain conditions, H(A), E(A) and ∆(A) are contained in the Jacobson radical of A. This result generalizes
Singer-Wermer theorem about the image of continuous derivations on commutative Banach algebras.

Key Words: Derivation, strongly generalized derivation of order n, Jacobson radical, Singer-Wermer
theorem.
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1. Introduction and preliminaries

As a pioneering work, Singer and Wermer [18] achieved a fundamental result which started investi-
gation into the image of derivations on Banach algebras. The so-called Singer-Wermer theorem, which
is a classical theorem of complex Banach algebra theory, states that every continuous derivation on a
commutative Banach algebra maps the algebra into its Jacobson radical, and Thomas [19] proved that
the Singer-Wermer theorem remains true without assuming the continuity of the derivation. So far, many
authors have studied the image of derivations, see, e.g. [1,7,8,11,14,15,16,19,20,21] and references therein.
In this article, we are going to introduce a new class of derivations called strongly generalized derivation
of order n and investigate its image. First, let us recall some basic definitions and set the notations which
are used in what follows. Let A be an algebra. The set of all primitive ideals of A is denoted by Π(A).
The Jacobson radical of an algebra A is the intersection of all primitive ideals of A which is denoted by
rad(A). Indeed, rad(A) =

⋂

P∈Π(A) P. The algebra A is called semisimple if rad(A) = {0}. A nonzero

linear functional ϕ on an algebra A is called a character if ϕ(ab) = ϕ(a)ϕ(b) for every a, b ∈ A. The set
of all characters on A is denoted by ΦA. According to [4, Proposition 1.3.37], the kernel of ϕ, kerϕ, is a
maximal ideal of A for every ϕ ∈ ΦA. Recall that an algebra (or ring) A is called prime if for a, b ∈ A,
aAb = {0} implies that a = 0 or b = 0, and is semiprime if for a ∈ A, aAa = {0} implies that a = 0.

Let A and B be two algebras and let n be a positive integer. A linear mapping ∆ : A → B is called a
strongly generalized derivation of order n, if there exist the families of linear mappings {Ek : A → B}n

k=1,
{Fk : A → B}n

k=1, {Gk : A → B}n
k=1 and {Hk : A → B}n

k=1 which satisfy

∆(ab) =

n
∑

k=1

[Ek(a)Fk(b) +Gk(a)Hk(b)]

for all a, b ∈ A. Clearly, for n = 1, we have ∆(ab) = E(a)F (b) + G(a)H(b) for all a, b ∈ A, where
E,F,G,H : A → B are linear mappings. As can be seen, if ∆ is a strongly generalized derivation of order
one, then it covers the notion of a derivation (if ∆ = E = H and F = G = I), the notion of a generalized
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(σ, τ )-derivation associated with a linear mapping d (if ∆ = E, F = σ, G = τ and H = d), the notion of
a left σ-centralizer (if ∆ = E, F = σ and G or H is zero), the notion of a right τ -centralizer (if E or F is
zero, G = τ and H = ∆), the notion of a generalized derivation associated with a mapping d (if ∆ = E,
F = G = I and H = d), the notion of a homomorphism (if ∆ = E = F and G = 0 or H = 0), and the
notion of a ternary derivation (if F = G = I). Let A be an algebra. Recall that a triplet of linear maps
(D,E,H) of A is a ternary derivation of A if D(ab) = E(a)b+ aH(b) for all a, b ∈ A.

Also, if ∆ is a strongly generalized derivation of order 2, we have

∆(ab) = E1(a)F1(b) +G1(a)H1(b) + E2(a)F2(b) +G2(a)H2(b)

for all a, b ∈ A, where Ei, Fi, Gi, Hi : A → B are linear mappings for any i ∈ {1, 2}. For example,
every (δ, ε)-double derivation is a strongly generalized derivation of order 2. For more material about
(δ, ε)-double derivations, see, e.g. [9,17]. Now, we provide another example in this regard. Let A and
B be two algebras. A sequence {dn} of linear mappings from A into B is called a higher derivation if
dn(ab) =

∑n
k=0 dn−k(a)dk(b) for all a, b ∈ A and all nonnegative integer n. Let n be a positive integer

and let {dn} be a higher derivation. Then every dn is a strongly generalized derivation of order m in
which

m =

{

n+2
2

n+1
2

n is even,

n is odd.

We know that derivations are used in quantum mechanics (see [2,3]), and it is interesting to note
that the applications of generalized types of derivations, such as generalized derivations and (σ, τ)-
derivations, to important physical topics have recently been studied. For example, see [13] for the
application of generalized derivations in general relativity, and see [6,12] for the application of (σ, τ)-
derivations in theoretical physics. Therefore, it is possible that strongly generalized derivations of order
n will be considered by physicists in the future and used in the study of physical topics. Hence, it
is interesting to investigate details of this general notion of derivations. If ∆ : A → B is a strongly
generalized derivation of order one associated with the mappings E,F,G,H : A → B, then we say ∆ is
an (E,F,G,H)-derivation. Also, if ∆ is a strongly generalized derivation of order n associated with the
families {Ek : A → B}n

k=1, {Fk : A → B}n
k=1, {Gk : A → B}n

k=1 and {Hk : A → B}n
k=1 of mappings, we

say ∆ is an
(

{Ek}n
k=1, {Fk}n

k=1, {Gk}n
k=1, {Hk}n

k=1

)

-derivation.
Now, we state some of the results in this paper. Before stating the main result of this article about

the image of strongly generalized derivations of order one, the symbol E(z,T,S) is introduced. Let A be
a Banach algebra and let T, S : A → A be two continuous linear mappings. For any complex number z,

we define the linear mapping Ez,T,S : A → A by E(z,T,S)(a) =
∑

∞

n=0
znT n(a)

n! in which T 0 = S. It is clear
that E(z,T,S) is a continuous linear mapping on A. A triplet of linear mappings (Ω, G, F ) of A is called
a ternary homomorphism if Ω(ab) = G(a)F (b) holds for all a, b ∈ A. For more material regarding this
notion, see [10]. Now, we state our main result concerning the image of (E,F,G,H)-derivations.
Let A be a unital Banach algebra with identity element e, and let ∆ : A → A be a continuous (E,F,G,H)-
derivation such that E,F,G and H are continuous, G2 = G, F 2 = F , GE = EG = E and FH = HF =
H . Let (Ω, G, F ) : A → A be a ternary homomorphism. Suppose that ϕ

(

E(z,∆,δ)(e)
)

6= 0 for all z ∈ C

and all ϕ ∈ ΦA.
(i) If ϕ(E(z,H,F )(e)) 6= 0 for all z ∈ C and all ϕ ∈ ΦA, then H(A) ⊆

⋂

ϕ∈ΦA
ker(ϕ). In particular, if A is

a commutative Banach algebra, then H(A) ⊆ rad(A).
(ii) If ϕ(E(z,E,G)(e)) 6= 0 for all z ∈ C and all ϕ ∈ ΦA, then E(A) ⊆

⋂

ϕ∈ΦA
ker(ϕ). In particular, if A is

a commutative Banach algebra, then E(A) ⊆ rad(A).
(iii) If both ϕ(E(z,H,F )(e)) and ϕ(E(z,E,G)(e)) are nonzero for all z ∈ C and all ϕ ∈ ΦA, then ∆(A) ⊆
⋂

ϕ∈ΦA
ker(ϕ). In particular, if A is a commutative Banach algebra, then ∆(A) ⊆ rad(A).

Obviously, the above-mentioned result generalizes Singer-Wermer theorem to (E,F,G,H)-derivations.
Using this theorem, we obtain some results on the image of generalized (σ, τ )-derivations and (δ, ε)-
double derivations. Also, some other related results are presented.

2. Main Results

Throughout the paper, without further mention, I denotes the identity mapping on an algebra and e

stands for the identity element of any unital algebra. We begin with the following propositions expressing
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some properties of strongly generalized derivations of order one. Recall that the commutator of the
mappings S and T is [T, S] = TS − ST .

Proposition 2.1. Let A be an algebra, let E,F,G,H : A → A be mappings such that [G,E] = [F,H ] = 0.
Let ∆ : A → A be an (E,F,G,H)-derivation. Then for each n ∈ N and a, b ∈ A, we have

∆n(ab) =

n
∑

k=0

(n

k

)

En−k
(

Gk(a)
)

Hk
(

Fn−k(b)
)

, (2.1)

where F 0 = G0 = E0 = H0 = I.

Proof. We use induction on n. For n = 1 there is nothing to do. Assume that (2.1) holds for n. Indeed,
we suppose that

∆n(ab) =
n
∑

k=0

(n

k

)

En−k
(

Gk(a)
)

Hk
(

Fn−k(b)
)

=

n
∑

k=0

(n

k

)

Gk
(

En−k(a)
)

Fn−k
(

Hk(b)
)

,

where F 0 = G0 = E0 = H0 = I. Let a and b be two arbitrary elements of A. We have the following
expressions:

∆n+1(ab) = ∆
(

∆n(ab)
)

= ∆
(

n
∑

k=0

(n

k

)

Gk
(

En−k(a)
)

Fn−k
(

Hk(b)
)

)

=

n
∑

k=0

(n

k

)[

E
(

Gk
(

En−k(a)
))

F
(

Fn−k
(

Hk(b)
))

+G
(

Gk
(

En−k(a)
))

H
(

Fn−k
(

Hk(b)
))

]

=
n
∑

k=0

(n

k

)

Gk
(

En+1−k(a)
)

Fn+1−k
(

Hk(b)
)

+
n
∑

k=0

(n

k

)

Gk+1
(

En−k(a)
)

Fn−k
(

Hk+1(b)
)

=
n
∑

k=0

(n

k

)

Gk
(

En+1−k(a)
)

Fn+1−k
(

Hk(b)
)

+
n+1
∑

k=1

(n

k−1

)

Gk
(

En+1−k(a)
)

Fn+1−k
(

Hk(b)
)

=

n
∑

k=1

(n

k

)

Gk
(

En+1−k(a)
)

Fn+1−k
(

Hk(b)
)

+

n
∑

k=1

(n

k−1

)

Gk
(

En+1−k(a)
)

Fn+1−k
(

Hk(b)
)

+ En+1(a)Fn+1(b) +Gn+1(a)Hn+1(b)

=

n
∑

k=1

[

(n

k

)

+
(n

k−1

)

]

Gk
(

En+1−k(a)
)

Fn+1−k
(

Hk(b)
)

+ En+1(a)Fn+1(b) +Gn+1(a)Hn+1(b)

=

n
∑

k=1

(n+1

k

)

Gk
(

En+1−k(a)
)

Fn+1−k
(

Hk(b)
)

+ En+1(a)Fn+1(b) +Gn+1(a)Hn+1(b)

=
n+1
∑

k=0

(n+1

k

)

Gk
(

En+1−k(a)
)

Fn+1−k
(

Hk(b)
)

.

Thereby, our proof is complete. �

An immediate corollary of the previous proposition reads as follows:

Corollary 2.2. Let A be an algebra, let E,F,G,H : A → A be mappings such that GE = EG = E and
let FH = HF = H. Let ∆ : A → A be an (E,F,G,H)-derivation. Then for each n ∈ N and a, b ∈ A,



4 Amin Hosseini

we have

∆n(ab) =

n−1
∑

k=1

(n

k

)

En−k(a)Hk(b) +Gn(a)Hn(b) + En(a)Fn(b),

where F 0 = G0 = E0 = H0 = I.

Proposition 2.3. Suppose that A and B are two algebras such that B is semiprime, ∆, E, F,G,H : A →
B are mappings such that ∆ is linear and ∆(ab) = E(a)F (b) +G(a)H(b) holds for all a, b ∈ A.
(i) If H is linear and E is surjective, then F is linear.
(ii) If F is linear and G is surjective, then H is linear.
(iii) If G is linear and F is surjective, then E is linear.
(iv) If E is linear and H is surjective, then G is linear.

Proof. (i) For each a, b, c ∈ A and for each λ ∈ C, we have

∆(aλ(b+ c)) = E(a)F (λb+ λc) +G(a)H(λ(b+ c)).

On the other hand, since ∆ is a linear mapping, we have the following expressions:

∆(aλ(b+ c)) = λ∆(ab) + λ∆(ac)

= λE(a)F (b) + λG(a)H(b) + λE(a)F (c) + λG(a)H(c),

for all a, b, c ∈ A. Comparing the last two equations regarding ∆(aλ(b+ c)), we get that

E(a)
[

F (λb+ λc) − λF (b) − λF (c)
]

= G(a)
[

H(b) + λH(c) −H(λb+ λc)
]

,

If H is linear and E is surjective, it follows from the above-mentioned equation that

B
[

F (λb+ λc) − λF (b) − λF (c)
]

= 0.

Previous equation with the semiprimness of B imply that F is a linear mapping.
Similarly, one can prove (ii), (iii) and (iv). �

Proposition 2.4. Suppose that A and B are two unital algebras, ∆ : A → B is a (∆, F,G,H)-derivation
such that G(e) = e. Then ∆(e)[F (bc) −F (b)F (c)] = 0 if and only if H is an (H,F,G,H)-derivation. In
particular, if F is a homomorphism, then H is an (H,F,G,H)-derivation.

Proof. For each a, b, c ∈ A, we have

∆(abc) = ∆(a)F (bc) +G(a)H(bc).

On the other hand, we have

∆(abc) = ∆(ab)F (c) +G(ab)H(c)

= ∆(a)F (b)F (c) +G(a)H(b)F (c) +G(ab)H(c).

Comparing the last two equations regarding ∆(abc), we get that

∆(a)
[

F (bc) − F (b)F (c)
]

= G(a)
[

H(b)F (c) −H(bc)
]

+G(ab)H(c),

Putting a = e in the previous equation and using the assumption that G(e) = e, we obtain that

∆(e)
[

F (bc) − F (b)F (c)
]

= H(b)F (c) −H(bc) +G(b)H(c).

It follows from the above-mentioned equation that ∆(e)
[

F (bc) − F (b)F (c)
]

= 0 if and only if H is an
(H,F,G,H)-derivation. It is clear that if F is a homomorphism, then H is an (H,F,G,H)-derivation. �
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Let A be a complex algebra. Recall that an involution over A is a map ∗ : A → A satisfying the
following conditions for all a, b ∈ A and all λ ∈ C:
(i) (a∗)∗ = a,
(ii) (ab)∗ = b∗a∗,
(iii) (a+ b)∗ = a∗ + b∗,
(iv) (λa)∗ = λa∗.
An algebra A equipped with an involution ∗ is called an involutive algebra or ∗-algebra and is denoted,
as an ordered pair, by (A, ∗). Let (A, ∗) be an involutive algebra. We define a mapping T ∗ : A → A by
T ∗(a) = (T (a∗))∗ for all a ∈ A. A mapping T : A → A is called an involution-preserving map or a ∗-map
if T = T ∗.

Proposition 2.5. Let A be an ∗-algebra and let ∆ be an (E,F, F,H)-derivation such that F is an
involution-preserving map. Then there exist the ∗-mappings ∆1 and ∆2 such that ∆ = ∆1 + i∆2 and
further ∆1 is an (α, F, F, α∗)-derivation and ∆2 is a (β, F, F, β∗)-derivation.

Proof. Considering ∆1 = ∆+∆∗

2 and ∆2 = i
(

∆∗

−∆
2

)

, it is observed that ∆∗

1 = ∆1, ∆∗

2 = ∆2 and

∆ = ∆1 + i∆2. We have the following expressions:

∆1(ab) =
E(a)F (b) + F (a)H(b) +

(

E(b∗)F (a∗) + F (b∗)H(a∗)
)∗

2

=
E(a)F (b) + F (a)H(b) + F (a)E∗(b) +H∗(a)F (b)

2
= α(a)F (b) + F (a)α∗(b),

where α = E+H∗

2 . It means that ∆1 is an (α, F, F, α∗)-derivation. Similarly, we obtain that ∆2(ab) =

i
[(

H∗(a)−E(a)
2

)

F (b) + F (a)
(

E∗(b)−H(b)
2

) ]

for all a, b ∈ A. Considering β = i
(

H∗

−E
2

)

, we see that

∆2(ab) = β(a)F (b) + F (a)β∗(b) for all a, b ∈ A. This means that ∆2 is a (β, F, F, β∗)-derivation.
Thereby, the proof is complete. �

Let T, S : A → A be two continuous linear mappings. For any complex number z, we define a linear

mapping E(z,T,S) : A → A by E(z,T,S)(a) =
∑

∞

n=0
znT n(a)

n! in which T 0 = S. Recall that a triplet of linear
mappings (Ω, G, F ) of A is called a ternary homomorphism if Ω(ab) = G(a)F (b) holds for all a, b ∈ A.

We are now in a position to establish our main result about the image of strongly generalized deriva-
tions of order one.

Theorem 2.6. Let A be a unital Banach algebra and let ∆ : A → A be a continuous (E,F,G,H)-
derivation such that E,F,G and H are continuous, G2 = G, F 2 = F , GE = EG = E and FH = HF =
H. Let (Ω, G, F ) : A → A be a ternary homomorphism, i.e. Ω(ab) = G(a)F (b) for all a, b ∈ A. Suppose
that ϕ

(

E(z,∆,Ω)(e)
)

6= 0 for all z ∈ C and all ϕ ∈ ΦA.
(i) If ϕ(E(z,H,F )(e)) 6= 0 for all z ∈ C and all ϕ ∈ ΦA, then H(A) ⊆

⋂

ϕ∈ΦA
ker(ϕ). In particular, if A

is a commutative Banach algebra, then H(A) ⊆ rad(A).
(ii) If ϕ(E(z,E,G)(e)) 6= 0 for all z ∈ C and all ϕ ∈ ΦA, then E(A) ⊆

⋂

ϕ∈ΦA
ker(ϕ). In particular, if A

is a commutative Banach algebra, then E(A) ⊆ rad(A).
(iii) If both ϕ(E(z,H,F )(e)) and ϕ(E(z,E,G)(e)) are nonzero for all z ∈ C and all ϕ ∈ ΦA, then ∆(A) ⊆
⋂

ϕ∈ΦA
ker(ϕ). In particular, if A is a commutative Banach algebra, then ∆(A) ⊆ rad(A).

Proof. (i) Considering the above-mentioned conditions for the mappings E,F,G and H , we get that

∆n(ab) =
n
∑

k=0

(n

k

)

En−k(a)Hk(b),
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in which E0 = G, H0 = F and ∆0(ab) = Ω(ab) = G(a)F (b) for all a, b ∈ A. Then we have the following
expressions:

E(z,∆,Ω)(ab) =

∞
∑

n=0

zn∆n(ab)

n!

=

∞
∑

n=0

zn

n!

n
∑

k=0

(n

k

)

En−k(a)Hk(b)

=

∞
∑

n=0

n
∑

k=0

zn−kEn−k(a)

(n− k)!

zkHk(b)

k!

= E(z,E,G)(a)E(z,H,F )(b),

which means that

E(z,∆,Ω)(ab) = E(z,E,G)(a)E(z,H,F )(b), (z ∈ C, a, b,∈ A).

Let ϕ be an arbitrary character on A. For z ∈ C, we define the mappings ψz , θz, φz : A → C by

ψz(a) = ϕE(z,∆,Ω)(a) = ϕ

(

Ω(a) + z∆(a) +
z2∆2(a)

2!
+
z3∆3(a)

3!
+ ...

)

,

θz(a) = ϕE(z,E,G)(a) = ϕ

(

G(a) + zE(a) +
z2E2(a)

2!
+
z3E3(a)

3!
+ ...

)

,

φz(a) = ϕE(z,H,F )(a) = ϕ

(

F (a) + zH(a) +
z2H2(a)

2!
+
z3H3(a)

3!
+ ...

)

.

Thus, we have

ψz(ab) = ϕE(z,∆,Ω)(ab) = ϕ
(

E(z,E,G)(a)E(z,H,F )(b)
)

= ϕ
(

E(z,E,G)(a)
)

ϕ
(

E(z,H,F )(b)
)

= θz(a)φz(b),

for all a, b ∈ A. Considering M = 1 + |φz(e)|, for any z ∈ C, we define a linear mapping λz : A → A by

λz(a) = φz(a)
M

. Now, we show that ‖λz‖ ≤ 1 for all z ∈ C. To obtain a contradiction, suppose that there

exists a0 ∈ A such that ‖a0‖ < 1 and |λz(a0)| > 1. Letting x = φz(e)a0

Mλz(a0) , we see that λz(x) = φz(e)
M

and

‖x‖ < 1. By [5, Theorem 1.4.2(i)], there exists a1 ∈ A with a1(e − x) = e. We have

ψz(e)

M
= θz(a1)

φz(e − x)

M
= θz(a1)(

φz(e)

M
−
φz(x)

M
)

= θz(a1)(
φz(e)

M
− λz(x)) = θz(a1)(

φz(e)

M
−
φz(e)

M
)

= 0,

which means that ψz(e) = 0. The required contradiction is obtained, since we are assuming ψz(e) =
ϕE(z,∆,Ω)(e) 6= 0 for all z ∈ C and all ϕ ∈ ΦA. Hence, ‖λz‖ ≤ 1 for all z ∈ C. For an arbitrary element

a ∈ A, we define a mapping Λa : C → C by Λa(z) = λz(a) = φz(a)
M

=
ϕE(z,H,F )(a)

M
. It is clear that

|Λa(z)| ≤ ‖a‖ and this means that Λa is a bounded and analytical function. Using Liouville’s theorem,
we get that Λa is a constant function. So there exists λ0 ∈ C such that Λa(z) = λ0 for all z ∈ C, which

means that ϕ
(

F (a) + zH(a) + z2H2(a)
2! + z3H3(a)

3! + ...
)

= λ0M for all z ∈ C. Therefore, we have

0 =
d

dz

(

ϕ

(

F (a) + zH(a) +
z2H2(a)

2!
+
z3H3(a)

3!
+ ...

))

∣

∣

∣

z=0
= ϕ (H(a)) ,
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which means that H(a) ∈ ker(ϕ). Since we are assuming that ϕ and a are arbitrary, we have H(A) ⊆
⋂

ϕ∈ΦA
ker(ϕ). If A is a commutative algebra,

⋂

ϕ∈ΦA
ker(ϕ) = rad(A) (see [4]). Consequently, H(A) ⊆

rad(A), as desired.
Similarly, we can prove (ii) and (iii) and we leave them to the interested reader. �

In the following, there are some immediate consequences of Theorem 2.6.

Corollary 2.7 (Singer-Wermer theorem). Let A be a commutative Banach algebra and let d : A → A be
a continuous derivation. Then d(A) ⊆ rad(A).

Corollary 2.8. Let A be a unital Banach algebra.
Let σ, τ : A → A be two continuous linear mappings such that τ (ab) = τ (a)σ(b) for all a, b ∈ A and
let f : A → A be a continuous generalized (σ, τ)-derivation associated with a continuous linear mapping
d : A → A such that τ2 = τ , σ2 = σ, τf = fτ = f and σd = dσ = d. If both ϕ(E(z,f,τ)(e)) and
ϕ(E(z,d,σ)(e)) are nonzero for all z ∈ C and all ϕ ∈ ΦA, then f(A), d(A) ⊆

⋂

ϕ∈ΦA
ker(ϕ). In particular,

if A is a commutative Banach algebra, then f(A), d(A) ⊆ rad(A).

Here, we give an example of an (E,F,G,H)-derivation such that G2 = G, F 2 = F , GE = EG = E

and FH = HF = H .

Example 2.9. Let A be an algebra, and let

A =

{





0 a b

0 0 c

0 0 0



 : a, b, c ∈ A

}

Clearly, A is an algebra. Define the linear mappings ∆, E, F,G,H : A → A by

∆

(





0 a b

0 0 c

0 0 0





)

=





0 a b

0 0 0
0 0 0



 ,

E

(





0 a b

0 0 c

0 0 0





)

=





0 a 0
0 0 2c
0 0 0



 ,

F

(





0 a b

0 0 c

0 0 0





)

=





0 a c

0 0 c

0 0 0



 ,

G

(





0 a b

0 0 c

0 0 0





)

=





0 a 0
0 0 c

0 0 0



 ,

H

(





0 a b

0 0 c

0 0 0





)

=





0 a 0
0 0 0
0 0 0



 .

It is easy to see that

∆(AB) = E(A)F (B) +G(A)H(B), A,B ∈ A,

which means that ∆ is a (E,F,G,H)-derivation on A and also one can easily see that G2 = G, F 2 = F ,
GE = EG = E and FH = HF = H.

Now, we are going to present some results about the image of (δ, ε)-double derivations. Mirzavaziri
and Omidvar Tehrani [17] introduced the concept of a (δ, ε)-double derivation as follows:
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Definition 2.10. Let A be an algebra and let δ, ε : A → A be linear mappings. A linear mapping
d : A → A is called a (δ, ε)-double derivation if

d(ab) = d(a)b + ad(b) + δ(a)ε(b) + ε(a)δ(b),

for all a, b ∈ A. By a δ-double derivation we mean a (δ, δ)-double derivation.

Considering ε = I, the identity mapping on A, we have d(ab) = d(a)b + ad(b) + δ(a)b + aδ(b) for all
a, b ∈ A. Considering g = d+ δ, we have

d(ab) = g(a)b + ag(b), a, b ∈ A.

Here, we provide a result on the image of a (δ, I)-double derivation as a strongly generalized derivation
of order 2 in which E1 = H1 = d, F1 = G1 = F2 = G2 = I and E2 = H2 = δ.

Corollary 2.11. Let A be a unital Banach algebra, let δ : A → A be a continuous linear mapping, and
let d : A → A be a continuous (δ, I)− double derivation. Suppose that ϕ(E(z,d,I)(e)) 6= 0 for all z ∈ C

and all ϕ ∈ ΦA. If ϕ(E(z,g,I)(e)) 6= 0, where g = δ + d, then d(A), δ(A) ⊆
⋂

ϕ∈ΦA
ker(ϕ). In particular,

if A is a commutative Banach algebra, then d(A), δ(A) ⊆ rad(A).

Proof. According to the above discussion, d(ab) = g(a)b + ag(b) for all a, b ∈ A, which means that d is
a (g, I, I, g)-derivation. It follows from Theorem 2.6 that d(A), g(A) ⊆

⋂

ϕ∈ΦA
ker(ϕ). So we can deduce

that δ(A) ⊆
⋂

ϕ∈ΦA
ker(ϕ) as well. Clearly, if A is commutative, then we get that d(A), δ(A) ⊆ rad(A).

�

In the following theorem, we obtain a result about the image of a (∆, F,G,∆)-derivation without
assuming the continuity of ∆. Let A and B be two algebras and let T : A → B be a mapping. We say
that T is symmetric whenever T (ab) = T (ba) for all a, b ∈ A. Recall that an element x in a normed

algebra Z is called quasi-nilpotent if limn→+∞ ‖xn‖
1
n = 0. The set of all quasi-nilpotent elements of Z is

denoted by Q(Z). To prove the next theorem, we use some ideas from [8].

Theorem 2.12. Let A be a Banach ∗-algebra and let ∆ : A → A be an involution-preserving (∆, F,G,∆)-
derivation, i.e. ∆, F and G are involution-preserving maps. If F +G

2 is a nonzero, continuous symmetric

homomorphism of A and (F +G
2 )2 = F +G

2 , then
(

F +G
2

)

∆
(

F +G
2

)

(A) ⊆ Q(A).

Proof. We have

∆(ab) = ∆(a)F (b) +G(a)∆(b), (a, b ∈ A). (2.2)

Also, we have the following statements:

∆(ab) = (∆(ab)∗)∗ =
(

∆(b∗)F (a∗) +G(b∗)∆(a∗)
)∗

= F (a)∆(b) + ∆(a)G(b),

which means that

∆(ab) = F (a)∆(b) + ∆(a)G(b), (a, b ∈ A). (2.3)

Adding (2.2) and (2.3), we arrive at

2∆(ab) = ∆(a)(F (b) +G(b)) + (F (a) +G(a))∆(b), (a, b ∈ A). (2.4)

Considering σ = F +G
2 in (2.4), we get that

∆(ab) = ∆(a)σ(b) + σ(a)∆(b), (a, b ∈ A). (2.5)



About the Image of Strongly Generalized Derivations of Order n 9

This means that ∆ is a (∆, σ, σ,∆)-derivation on A. Since we are assuming that σ is a homomorphism
and σ2 = σ, the linear mapping Ψ = σ∆σ : A → A satisfies σΨ = Ψσ = Ψ and also we have

Ψ(ab) = σ∆σ(ab) = σ∆(σ(a)σ(b))

= σ(∆σ(a)σ(b) + σ(a)∆σ(b))

= Ψ(a)σ(b) + σ(a)Ψ(b)

for all a, b ∈ A. Now, we define another multiplication on A as follows: a⊛b = σ(ab) for all a, b ∈ A. This
new algebra is denoted by A⊛. Since σ is nonzero, continuous and σ2 = σ, it is observed that ‖σ‖ ≥ 1.
We define the following new norm on A⊛:

‖a‖σ = ‖σ‖‖a‖.

It is clear that (A⊛, ‖.‖σ) is a Banach algebra. Ψ is a derivation on the Banach algebra (A⊛, ‖.‖σ), since

Ψ(a⊛ b) = Ψ(σ(a)σ(b)) = Ψ(σ(a))σ(b) + σ(a)Ψ(σ(b))

= σ(Ψ(a))σ(b) + σ(a)σ(Ψ(b))

= σ(Ψ(a)b) + σ(aΨ(b))

= Ψ(a) ⊛ b+ a⊛ Ψ(b).

We are assuming that σ is a symmetric homomorphism on A, that is, σ(ab) = σ(ba) (a, b ∈ A), and so,
a ⊛ b = b ⊛ a. This means that A⊛ is a commutative Banach algebra. Hence, Ψ is a derivation on the
commutative Banach algebra A⊛ and it follows from [19, Theorem 4.4] that Ψ(A) = Ψ(A⊛) ⊆ rad(A⊛).
According to [4, Proposition 1.5.32(ii)], rad(A⊛) ⊆ Q(A⊛) and so Ψ(A) ⊆ Q(A⊛). It is easy to see that
σ(a) ∈ Q(A) if and only if a ∈ Q(A⊛). So Ψ(A) = σΨ(A) ⊆ Q(A), which means that σ∆σ(A) ⊆ Q(A),
as desired. �

Corollary 2.13. Let A be a unital, commutative Banach algebra and let ∆ : A → A be a (∆, F,G,∆)-
derivation. If F +G

2 is a nonzero, continuous homomorphism of A and (F +G
2 )2 = F +G

2 , then
(

F +G
2

)

∆
(

F +G
2

)

(A) ⊆ rad(A). In particular, if ∆(A) ⊆
(

F +G
2

)

∆
(

F +G
2

)

(A), then ∆(A) ⊆ rad(A).

Proof. Since A is a commutative algebra, one can easily get that ∆(ab) = ∆(a)σ(b) + σ(a)∆(b) for
all a, b ∈ A, where σ = F +G

2 . It follows from Theorem 2.12 that σ∆σ(A) ⊆ Q(A). Since A is a
unital, commutative Banach algebra, Q(A) = rad(A) (see [5, Proposition 2.2.3(iii)]) and consequently,
σ∆σ(A) ⊆ rad(A). �
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