Sign-Changing Radial Solutions for a Semilinear Problem on Exterior Domains With Nonlinear Boundary Conditions

Boubker Azeroual and Abderrahim Zertiti

Abstract

In this paper we are interested to the existence and multiplicity of radial solutions of problem of elliptic equations $\Delta U(x)+\varphi(|x|) f(U)=0$ with a nonlinear boundary conditions on exterior of the unite ball centered at the origin in \mathbb{R}^{N} such that $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$, with any given number of zeros where the nonlinearity $f(u)$ is odd, superlinear for u larger enough and $f<0$ on $(0, \beta), f>0$ on (β, ∞). The function $\varphi>0$ is C^{1} on $[R, \infty)$ where $0<\varphi(|x|) \leq c_{0}|x|^{-\alpha}$ with $\alpha>2(N-1)$ and $N>2$ for large $|x|$.

Key Words: Radial solution, elliptic equations, nonlinear mixed boundary conditions.

Contents

1 Introduction1
2 Preliminaries 2
3 Proof of the main result 7
4 Conclusion 8

1. Introduction

This paper is concerned with the existence of radial solutions for nonlinear boundary-value problem

$$
\begin{gather*}
\Delta U(x)+\varphi(|x|) f(U)=0 \quad \text { in } \Omega \tag{1.1}\\
\frac{\partial U}{\partial n}+U \sigma(U)=0 \quad \text { in } \partial \Omega \tag{1.2}\\
\text { and } \quad \lim _{|x| \rightarrow \infty} U(x)=0 \tag{1.3}
\end{gather*}
$$

Where $U: \mathbb{R} \rightarrow \mathbb{R}$ and Ω is the complement of the ball of the radius $R>0$ centered at the origin with $|x|^{2}=x_{1}^{2}+\cdots+x_{N}^{2}$ is the standard norm of \mathbb{R}^{N} and $\frac{\partial}{\partial n}$ is the outward normal derivate. And we assuming that $\sigma:[0, \infty) \rightarrow(0, \infty)$ is a positive and continuous function.
We furthermore impose that the following assumptions:
(H1) $\quad f: \mathbb{R} \rightarrow \mathbb{R}$ is odd and locally Lipschitzian. Moreover, f has one positive zero β s.t

$$
\left\{\begin{array}{rr}
f<0 \quad \text { on }(0, \beta) \quad, \quad f>0 \quad \text { on }(\beta, \infty), \\
\text { and } & \lim _{s \rightarrow 0} \sup \frac{f(s)}{s}<0 .
\end{array}\right.
$$

(H2)

$$
f(x)=|x|^{q-1} x+g(x) \text { and } \lim _{|x| \rightarrow \infty} \frac{|g(x)|}{|x|^{q}}=0 \quad \text { where } q>1(f \text { is superlinear at infinity })
$$

(H3) The function $\varphi(r)$ is the C^{1} on $[R, \infty)$ s.t

$$
\begin{gather*}
0<\varphi(r) \leq c_{0} r^{-\alpha} \quad \text { for any } r \geq R \tag{1.4}\\
2(N-1)+\frac{r \varphi^{\prime}}{\varphi}<0 \quad \text { for any } r \geq R \tag{1.5}
\end{gather*}
$$

where $\alpha>2(N-1), N>2$ and $c_{0}>0$.

[^0]
Remark 1.1.

(i) From (H2) we see that f is superlinear at infinity, i.e $\lim _{|x| \rightarrow \infty} \frac{f(x)}{x}=\infty$.
(ii) By (H1)-(H2) it follows that $F(u)=\int_{0}^{u} f(t) d t$ is even and has a unique positive zero $\gamma>\beta$ with $F<0$ on $(0, \gamma)$.
(iii) Denoting $F_{0}=-F(\beta)>0$ it then follows that

$$
\begin{equation*}
F(u) \geq-F_{0} \quad \text { for any } u \in \mathbb{R} \tag{1.6}
\end{equation*}
$$

It is well known that the existence of many solutions on this and similar topics has been studied by several papers. Some have used variational approach, degree theory, or sub/super solutions to prove the existence of a positive solution $[4,5,12,14]$. Others with more assumptions have been able to prove the existence of an infinite number of solutions [7,8,9,10,13]. A common approach in many of these papers has been the shooting method and the scaling argument.
In [11], the authors studied the problem (1.1)-(1.2) in the case that $0<\alpha<2(N-1)$ under the assumptions (H1)-(H2) and assuming that $r \rightarrow \varphi(r)$ is positive and the $C^{1}, \varphi(r) \sim r^{-\alpha}$ for larger r and $\lim _{r \rightarrow \infty} \frac{r \varphi^{\prime}}{\varphi}=-\alpha$ to prove that (1.1)-(1.2) has an infinitely number of solutions. In this paper, we treat the case that $\alpha>2(N-1)$ and we have a much weaker hypothesis $\mathbf{(H 3)}$. Notice that a key difference between this case and the one case already treated in [11] that the "energy function" $\frac{U^{\prime 2}}{2 \varphi}+F(U)$ associate to radial solution U of (1.1)-(1.2) is strictly decreasing but in our case, it is strictly increasing. Our aim here is to prove the existence of an infinite number of solutions of (1.1)-(1.2) which is convenient to count the number of zeros using ordinary differential equation methods.

Theorem 1.1. If (H1)-(H3) are satisfied then (1.1)-(1.3) has infinitely many radially symmetric solutions. In addition, for each integer n there exist a radially symmetric solutions of problem (1.1)-(1.3) which have exactly n zeros.

2. Preliminaries

The existence of radially symmetric solution $U(x)=U(r)$ with $r=|x|$ of (1.1)-(1.2) is equivalent to the existence of a solution U of the nonlinear ordinary differential equation

$$
\begin{gather*}
U^{\prime \prime}(r)+\frac{N-1}{r} U^{\prime}(r)+\varphi(r) f(U)=0 \quad \text { if } r>R \tag{2.1}\\
U^{\prime}(R)=U(R) \sigma(U(R)) \quad \text { and } \lim _{r \rightarrow \infty} U(r)=0 \tag{2.2}
\end{gather*}
$$

Let p be positive reel parameter and denoting $U(r, p)=U_{p}(r)$ the solution to the initial value problem

$$
\begin{gather*}
U^{\prime \prime}(r)+\frac{N-1}{r} U^{\prime}(r)+\varphi(r) f(U)=0 \tag{2.3}\\
u(R)=p>0 \quad \text { and } \quad u^{\prime}(R)=p \sigma(p) \tag{2.4}
\end{gather*}
$$

As this initial value problem is not singular so, the existence uniqueness and continuous dependence with respect to p of the solution of (2.3)-(2.4) on $[R, R+\epsilon]$ for some $\epsilon>0$, it follows by the standard existence-uniqueness and dependence theorem for ordinary differential equations [6].

We now, for a solution U_{p} of (2.3)-(2.4) we define the energy function as follows

$$
\begin{equation*}
E_{p}(r)=\frac{U_{p}^{\prime 2}}{2 \varphi(r)}+F\left(U_{p}\right) \quad \text { for } r \geq R \tag{2.5}
\end{equation*}
$$

A simple calculation by using (2.3) yields

$$
\begin{equation*}
E_{p}^{\prime}(r)=-\frac{U_{p}^{\prime 2}}{2 r \varphi(r)}\left(2(N-1)+\frac{r \varphi^{\prime}}{\varphi}\right) \tag{2.6}
\end{equation*}
$$

From (1.4)-(1.5) therefore $E_{p}^{\prime}>0$ which means that the energy is nondecreasing.
On other hand we employing the following transformation

$$
\begin{equation*}
t=r^{2-N} \quad \text { and } U_{p}(r)=V_{p}(t) \tag{2.7}
\end{equation*}
$$

It then follows that the initial value problem (2.3)-(2.4) is converted to

$$
\begin{gather*}
V_{p}^{\prime \prime}(t)+H(t) f\left(V_{p}\right)=0 \quad \text { if } 0<t<T \tag{2.8}\\
V_{p}(T)=p>0 \quad \text { and } \quad V_{p}^{\prime}(T)=-b(p)<0 \tag{2.9}
\end{gather*}
$$

where $T=R^{2-N}, b(p)=\frac{p \sigma(p) R^{N-1}}{N-2}>0$ and

$$
\begin{equation*}
H(t)=\left(\frac{1}{N-2}\right)^{2} t^{-\frac{2(N-1)}{N-2}} \varphi\left(t^{-\frac{1}{N-2}}\right) . \tag{2.10}
\end{equation*}
$$

Furthermore from (1.4) we get

$$
\begin{equation*}
0<H(t) \leq c_{1} t^{\nu} \quad \text { on }(0, T] \tag{2.11}
\end{equation*}
$$

where $\nu=\frac{2(N-1)-\alpha}{N-2}$ and $c_{1}=\frac{c_{0}}{(N-2)^{2}}>0$.
Notice that, since $\alpha>2(N-1)$ then $\nu>0$ which implies that $\lim _{t \rightarrow 0^{+}} H(t)=0$ and it follows that H is continuous on $[0, T]$. In addition, from ($\mathbf{H} 3$) we have that H is C^{1} on $\left.(0, T]\right)$ and also

$$
H^{\prime}(t)=-\frac{t^{-\frac{3 N-4}{N-2}} \varphi\left(t^{-\frac{1}{N-2}}\right)}{(N-2)^{3}}\left[2(N-1)+t^{-\frac{1}{N-2}} \frac{\varphi^{\prime}\left(t^{-\frac{1}{N-2}}\right)}{\varphi\left(t^{-\frac{1}{N-2}}\right)}\right]>0
$$

which means that H is strictly increasing.
A simple calculation by using (2.8) show that

$$
\begin{equation*}
\left(\frac{V_{p}^{\prime 2}(t)}{2}+H(t) F\left(V_{p}\right)\right)^{\prime}=H^{\prime}(t) F\left(V_{p}\right) \tag{2.12}
\end{equation*}
$$

From (2.5) and by integrating (2.12) from t to T gives

$$
\frac{V_{p}^{\prime 2}(t)}{2}+H(t) F\left(V_{p}\right)=\frac{b(p)^{2}}{2}+H(T) F(p)-\int_{t}^{T} H^{\prime}(x) F\left(V_{p}\right) d x
$$

From (1.6), since H^{\prime} and H are positives we assert that

$$
\frac{V_{p}^{\prime 2}(t)}{2} \leq \frac{b(p)^{2}}{2}+H(T)\left(F_{0}+F(p)\right)
$$

It then follows that

$$
\begin{equation*}
\left|V_{p}^{\prime}(t)\right| \leq c_{2, p} \tag{2.13}
\end{equation*}
$$

where $c_{2, p}=\sqrt{b(p)^{2}+2 H(T)\left(F_{0}+F(p)\right)}>0$. Also we apply the mean value theorem with the initial conditions (2.9) we get

$$
\begin{equation*}
\left|V_{p}(t)\right| \leq p+T c_{2, p}=c_{3, p} \tag{2.14}
\end{equation*}
$$

Thus V_{p} and V_{p}^{\prime} are bounded on wherever they are defined. For $p>0$ fixed it then follows that there is a unique solution V_{p} of (2.8)-(2.9) defined on all $[0, T]$. Which assert from the change variables (2.7) that there is a unique solution U_{p} of (2.3)-(2.4) defined on $[R, \infty)$.

Lemma 2.1. Let V_{p} be a solution of (2.8)-(2.9). Then $V_{p}(t)>0$ on $(0, T]$ if p is sufficiently small.

Proof. As $V_{p}^{\prime}(T)=-b(p)=-\frac{p \sigma(p) R^{N-1}}{N-2}<0$ because $\sigma(p)>0$ so either,

$$
\left\{\begin{array}{lc}
\text { case }(A): & V_{p}^{\prime}(t)<0 \quad \text { on all } \quad t \in(0, T] \\
\text { case }(B): & V_{p} \text { has a local maximum at some } m_{p} \in(0, T)
\end{array}\right.
$$

For the case(A). Since V_{p} is nonincreasing we get $V_{p}(t)>V_{p}(T)=p$ on $(0, T]$ and so we are done in this case.
We then consider the case (B). So it follows from (2.8) that $V_{p}^{\prime \prime}\left(m_{p}\right)=-H\left(m_{p}\right) f\left(V_{p}\left(m_{p}\right)\right) \leq 0$. As $H>0$ therefore $f\left(V_{p}\left(m_{p}\right)\right) \geq 0$. Which implies from ($\left.\mathbf{H} 1\right)$ that $V_{p}\left(m_{p}\right) \geq \beta$.

Next, we will to show the next Claim:
Claim 1. $0<V_{p}<\beta$ on $(0, T]$ for p close to 0^{+}.
If not, so we suppose that for any $p>0$ sufficiently small there is $t_{p} \in\left(m_{p}, T\right)$ such that $V_{p}\left(t_{p}\right)=\beta$ and $V_{p}^{\prime}<0$ on $\left(t_{p}, T\right)$.
Let us $t \in\left[t_{p}, T\right]$ and integrating (2.8) from t to T with the initial conditions (2.9) yields

$$
\begin{equation*}
V_{p}^{\prime}(t)=b(p)+\int_{t}^{T} H(x) f\left(V_{p}\right) d x \tag{2.15}
\end{equation*}
$$

Integrating this over $[t, T]$ with the initial conditions (2.9) and using the fact that $b(p)$ is positive we see that

$$
\begin{equation*}
V_{p}(t) \leq p-\int_{t}^{T}\left(\int_{s}^{T} H(x) f\left(V_{p}\right) d x\right) d s \tag{2.16}
\end{equation*}
$$

Notice that by condition (H1) we see that $x \rightarrow \frac{f(x)}{x}$ is bonded below by some $-c_{4}<0$ on $[0, \infty)$. And since $V_{p}>0$ is nondecreasing on $\left[t_{p}, T\right]$ and from $(2.11)-(2.16)$ it thus follows that

$$
V_{p}(t) \leq p+c_{4} \int_{t}^{T} \widehat{H}(s) V_{p}(s) d s
$$

where $\widehat{H}(t)=\int_{t}^{T} H(x) d x$ is a continuous and positive function on $[0, T]$ because H is continuous on $[0, T]$. We can apply the Cornwall inequality [6] it follows that

$$
\begin{equation*}
V_{p}(t) \leq p e^{c_{4} \int_{t}^{T} \widehat{H}(x) d x} \tag{2.17}
\end{equation*}
$$

We observe that the function $t \rightarrow e^{c_{4} \int_{t}^{T} \widehat{H}(x) d x}>0$ is positive and bounded above by some $c_{5}>0$ on $[0, T]$. Thus taking $t=t_{p}$ in (2.17) and letting $p \rightarrow 0^{+}$we get

$$
\begin{equation*}
0<V_{p}\left(t_{p}\right)=\beta \leq c_{5} p \rightarrow 0 \tag{2.18}
\end{equation*}
$$

This is a contradiction and the claim1 is proven. Consequently, we have $V_{p}>0$ on $(0, T]$ for p sufficiently small. Finally, the result is established for both cases. Which completes the proof of Lemma 2.1.

Lemma 2.2. Let V_{p} be a solution of (2.8)-(2.9). Then V_{p} has a local maximum m_{p} on $(0, T)$ if p is sufficiently large. In addition,

$$
\begin{array}{ll}
V_{p}\left(m_{p}\right) \rightarrow \infty & \text { as } p \rightarrow \infty \\
\text { and } m_{p} \rightarrow T & \text { as } p \rightarrow \infty \tag{2.20}
\end{array}
$$

Proof. From the above discussion at the beginning in the proof of lemma 2.1, we will to assert that the case (A) is not occurs, if $p>0$ is large enough. To the contrary we suppose that $V_{p}^{\prime}<0$ on $(0, T]$ for any $p>0$ large enough. Therefore we have that $V_{p}(t) \geq V_{p}(T)=p>0$ on $(0, T]$ for any $p>0$ sufficiently large. Consequently, $V_{p}(t) \rightarrow \infty$ as $p \rightarrow \infty$ for all $t \in(0, T]$. Thus if $p>0$ is sufficiently large we get

$$
\begin{equation*}
V_{p}(t)>\beta \quad \text { for any } t \in(0, T] \tag{2.21}
\end{equation*}
$$

Let us fixed $t_{0} \in(0, T)$ and $p>0$ we denote

$$
\Omega_{p}=\inf _{t_{0} \leq t \leq T}\left\{H(t) \frac{f\left(V_{p}\right)}{V_{p}}\right\}
$$

By virtue of (2.21) and since $H^{\prime}>0$ and $V_{p}^{\prime}<0$ we deduce that

$$
\begin{equation*}
\Omega_{p} \geq H\left(t_{0}\right) \inf _{p \leq x \leq V_{p}\left(t_{0}\right)}\left\{\frac{f(x)}{x}\right\} \quad \text { for } p \text { sufficiently large. } \tag{2.22}
\end{equation*}
$$

From (i) of Remark 1.1 (superlinearity of f) with $H>0$ and taking $p \rightarrow \infty$ in (2.22) consequently we have that

$$
\begin{equation*}
\Omega_{p} \rightarrow \infty \quad \text { as } p \rightarrow \infty \tag{2.23}
\end{equation*}
$$

It is well known the eigenvectors of the operator $-\frac{d^{2}}{d t^{2}}$ in $\left(t_{0}, T\right)$ with Dirichlet boundary conditions can be chosen as $\psi_{k}(t)=\sqrt{\frac{2}{T-t_{0}}} \sin \left(\frac{k \pi\left(t-t_{0}\right)}{T-t_{0}}\right)$ of eigenvalues $\mu_{k}=\left(\frac{k \pi}{T-t_{0}}\right)^{2}$ where k is nonnegative integer. Also, $t_{1}=t_{0}+\frac{T-t_{0}}{2}$ is a zero of the second eigenfunction ψ_{2} on $\left(t_{0}, T\right)$. In addition, from (2.23) therefore for suitable large $p>0$ it follows that $\Omega_{p}>\mu_{2}$. This allows us to apply the Sturm comparison theorem [6] and consequently, V_{p} has at least one zero in $\left(t_{0}, T\right)$ which contradicts to (2.21). Hence, V_{p} has a local maximum at some $m_{p} \in(0, T]$ for p sufficiently large.

It remains to be shown (2.20). By integrating (2.10) from m_{p} to $t<T$ gives

$$
\begin{equation*}
-V_{p}^{\prime}(t)=\int_{m_{p}}^{t} H(x) f\left(V_{p}\right) d x \tag{2.24}
\end{equation*}
$$

By the condition (H2) we see that $f(x) \geq c_{6} x^{q}$ on $[0, \infty)$ for some positive constant $c_{6}>0$. This and from (2.24) and using the fact that $V_{p}>0$ is nonincreasing on (m_{p}, t) implies that

$$
\begin{equation*}
c_{6} V_{p}^{q}(t) \int_{m_{p}}^{t} H(x) d x \leq-V_{p}^{\prime}(t) \tag{2.25}
\end{equation*}
$$

Dividing both sides by $V_{p}^{q}(t)$ and integrating both sides of the resultant inequality over $\left(m_{p}, T\right)$ we obtain

$$
\frac{1}{(q-1) V_{p}^{q-1}\left(m_{p}\right)}+c_{6} \int_{m_{p}}^{T} \int_{m_{p}}^{s} H(x) d x d s \leq \frac{1}{(q-1) p^{q-1}}
$$

Since $q>1, V_{p}\left(m_{p}\right)>0$ and $H>0$ together leads to

$$
0<\int_{m_{p}}^{T} \int_{m_{p}}^{s} H(x) d x d s \leq \frac{1}{c_{6}(q-1) p^{q-1}}
$$

Finally, by making $p \rightarrow \infty$ of this so the limit is necessarily zero and consequently (2.20) is proven. Ends of the proof of Lemma 2.2.

Lemma 2.3. Let V_{p} be a solution of (2.8)-(2.9). Then V_{p} has an arbitrary large of number of zeros on $(0, T]$ if p is large enough.

Proof. To prove this lemma, it is sufficient to show that U_{p} has an arbitrary large of number of zeros on $[R, \infty)$ if p is large enough. Using the results obtained in Lemma 2.2 and the change of variables (2.7) we can assert that U_{p} has a local maximum at $M_{p} \in(R, \infty)$ for p large enough and also,

$$
\begin{align*}
\quad M_{p} \rightarrow R \quad \text { as } & p \rightarrow \infty \tag{2.26}\\
\text { and } U_{p}\left(M_{p}\right) \rightarrow \infty & \text { as } \quad p \rightarrow \infty . \tag{2.27}
\end{align*}
$$

Now, we set

$$
\lambda_{p}^{\frac{2}{q-1}}=U_{p}\left(M_{p}\right) \quad \text { and } \omega_{\lambda_{p}}(r)=\lambda_{p}^{-\frac{2}{q-1}} U_{p}\left(M_{p}+\frac{r}{\lambda_{p}}\right) \quad r \geq 0
$$

From (2.3) an easy computation shows

$$
\begin{gather*}
\omega_{\lambda_{p}}^{\prime \prime}(r)+\frac{N-1}{\lambda_{p} M_{p}+r} \omega_{\lambda_{p}}^{\prime}(r)+\lambda_{p}^{-\frac{2 q}{q-1}} \varphi\left(M_{p}+\frac{r}{\lambda_{p}}\right) f\left(\lambda_{p}^{\frac{2}{q-1}} \omega_{\lambda_{p}}\right)=0 \quad \text { if } r>0, \tag{2.28}\\
\omega_{\lambda_{p}}(0)=1 \quad \text { and } \omega_{\lambda_{p}}^{\prime}(0)=0 . \tag{2.29}
\end{gather*}
$$

It then follows that

$$
\begin{equation*}
\left(\frac{\omega_{\lambda_{p}}^{\prime 2}}{2}+\lambda_{p}^{-\frac{2(q+1)}{q-1}} \varphi\left(M_{p}+\frac{r}{\lambda_{p}}\right) F\left(\lambda_{p}^{\frac{2}{q-1}} \omega_{\lambda_{p}}\right)\right)^{\prime}=-\frac{N-1}{\lambda_{p} M_{p}+r} \omega_{\lambda_{p}}^{\prime 2}+\lambda_{p}^{-\frac{3 q+1}{q-1}} \varphi^{\prime}\left(M_{p}+\frac{r}{\lambda_{p}}\right) F\left(\lambda_{p}^{\frac{2}{q-1}} \omega_{\lambda_{p}}\right) . \tag{2.30}
\end{equation*}
$$

From (1.5) we observe that $\varphi^{\prime}<0$ and by using (1.6)-(2.30) we get

$$
\left(\frac{\omega_{\lambda_{p}}^{\prime 2}}{2}+\lambda_{p}^{-\frac{2(q+1)}{q-1}} \varphi\left(M_{p}+\frac{r}{\lambda_{p}}\right) F\left(\lambda_{p}^{\frac{2}{q-1}} \omega_{\lambda_{p}}\right)\right)^{\prime} \leq-F_{0} \lambda_{p}^{-\frac{3 q+1}{q-1}} \varphi^{\prime}\left(M_{p}+\frac{r}{\lambda_{p}}\right)
$$

Integrating both sides of this inequality over $(0, r)$ gives

$$
\frac{\omega_{\lambda_{p}}^{\prime 2}}{2}+\lambda_{p}^{-\frac{2(q+1)}{q-1}}\left(M_{p}+\frac{r}{\lambda_{p}}\right) F\left(\lambda_{p}^{\frac{2}{q-1}} \omega_{\lambda_{p}}\right) \leq \lambda_{p}^{-\frac{2(q+1)}{q-1}} F\left(\lambda_{p}^{\frac{2}{q-1}}\right)+F_{0} \lambda_{p}^{-\frac{2(q+1)}{q-1}}\left(\varphi\left(M_{p}\right)-\varphi\left(M_{p}+\frac{r}{\lambda}\right)\right)
$$

This implies that

$$
\begin{equation*}
\frac{\omega_{\lambda_{p}}^{\prime 2}}{2} \leq \lambda_{p}^{-\frac{2(q+1)}{q-1}}\left(F\left(\lambda_{p}^{\frac{2}{q-1}}\right)+F_{0} \varphi\left(M_{p}\right)\right) \quad(\text { since } \varphi>0) \tag{2.31}
\end{equation*}
$$

On other hand, from (H2) it follows that

$$
F(s)=\frac{1}{q+1}|s|^{q+1}+G(s) \quad \text { and } \quad \lim _{|s| \rightarrow \infty} \frac{G(s)}{s^{q+1}}=0
$$

where $G(s)=\int_{0}^{s} g(x) \mathrm{d} x$. Which implies that

$$
\begin{equation*}
\lim _{|s| \rightarrow \infty} \frac{F(s)}{|s|^{q+1}}=\frac{1}{q+1} \tag{2.32}
\end{equation*}
$$

From the continuity of φ and (2.26) we deduce that $\varphi\left(M_{p}\right) \rightarrow \varphi(R)$ as $p \rightarrow \infty$. Also, by (2.27) and $q>1$ we obtain $\lambda^{\frac{2(q+1)}{q-1}} \rightarrow \infty$ as $p \rightarrow \infty$. This implies from (2.32) that

$$
\frac{F\left(\lambda_{p}^{\frac{2}{q-1}}\right)}{\lambda_{p}^{\frac{2(q+1)}{q-1}}} \rightarrow \frac{1}{q+1} \quad \text { and } \frac{F_{0} \varphi\left(M_{p}\right)}{\lambda_{p}^{\frac{2(q+1)}{q-1}}} \rightarrow 0 \quad \text { as } p \rightarrow \infty
$$

Therefore from (2.31), if p is sufficiently large we have that

$$
\left|\omega_{\lambda_{p}}^{\prime}\right| \leq \frac{2}{\sqrt{q+1}} \quad \text { for any } r \geq 0
$$

Consequently, $\omega_{\lambda_{p}}$ and $\omega_{\lambda_{p}}^{\prime}$ are uniformly bounded. By the application of Arzela-Ascoli theorem there is a subsequence (again label $\omega_{\lambda_{p}}$) such that $\omega_{\lambda_{p}} \rightarrow \omega$ and $\omega_{\lambda_{p}}^{\prime} \rightarrow \omega^{\prime}$ as $p \rightarrow \infty$ on compact subset of $[0, \infty)$.
We know from (2.27) and since $q>1$ that

$$
\begin{equation*}
\lambda_{p} \rightarrow \infty \quad \text { as } p \rightarrow \infty \tag{2.33}
\end{equation*}
$$

By using (2.26)-(2.33) and the continuity of φ therefore we have that

$$
\frac{N-1}{\lambda_{p} M_{p}+r} \rightarrow 0 \quad \text { and } \varphi\left(M_{p}+\frac{r}{\lambda_{p}}\right) \rightarrow \varphi(R) \quad \text { as } p \rightarrow \infty \quad \text { for any } r \in[0, \infty)
$$

Furthermore from (H2) and (2.33) we get

$$
\lambda_{p}^{-\frac{2 q}{q-1}} g\left(\lambda_{p}^{\frac{2}{q-1}} \omega_{\lambda_{p}}(r)\right) \rightarrow 0 \quad \text { as } p \rightarrow \infty
$$

which implies that

$$
\lambda_{p}^{-\frac{2 q}{q-1}} f\left(\lambda_{p}^{\frac{2}{q-1}} \omega_{\lambda_{p}}(r)\right)=\left|\omega_{\lambda_{p}}\right|^{q-1} \omega_{\lambda_{p}}+\lambda_{p}^{-\frac{2 q}{q-1}} g\left(\lambda_{p}^{\frac{2}{q-1}} \omega_{\lambda_{p}}(r)\right) \rightarrow|\omega(r)|^{q-1} \omega(r) \quad \text { as } p \rightarrow \infty
$$

for any $r \in[0, \infty)$. Consequently from (2.28) and (2.29) ω satisfies

$$
\begin{aligned}
& \omega^{\prime \prime}(r)+\varphi(R)|\omega(r)|^{q-1} \omega(r)=0 \quad \text { if } r>0 \\
& \quad \omega(0)=1 \quad \text { and } \quad \omega^{\prime}(0)=0
\end{aligned}
$$

It is well known that ω has an infinite number of zeros on $[0, \infty)$ we see [1] (lemma 10 , with $p=2$). Since $\omega_{\lambda_{p}} \rightarrow \omega$ as $p \rightarrow \infty$ uniformly on compact subsets of $[0, \infty)$. Then it follows that ω_{p} has an arbitrary large number of zeros for p large enough. Finally, since $U_{p}\left(M_{p}+\frac{r}{\lambda_{p}}\right)=\lambda_{p}^{\frac{2}{q-1}} \omega_{\lambda_{p}}(r)$ therefore U_{p} has an arbitrary large number of zeros on $[R, \infty)$ for p large enough and which also allows to obtain the same conclusion for V_{p} on a interval $(0, T]$. Which completes the proof of Lemma 2.3.

Remark 2.1. V_{p} has only simple zeros on $(0, T]$ for any $p>0$.
Proof. If not, we suppose there is some point $t_{0} \in(0, T]$ such that $V_{p}\left(t_{0}\right)=V_{p}^{\prime}\left(t_{0}\right)=0$. Then by applying the uniqueness of solutions of initial value problem (2.8)-(2.9) we assert that $V_{p}=0$ which contradicts to initial conditions (2.9). Thus V_{p} has only simple zeros.

3. Proof of the main result

To prove the main theorem we need to recall the technical lemma which has been proved in [13] (Lemma 4) and it is generalized in [7] (Lemma 2.7) on (R, ∞).

Technical lemma: If $U_{p_{k}}$ is a solution of (2.3)-(2.4) with $k \in \mathbb{N}$ zeros on (R, ∞) and in addition $U_{p_{k}}(r) \rightarrow 0$ as $r \rightarrow \infty$ then $U_{p_{k}}$ has at most $k+1$ zeros on (R, ∞), if p is sufficiently close to p_{k}.

In what follows, for any integer $k \geq 1$ we construct the following sets

$$
S_{k}=\left\{p>0: \quad V_{p} \text { has at least } k \text { zero on }(0, T]\right\}
$$

By Lemmas 2.3 and 2.2 we see that $S_{1} \neq \emptyset$ and is bounded from below by some positive constant. Thus we can let

$$
p_{0}=\inf S_{1}>0
$$

Now, we want to claim the following result first
Claim 2. $V_{p_{0}}>0$ on $(0, T]$.
Proof. Otherwise, so we suppose that $V_{p_{0}}(z)=0$ for some point $z \in(0, T]$. By continuous dependence of solutions on initial conditions it follows that $V_{p_{0}} \geq 0$ on $(0, T]$. It then follows that $V_{p_{0}}(z)=V_{p_{0}}^{\prime}(z)=0$. Which contradicts to Remark 2.1. Thus $V_{p_{0}}>0$ on $(0, T]$. By the definition of p_{0}, if $p>p_{0}$ therefore V_{p} must have a zero z_{p} on $(0, T]$. Ends of the proof of Claim 2.

Next, we aim to prove the second claim
Claim 3. $z_{p} \rightarrow 0$ as $p \rightarrow p_{0}^{+}$.
Proof. To the contrary, so a subsequence of $\left(z_{p}\right)$ would converge to a $z \in(0, T]$ (still denoted $\left.\left(z_{p}\right)\right)$. From (2.13)-(2.14) and as F and σ are continuous it then follows that V_{p} and V_{p}^{\prime} are uniformly bounded on $[0, T]$ for p near to p_{0}. Moreover, from (2.8) $V_{p}^{\prime \prime}$ is also uniformly bounded on $[0, T]$ for p close to p_{0}. Thus by using the Arzela-Ascoli theorem a subsequence of V_{p} and V_{p}^{\prime} converges uniformly on $[0, T]$ to $V_{p_{0}}$ and $V_{p_{0}}^{\prime}$. This implies that $V_{p_{0}}(z)=0$ which contradicts to $V_{p_{0}}>0$ on $(0, T]$. Which completes the proof of Claim 3.

From Claim 3 and since $V_{p}\left(z_{p}\right)=0$ it follows that $V_{p_{0}}(0)=0$ and $V_{p_{0}}>0$ on $(0, T]$. To refer of the change variables (2.7) therefore $U_{p_{0}}$ is a positive solution of (2.3)-(2.4) and also $U_{p_{0}}(r) \rightarrow 0$ as $r \rightarrow \infty$.

Now, by Lemmas 2.3 and 2.2 the set S_{2} is non empty and is bounded from below by some positive constant. And thus we let $p_{1}=\inf S_{2}$.

On other hand, by the technical lemma, we see that V_{p} has at most one zero on $(0, T]$ if $p \rightarrow p_{0}$. By definition of p_{0} if p is sufficiently close to p_{0}^{+}it then follows that V_{p} has exactly one zero on $(0, T]$. Thus $p_{1}>p_{0}$ and by the same argument as above, we also show that $V_{p_{1}}$ has exactly one zero on $(0, T]$ and $V_{p_{1}}(0)=0$. Consequently there is a solution of (2.3)-(2.4) which has exactly one zero on (R, ∞) and $U_{p_{1}}(r) \rightarrow 0$ as $r \rightarrow \infty$.

Proceeding inductively we can show that for every nonnegative integer n there is a solution of (2.1)(2.2) which has exactly n zeros on (R, ∞). Finally, the proof of Theorem 1.1 is complete as well.

4. Conclusion

By this work, we managed to establish the existence of infinitely many sign-changing radial solution to superlinear problem (1.1)-(1.3) on exterior domain in \mathbb{R}^{N}, when f grows superlinearity at infinity, the proof presented here seems more natural and more easier.
We make the change of variables $U(r)=V\left(r^{2-N}\right)$ and investigate the differential equation for V on $\left[0, R^{2-N}\right]$ this allows us to obtain some qualitative properties of zeros of solutions. Finally, by approximating solutions of (2.8)-(2.9) with an appropriate linear equation, we deduce that there are localized solutions with any prescribed number of zeros.

References

1. B. Azeroual, A. Zertiti; On multiplicity of radial solutions to Dirichlet problem involving the p-Laplacian on exterior domains, Internatinal Journal of Applied Mathematics, Vol31(2018),No. 1, pp 121-147.
2. H. Berestycki, P. L. Lions, and L.A. Peletier; An ODE Approach to the Existence of Positive Solutions for Semilinear Problems in R^{N}, Ind. Univ. Math. J., 30(1) (1981), pp 141-157.
3. H. Berestycki, P. L. Lions; Non-linear scalar field equations II. Existence of infinitely many solutions, Arch. Rational Mech. Anal. 82(1983), pp 347-375.
4. A. Castro, L. Sankar and R. Shivaji; Uniqueness of nonnegative solutions for semipositone problems on exterior domains, J. Math. Anal. Appl, 394(2012), pp. 432-437.
5. M. Chhetri, L. Sankar and R. Shivaji; Positive solutions for a class of superlinear semipositone systems on exterior domains, Bound. Value Probl, (2014), pp. 198-207.
6. P. Hartman; Ordinary Differential Equation, second edition, Society for Industrial and Applied Mathematics, Philadelphia (2002).
7. J. Iaia; Existence and nonexistence for semilinear equations on exterior domains, Partial. Diff. Equ., Vol.30(2017), No. 4, pp 299-313.
8. J. Iaia; Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains, Journal of Mathematical Analysis and Applications, 446(2017), 591-604.
9. J. Iaia; Existence of solutions for semilinear problems on exterior domains, Electronic journal of differential equations, 34(2020), 1-10.
10. C.K.R.T. Jones and T. Kupper; On the infinitely many solutions of a semilinear elliptic equation, SIAM J. Math. Anal. 17 (1986), pp 803-835.
11. J. Joshi, J. Iaia; Infinitely many solutions for a semilinear problem on exterior domains with nonlinear boundary condition, Electronic Journal of Differential Equations. vol. 2018(2018), No. 108, pp 1-10.
12. E. K. Lee, R. Shivaji and B. Son; Positive solutions for infinite semipositone problems on exterior domains, Differ. Integral Equ., 24(2011), 861-875.
13. K. Mcleod, W. C. Troy, F. B. Weissler; Radial solution of $\Delta u+f(u)=0$ with prescribed numbers of zeros, Journal of Differential Equation, Volume 83,(1990), pp. 368-378.
14. L. Sankar, S. Sasi and R. Shivaji; Semipositone problems with falling zeros on exterior domains, J. Math. Anal. Appl., 401(2013), 146-153.

Azeroual Boubker,
Departement of Mathematics and Decision Making,
National school of applied sciences,
BP 2222, Tetouan, Morocco.
E-mail address: bazeroual@uae.ac.ma
and
Abderrahim Zertiti,
Departement of mathematics,
Faculty of Sciences,
BP 2121, Tetouan, Morocco
E-mail address: abdzertiti@hotmail.fr

[^0]: 2010 Mathematics Subject Classification: 35J66, 35B05, 35A24.
 Submitted January 30, 2023. Published May 22, 2023

