

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 on line SPM: www.spm.uem.br/bspm (3s.) **v. 2024 (42)** : 1–5. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.63934

Preservation Theorems of Weakly $\mu \mathcal{H}$ -Countably Compact Spaces

Abdo Qahis and Takashi Noiri

ABSTRACT: In this paper we study the effect of functions on weakly μ H-countably compact spaces in generalized topology. The main result is that the $\theta(\mu, \nu)$ -continuous image of a weakly μ H-countably compact (resp. weakly μ -countably compact) space is weakly $\nu f(\mathcal{H})$ -countably compact (resp. weakly ν -countably compact).

Key Words: Generalized topology, hereditary class \mathcal{H} , weakly μ -countably compact, weakly $\mu\mathcal{H}$ countably compact, $\theta(\mu, \nu)$ -continuous.

Contents

1 Introduction and Preliminaries

1 2

2 Weakly $\mu \mathcal{H}$ -Countably Compact Spaces

1. Introduction and Preliminaries

A generalized topology (breifly GT) [3]) μ on a nonempty set X is a subset of the power set expX such that $\emptyset \in \mu$ and an arbitrary union of elements of μ is belongs to μ . We call the pair (X, μ) a generalized topological space (briefly GTS) on X. The elements of μ are called μ -open sets and their complements are called μ -closed sets. A GTS (X, μ) is called a strong GTS [4] if $X \in \mu$. If A is a subset of a GTS (X, μ) , then the μ -closure of A, $c_{\mu}(A)$, is the intersection of all μ -closed sets containing A and the μ -interior of A, $i_{\mu}(A)$, is the union of all μ -open sets contained in A (see [3,4]). Observe that i_{μ} and c_{μ} are monotonic [6], i.e. if $A \subset B \subset X$, then $c_{\mu}(A) \subseteq c_{\mu}(B)$, $i_{\mu}(A) \subseteq i_{\mu}(B)$, and idempotent [6], i.e. for any $A \subset X$ then $c_{\mu}(c_{\mu}(A)) = c_{\mu}(A)$ and $i_{\mu}(i_{\mu}(A)) = i_{\mu}(A)$, c_{μ} is enlarging [6], i.e. if $A \subset X$, then $A \subset c_{\mu}(A)$, i_{μ} is restricting [6], i.e. if $A \subset X$, then $i_{\mu}(A) \subset A$. A subset A of a GTS (X,μ) is μ -open if and only if $A = i_{\mu}(A)$, and A is μ -closed if and only if $A = c_{\mu}(A)$, $c_{\mu}(A)$ is the smallest μ -closed set containing A, $i_{\mu}(A)$ is the largest μ -open set contained in A. It is also well known form [3,4] that let μ be a GT on X, $A \subseteq X$ and $x \in X$, then $x \in c_{\mu}(A)$ if and only if $M \cap A \neq \emptyset$ for all $M \in \mu$ and $x \in M$. A strong GTS (X,μ) is a μ -compact space if every μ -open cover of X has a finite subcover [16], more generalizations can be seen in [7,1,13], where some covering spaces are studied in the generalized topology with respect to a hereditary class \mathcal{H} . A hereditary class \mathcal{H} is a nonempty subset of the power set expX that satisfies the following property: if $A \in \mathcal{H}$ and $B \subset A$, then $B \in \mathcal{H}$, see [5]. We call (X, μ, \mathcal{H}) a hereditary generalized topological space and briefly we denote it by HGTS. The purpose of this paper is to study the effect of some special types of functions on weakly μ -countably compact and weakly μ -countably compact spaces. The main result is that the image of a weakly $\mu \mathcal{H}$ -countably compact (resp. weakly μ -countably compact) space under a $\theta(\mu, \nu)$ -continuous function is weakly $\nu f(\mathcal{H})$ -countably compact (resp. weakly ν -countably compact).

Definition 1.1. [1] A subset A of a GTS (X, μ) is said to be μ -countably compact if for every countable cover $\{V_{\lambda} : \lambda \in \Delta\}$ of A by μ -open sets of X, there exists a finite subset subset Δ_0 of Δ such that $A \subseteq \bigcup \{V_{\lambda} : \lambda \in \Delta_0\}$. If A = X, then a strong GTS (X, μ) is called a μ -countably compact space.

Definition 1.2. [1] A subset A of a HGTS (X, μ, \mathcal{H}) is said to be $\mu\mathcal{H}$ -countably compact if for every countable cover $\{V_{\lambda} : \lambda \in \Delta\}$ of A by μ -open sets of X, there exists a finite subset Δ_0 of Δ such that $A \setminus \bigcup \{V_{\lambda} : \lambda \in \Delta_0\} \in \mathcal{H}$. If A = X, then a strong HGTS (X, μ, \mathcal{H}) is called a $\mu\mathcal{H}$ -countably compact space.

Definition 1.3. Let (X, μ) and (Y, ν) be two GTSs, then a function $f : (X, \mu) \to (Y, \nu)$ is said to be:

²⁰¹⁰ Mathematics Subject Classification: 54A05, 54C08.

Submitted June 11, 2022. Published August 31, 2022

A. Qahis and T. Noiri

- 1. (μ, ν) -continuous [3] if $U \in \nu$ implies $f^{-1}(U) \in \mu$;
- 2. almost (μ, ν) -continuous [8] if for each $x \in X$ and each ν -open set V containing f(x), there exists a μ -open set U containing x such that $f(U) \subseteq i_{\nu}(c_{\nu}(V))$;
- 3. (μ, ν) -precontinuous [9] if $f^{-1}(V) \subseteq i_{\mu}(c_{\mu}(f^{-1}(V)))$ for every ν -open set V in Y;
- 4. $\delta(\mu, \nu)$ -continuous [11] (resp. almost $\delta(\mu, \nu)$ -continuous) if for each $x \in X$ and each ν -open set V of Y containing f(x), there exists a μ -open set U of X containing x such that $f(i_{\mu}(c_{\mu}(U))) \subseteq i_{\nu}(c_{\nu}(V))$ (resp. $f(i_{\mu}(c_{\mu}(U))) \subseteq c_{\nu}(V)$);
- 5. $\theta(\mu, \nu)$ -continuous [3] (resp. strongly $\theta(\mu, \nu)$ -continuous [10]) if for every $x \in X$ and every ν open subset V of Y containing f(x), there exists a μ -open subset U in X containing x such that $f(c_{\mu}(U)) \subseteq c_{\nu}(V)$ (resp. $f(c_{\mu}(U)) \subseteq V$).
- 6. contra- (μ, ν) -continuous [12] if $f^{-1}(V)$ is μ -closed in X for every ν -open set V in Y.

2. Weakly $\mu \mathcal{H}$ -Countably Compact Spaces

Most of the results in this section are proved with respect to weakly μ H-countably compact spaces. By taking $\mathcal{H} = \{\emptyset\}$, we get directly the results for weakly μ -countably compact spaces.

Definition 2.1. [15] A subset A of a GTS (X, μ) is said to be weakly μ -countably compact if for every countable cover $\{V_{\lambda} : \lambda \in \Delta\}$ of A by μ -open sets of X, there exists a finite subset subset Δ_0 of Δ such that $A \subseteq \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\}$. If A = X, then (X, μ) is called a weakly μ -countably compact space.

Definition 2.2. [15] A subset A of a HGTS (X, μ, \mathcal{H}) is said to be weakly $\mu\mathcal{H}$ -countably compact if for every countable cover $\{V_{\lambda} : \lambda \in \Delta\}$ of A by μ -open sets of X, there exists a finite subset subset Δ_0 of Δ such that $A \setminus \bigcup \{c_{\mu}(V_{\lambda}) : \lambda \in \Delta_0\} \in \mathcal{H}$. If A = X, then (X, μ, \mathcal{H}) is called a weakly $\mu\mathcal{H}$ -countably compact space.

Lemma 2.3. [7,2] Let $f: X \to Y$ be a function.

- 1. If \mathcal{H} is a hereditary class on X, then $f(\mathcal{H})$ is a hereditary class on Y.
- 2. If \mathcal{H} is a hereditary class on Y, then $f^{-1}(\mathcal{H})$ is a hereditary class on X.

Lemma 2.4. Let X be an arbitrary set, (Y, ν) a GTS, and $f : X \to (Y, \nu)$ be a function. Then $f^{-1}(\nu)$ is a GTS on X induced by f and ν .

Proof. Since $\emptyset \in \nu$, then $\emptyset \in f^{-1}(\nu)$. Let $\{G_{\lambda} : \lambda \in \Delta\}$ be a collection of subsets of $f^{-1}(\nu)$. Since $f(\bigcup_{\lambda \in \Delta} G_{\lambda}) = \bigcup_{\lambda \in \Delta} f(G_{\lambda})$ and ν is a GTS on Y, then $\bigcup_{\lambda \in \Delta} f(G_{\lambda}) \in \nu$. This means that $\bigcup_{\lambda \in \Delta} G_{\lambda} \in f^{-1}(\nu)$ and this completes the proof.

Proposition 2.5. Let $f : (X, \mu) \to (Y, \nu, \mathfrak{H})$ be a surjective function, $\mu = f^{-1}(\nu)$ and (Y, ν, \mathfrak{H}) be $\nu\mathfrak{H}$ -countably compact. Then (X, μ) is $\mu f^{-1}(\mathfrak{H})$ -countably compact.

Proof. From Lemma 2.2, we have $\mu = f^{-1}(\nu)$ is a GTS on X induced by f and ν and hence let $\{f^{-1}(V_{\lambda}) : \lambda \in \Delta\}$ be a countable μ -covering of X. Then $\{V_{\lambda} : \lambda \in \Delta\}$ is a countable ν -open cover of Y. From assumption, there is a finite subset Δ_0 of Δ such that $Y \setminus \bigcup \{V_{\lambda} : \lambda \in \Delta_0\} \in \mathcal{H}$ and hence $f^{-1}(Y \setminus \bigcup \{V_{\lambda} : \lambda \in \Delta_0\}) = X \setminus \bigcup \{f^{-1}(V_{\lambda}) : \lambda \in \Delta_0\} \in f^{-1}(\mathcal{H})$. Thus, (X, μ) is $\mu f^{-1}(\mathcal{H})$ -countably compact. \Box

Proposition 2.6. Let (X, μ) and (Y, ν) be strong GTSs, $f : (X, \mu) \to (Y, \nu)$ be a surjective function, $\mu = f^{-1}(\nu)$ and (Y, ν) be ν -countably compact. Then (X, μ) is μ -countably compact.

The main result of this paper is stated and proved in the following.

Theorem 2.7. Let $f : (X, \mu, \mathcal{H}) \to (Y, \nu, f(\mathcal{H}))$ be a $\theta(\mu, \nu)$ -continuous function. If A is a weakly $\mu\mathcal{H}$ -countably compact subset of X, then f(A) is weakly $\nu f(\mathcal{H})$ -countably compact.

Proof. Let $\mathcal{V} = \{V_{\lambda} : \lambda \in \Delta\}$ be a countable ν -open cover of f(A). Let $x \in A$ and $V_{\lambda(x)}$ be a ν open set in Y such that $f(x) \in V_{\lambda(x)}$. Since f is $\theta(\mu, \nu)$ -continuous, there exists a μ -open set $U_{\lambda(x)}$ of X containing x such that $f(c_{\mu}(U_{\lambda(x)})) \subseteq c_{\nu}(V_{\lambda(x)})$. Since the collection $\{U_{\lambda(x)} : \lambda(x) \in \Delta\}$ is a
countable μ -open cover of A and A is weakly μ H-countably compact, there exists a finite subset Δ_0 of Δ such that $A \setminus \bigcup \{c_{\mu}(U_{\lambda(x)}) : \lambda(x) \in \Delta_0\} = H_0$, where $H_0 \in \mathcal{H}$. Therefore, we have $f(A) \subseteq$ $f(\cup_{\lambda(x)\in\Delta_0}c_{\mu}(U_{\lambda(x)})) \cup f(H_0) = [\cup_{\lambda(x)\in\Delta_0}f(c_{\mu}(U_{\lambda(x)}))] \cup f(H_0)$. Since, $f(c_{\mu}(U_{\lambda(x)})) \subseteq c_{\nu}(V_{\lambda(x)})$, then $f(A) \subseteq (\cup_{\lambda(x)\in\Delta_0}c_{\nu}(V_{\lambda(x)})) \cup f(H_0)$. Therefore $f(A) \setminus \bigcup_{\lambda(x)\in\Delta_0}c_{\nu}(V_{\lambda(x)}) \subseteq f(H_0) \in f(\mathcal{H})$. Hence f(A)is weakly $\nu f(\mathcal{H})$ -countably compact.

Corollary 2.8. Let $f : (X, \mu, \mathcal{H}) \to (Y, \nu, f(\mathcal{H}))$ be a $\theta(\mu, \nu)$ -continuous surjection. If (X, μ, \mathcal{H}) is weakly $\mu\mathcal{H}$ -countably compact, then $(Y, \nu, f(\mathcal{H}))$ weakly $\nu f(\mathcal{H})$ -countably compact.

Theorem 2.9. Let $f : (X, \mu) \to (Y, \nu)$ be a $\theta(\mu, \nu)$ -continuous function. If A is a weakly μ -countably compact subset of X, then f(A) is weakly ν -countably compact.

Corollary 2.10. Let $f : (X, \mu) \to (Y, \nu)$ be a $\theta(\mu, \nu)$ -continuous surjection. If (X, μ) is weakly μ -countably compact, then (Y, ν) weakly ν -countably compact.

Lemma 2.11. [14] If $f: (X, \mu) \to (Y, \nu)$ is almost (μ, ν) -continuous, then f is $\theta(\mu, \nu)$ -continuous.

By Corollary 2.1A and Lemma 2.3, we obtain the following corollaries.

Corollary 2.12. Let $f : (X, \mu, \mathcal{H}) \to (Y, \nu, f(\mathcal{H}))$ be an almost (μ, ν) -continuous surjection. If (X, μ, \mathcal{H}) is weakly $\mu \mathcal{H}$ -countably compact, then $(Y, \nu, f(\mathcal{H}))$ is weakly $\nu f(\mathcal{H})$ -countably compact.

Corollary 2.13. Let $f : (X, \mu) \to (Y, \nu)$ be an almost (μ, ν) -continuous surjection. If (X, μ) is weakly μ -countably compact, then Y is weakly ν -countably compact.

Every (μ, ν) -continuous function is almost (μ, ν) -continuous and by Corollaries 2.2B and 2.2C, we obtain the following corollary.

Corollary 2.14. (1) Weakly μ H-countably compact property is a GT property. (2) Weakly μ -countably compact property is a GT property.

Proposition 2.15. Let $f : (X, \mu, \mathcal{H}) \to (Y, \nu, f(\mathcal{H}))$ be a strongly $\theta(\mu, \nu)$ -continuous function. If A is a weakly $\mu\mathcal{H}$ -countably compact subset of X, then f(A) is $\nu f(\mathcal{H})$ -countably compact.

Proof. Let $\mathcal{V} = \{V_{\lambda} : \lambda \in \Delta\}$ be a countable cover of f(A) by ν -open subsets of Y. For each $x \in A$, there exists $\lambda(x) \in \Delta$ such that $f(x) \in V_{\lambda(x)}$. Since f is strongly $\theta(\mu, \nu)$ -continuous, there exists a μ -open set $U_{\lambda(x)}$ of X containing x such that $f(c_{\mu}(U_{\lambda(x)})) \subseteq V_{\lambda(x)}$. Since $\{U_{\lambda(x)} : \lambda(x) \in \Delta\}$ is a countable μ -open cover of A and A is weakly μ H-countably compact, there exists a finite subset Δ_0 of Δ such that $A \setminus \bigcup \{c_{\mu}(U_{\lambda(x)}) : \lambda(x) \in \Delta_0\} = H_0$, where $H_0 \in \mathcal{H}$. Therefore, we have $f(A) \subseteq$ $f(\cup_{\lambda(x)\in\Delta_0} c_{\mu}(U_{\lambda(x)})) \cup f(H_0) = [\cup_{\lambda(x)\in\Delta_0} f(c_{\mu}(U_{\lambda(x)}))] \cup f(H_0)$. Since $f(c_{\mu}(U_{\lambda(x)})) \subseteq V_{\lambda(x)}$, then $f(A) \subseteq (\cup_{\lambda(x)\in\Delta_0} V_{\lambda(x)}) \cup f(H_0)$ and hence $f(A) \setminus \bigcup_{\lambda(x)\in\Delta_0} V_{\lambda(x)} \subseteq f(H_0) \in f(\mathcal{H})$. That means f(A) is $\nu f(\mathcal{H})$ -countably compact.

Corollary 2.16. Let $f : (X, \mu, \mathcal{H}) \to (Y, \nu, f(\mathcal{H}))$ be a strongly $\theta(\mu, \nu)$ -continuous surjection. If (X, μ, \mathcal{H}) is weakly $\mu \mathcal{H}$ -countably compact, then $(Y, \nu, f(\mathcal{H}))$ is $\nu f(\mathcal{H})$ -countably compact.

Proposition 2.17. Let $f : (X, \mu) \to (Y, \nu)$ be a strongly $\theta(\mu, \nu)$ -continuous function. If A is a weakly μ -countably compact subset of X, then f(A) is ν -countably compact.

Corollary 2.18. Let (Y,ν) be a strong GTS and $f : (X,\mu) \to (Y,\nu)$ be a strongly $\theta(\mu,\nu)$ -continuous surjection. If (X,μ) is weakly μ -countably compact, then (Y,ν) is ν -countably compact.

Theorem 2.19. Let $f : (X, \mu, \mathcal{H}) \to (Y, \nu, f(\mathcal{H}))$ be an almost $\delta(\mu, \nu)$ -continuous function. If for every countable μ -open cover $\{U_{\lambda} : \lambda \in \Delta\}$ of $A \subseteq X$, there is a finite subset Δ_0 of Δ such that $A \setminus \bigcup \{i_{\mu}(c_{\mu}(U_{\lambda(x)})) : \lambda(x) \in \Delta_0\} \in \mathcal{H}$, then f(A) is weakly $\nu f(\mathcal{H})$ -countably compact. Proof. Let $\mathcal{V} = \{V_{\lambda} : \lambda \in \Delta\}$ be a countable cover of f(A) by ν -open subsets of Y. For each $x \in A$, there exists $\lambda(x) \in \Delta$ such that $f(x) \in V_{\lambda(x)}$. Since f is almost $\delta(\mu, \nu)$ -continuous, there exists a μ -open set $U_{\lambda(x)}$ of X containing x such $f(i_{\mu}(c(f(U_{\lambda(x)})))) \subseteq c_{\mu}(V_{\lambda(x)})$. So $\{U_{\lambda(x)} : \lambda(x) \in \Delta\}$ is a countable μ -open cover of A. By assumption, there is a finite subset Δ_0 of Δ such that $A \setminus \bigcup \{i_{\mu}(c_{\mu}(U_{\lambda(x)})) : \lambda(x) \in \Delta_0\} = H_0$, where $H_0 \in \mathcal{H}$ and hence $f(A) \subseteq f(\bigcup_{\lambda(x) \in \Delta_0} i_{\mu}(c_{\mu}(U_{\lambda(x)}))) \cup f(H_0) = [\bigcup_{\lambda(x) \in \Delta_0} f(i_{\mu}(c_{\mu}(U_{\lambda(x)})))] \cup f(H_0)$. Since $f(i_{\mu}(c(f(U_{\lambda(x)})))) \subseteq c_{\mu}(V_{\lambda(x)})$, then $f(A) \subseteq (\bigcup_{\lambda(x) \in \Delta_0} c_{\mu}(V_{\lambda(x)})) \cup f(H_0)$. Therefore, $f(A) \setminus \bigcup_{\lambda(x) \in \Delta_0} c_{\mu}(V_{\lambda(x)}) \subseteq f(H_0) \in f(\mathcal{H})$. This shows that f(A) is weakly $\nu f(\mathcal{H})$ -countably compact. \Box

Corollary 2.20. Let $f : (X, \mu, \mathfrak{H}) \to (Y, \nu, f(\mathfrak{H}))$ be an almost $\delta(\mu, \nu)$ -continuous surjection. If for every countable μ -open cover $\{U_{\lambda} : \lambda \in \Delta\}$ of X, there is a finite subset Δ_0 of Δ such that $X \setminus \bigcup \{i_{\mu}(c_{\mu}(U_{\lambda(x)})) : \lambda(x) \in \Delta_0\} \in \mathfrak{H}$, then $(Y, \nu, f(\mathfrak{H}))$ is weakly $\nu f(\mathfrak{H})$ -countably compact.

Theorem 2.21. Let $f : (X, \mu) \to (Y, \nu)$ be an almost $\delta(\mu, \nu)$ -continuous function. If for every countable μ -open cover $\{U_{\lambda} : \lambda \in \Delta\}$ of $A \subseteq X$, there is a finite subset Δ_0 of Δ such that $A \subseteq \bigcup \{i_{\mu}(c_{\mu}(U_{\lambda(x)})) : \lambda(x) \in \Delta_0\}$, then f(A) is weakly ν -countably compact.

Corollary 2.22. Let (X, μ) and (Y, ν) be strong GTSs and $f : (X, \mu) \to (Y, \nu)$ be an almost $\delta(\mu, \nu)$ continuous surjection. If for every countable μ -open cover $\{U_{\lambda} : \lambda \in \Delta\}$ of X, there is a finite subset Δ_0 of Δ such that $X = \bigcup \{i_{\mu}(c_{\mu}(U_{\lambda(x)})) : \lambda(x) \in \Delta_0\}$, then (Y, ν) is weakly ν -countably compact.

Theorem 2.23. Let $f : (X, \mu, \mathcal{H}) \to (Y, \nu, f(\mathcal{H}))$ be a contra (μ, ν) -continuous and (μ, ν) -precontinuous function. If A is a weakly $\mu \mathcal{H}$ -countably compact subset of X, then f(A) is $\nu f(\mathcal{H})$ -countably compact.

Proof. Let $\mathcal{V} = \{V_{\lambda} : \lambda \in \Delta\}$ be a countable cover of f(A) by ν -open sets of Y. For each $x \in A$, there exists $\lambda(x) \in \Delta$ such that $f(x) \in V_{\lambda(x)}$. Since f is contra (μ, ν) -continuous and (μ, ν) -precontinuous, $f^{-1}(V_{\lambda(x)})$ is μ -closed in X and $f^{-1}(V_{\lambda(x)}) \subseteq i_{\mu}(c_{\mu}(f^{-1}(V_{\lambda(x)}))) = i_{\mu}(f^{-1}(V_{\lambda(x)}))$. So $f^{-1}(V_{\lambda(x)}) = i_{\mu}(f^{-1}(V_{\lambda(x)}))$ which means that $f^{-1}(V_{\lambda(x)})$ is μ -clopen. Since the family $\{f^{-1}(V_{\lambda(x)}) : \lambda(x) \in \Delta\}$ is a countable μ -clopen cover of A and A is weakly μ H-countably compact, there is a finite subset Δ_0 of Δ such that $A \setminus \bigcup \{c_{\mu}(f^{-1}(V_{\lambda(x)})) : \lambda(x) \in \Delta_0\} = A \setminus \bigcup \{f^{-1}(V_{\lambda(x)}) : \lambda(x) \in \Delta_0\} = H_0$, where $H_0 \in \mathcal{H}$. Therefore, we have $f(A) \subseteq f(\bigcup_{\lambda(x)\in\Delta_0} f^{-1}(V_{\lambda(x)})) \cup f(H_0) = [\bigcup_{\lambda(x)\in\Delta_0} f(f^{-1}(V_{\lambda(x)}))] \cup f(H_0) \subseteq (\bigcup_{\lambda(x)\in\Delta_0} V_{\lambda(x)}) \cup f(H_0) \in f(\mathcal{H})$. Thus f(A) is $\nu f(\mathcal{H})$ -countably compact.

Corollary 2.24. Let $f : (X, \mu, \mathcal{H}) \to (Y, \nu, f(\mathcal{H}))$ be a contra (μ, ν) -continuous and (μ, ν) -precontinuous surjection. If (X, μ, \mathcal{H}) is weakly $\mu\mathcal{H}$ -countably compact, then $(Y, \nu, f(\mathcal{H}))$ is $\nu f(\mathcal{H})$ -countably compact.

Theorem 2.25. Let $f : (X, \mu) \to (Y, \nu)$ be a contra (μ, ν) -continuous and (μ, ν) -precontinuous function. If A is a weakly μ -countably compact subset of X, then f(A) is ν -countably compact.

Corollary 2.26. Let (Y,ν) be a strong GTS and $f:(X,\mu) \to (Y,\nu)$ be a contra (μ,ν) -continuous and (μ,ν) -precontinuous surjection. If (X,μ) is is weakly μ -countably compact, then (Y,ν) is ν -countably compact.

References

- 1. Z. Altawall
beh and I. Jawarneh, $\mu\mbox{-}countably\ compactness\ and\ \nu\mbox{\mathcal{H}-}countably\ compactness},$ Commun. Korean Math.Soc., 37(1) (2022), 269-277.
- A. Al-Omari and T. Noiri, Generalizations of Lindelöf spaces via hereditary classes, Acta Univ. Sapientiae, Math., 13(2) (2021), 281-291.
- 3. Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96(4) (2002), 351-357.
- 4. Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106(2005), 53-66.
- 5. Á. Császár, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115(1-2) (2007), 29 36.
- 6. Á. Császár, Remarks on quasi topologies, Acta Math. Hungar., 119(1-2) (2008), 197-200.

- C. Carpintero, E. Rosas, M. Salas-Brown and J. Sanabria, μ-Compactness with respect to a hereditary class, Bol. Soc. Paran Mat., 34(2) (2016), 231-236.
- 8. W.K. Min, Almost continuity on generalized topological spaces, Acta Math. Hungar., 125 (2009), 121-125.
- 9. W. K. Min, Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta Math. Hungar., 128 (2010), 299-306.
- W. K. Min and Y. K. Kim, Some strong forms of (g,g)-continuity on generalized topological spaces, Honam Math. J., 33(1) (2011), 85-91.
- 11. W. K. Min, (δ, δ') -continuity on generalized topological spaces, Acta Math. Hungar., 129 (4) (2010), 350–356.
- 12. D. Jayanth, Contra continuity on generalized topological spaces, Acta Math. Hungar., 137(4) (2012), 263-171.
- A. Qahis, H. H. AlJarrah, and T. Noiri, Weakly μ-compact via a hereditary class, Bol. Soc. Paran. Mat., 39(3) (2021), 123-135.
- 14. A. Qahis and T. Noiri, Functions and weakly μH-compact spaces, Eur. J. Pure Appl. Math., 10(3) (2017), 410-418.
- 15. A. Qahis, and T. Noiri, Weakly µ-countably compact and weakly µH-countably compact spaces, submitted.
- 16. M. S. Sarsak, On µ-compact sets in µ-spaces, Questions Answers General Topology, 31 (2013), 49-57.

Abdo Qahis, Department of Mathematics, College of Science and Arts, Najran university, Saudi Arabia. E-mail address: cahis820gmail.com (Corresponding author)

and

Takashi Noiri, 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken 869-5142 Japan. E-mail address: t.noiri@nifty.com