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Essential Ideal of a Matrix Nearring and Ideal Related Properties of Graphs

Rajani Salvankar1, Kedukodi Babushri Srinivas2, Harikrishnan Panackal3 and Kuncham Syam Prasad4 ∗

abstract: In this paper, we consider matrix maps over a zero-symmetric right nearring N with 1. We
define the notions of f -essential ideal, f -superfluous ideal, generalized f -essential ideal of a matrix nearring
and prove results which exhibit the interplay between these ideals and the corresponding ideals of the base
nearring N . We discuss the combinatorial properties such as connectivity, diameter, completeness of a graph
(denoted by Lg(H)) defined on generalized essential ideals of a finitely generated module H over N . We prove
a characterization for Lg(H) to be complete. We also prove Lg(H) has diameter at-most 2 and obtain related
properties with suitable illustrations.
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1. Introduction

Nearring is a classical generalization of a ring. Rings can be considered as algebraic systems of linear
maps on groups, while nearrings describe a general non-linear case [23]. In this paper, we consider a
zero-symmetric right nearring N , and matrix maps over N [19]. Meldrum and Van der Walt [19] defined
the notion of a matrix nearring, denoted by Mn(N), which is the subnearring of the nearring M(Nn), the
set of all maps from Nn to Nn. Van der Walt [4] explored the relationship between primitive modules
over a nearring N and those of the matrix nearring Mn(N). For recent developments in matrix nearrings,
we refer to [8,9,13,14,25,27]. The notion of an essential submodule of module over a ring is a discretized
analogue to the notion of dense subspace in a topological space [3]. The idea of the graph constructed
from a ring was initiated from the concept of a zero-divisor graph (see [2]). Later, based on a ring
structure, several types of graphs like annihilator essential graph (see [5]), essential graph (see [22]),
total graph (see [2]), prime graph (see [11]), and in case of nearrings zero-divisor graph of a nearring
[15] and graph with respect to ideal of a nearring [6,12] were studied. In commutative rings, the author
(see [1]) studied the properties of an essential ideal graph and characterized rings based on the different
types of graphs. They considered the set of all non-trivial ideals in a commutative ring as the vertex
set and an edge is defined if the sum of two ideals is essential in the underlying ring. This concept was
generalized to modules over rings by [18]. In [28], small essential ideals and Morita duality of rings were
discussed, and in [16], the authors characterized classes of commutative and non-commutative rings for
which maximal small and minimal essential ideals coincide. In [20,21,24], the authors discussed the dual
aspects like generalized supplements, superfluous ideals etc.
In Section 3 of this paper, we introduce the notion of g-essential ideal in a matrix nearring. We establish a
one-one correspondence between the set of all generalised essential (resp. essential) ideals of the nearring
N and the set of all generalised f -essential (resp. f -essential) full ideals of Mn(N). In section 4, we define
generalized essential ideal graph of a module over a nearring N (denoted as, Lg(H)). We derive properties
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such as diameter, completeness based on a given N -group. We prove that if H is a finitely generated
over a zero-symmetric nearring N , then any maximal ideal of H is a universal vertex. Furthermore, the
graph is connected with the diameter less than 3. The notion of g-complement of an ideal is introduced
as a generalization of a complement and show that every non-zero, non-g-essential ideal is adjacent to its
g-complement. We consider a subgraph of g-essential ideal graph, induced by the set of all non-g-essential
ideals of H . Finally, it is observed that there exists a path between every two superfluous ideals.

2. Preliminaries

Let N be a zero-symmetric right nearring and H be an N -group [23]. A normal subgroup K of H is
an ideal if n(g + k) − ng ∈ K for all n ∈ N , g ∈ H and k ∈ K, (we denote A EN H if A is a ideal of
H). A EN H is essential if A ∩ B 6= (0) for any (0) 6= B EN H , and we write it as A ≤e H . A uniform
N -group is the one in which every non-zero ideal is essential. A EN H is superfluous if A + B = H
where B EN H , implies B = H , and we denote it by A ≪ H . A EN H is g-essential if A ∩B = (0) and
B ≪ H , implies B = (0) (denoted as A ≤ge H). Moreover, if every non-zero ideal of H is g-essential,
then we call H is g-uniform. An N -subgroup H of N is said to be finitely generated (as an ideal) if
there exists a subset S of H such that 〈S〉 = H , where 〈S〉 represents the ideal of H generated by S. We
refer to [7,8,9,17,19] for the notions of essential ideals, superfluous ideals of N -groups and modules, and
we refer to [23] for the notions of maximal ideal, minimal ideal and completely reducible N -group etc.
Throughout, H denotes a finitely generated N -group where N is a zero-symmetric right nearring.
For a zero-symmetric nearring N with 1, let Nn will be the direct sum of n copies of (N,+). The
elements of Nn are column vectors and written as (r1, · · · , rn). The symbols ii and πj respectively,
denote the ith coordinate injective and jth coordinate projective maps. For an element a ∈ N , ii(a) =
(0, · · · , a

︸︷︷︸

ith

, · · · , 0), and πj(a1, · · · , an) = aj , for any (a1, · · · , an) ∈ Nn. The nearring of n× n matrices

over N , denoted by Mn(N), is defined to be the subnearring of M(Nn), generated by the set of maps
{fa

ij : Nn → Nn : a ∈ N, 1 ≤ i, j ≤ n} where fa
ij (k1, · · · , kn) := (l1, l2, · · · , ln) with li = akj and lp = 0

if p 6= i. Clearly, fa
ij = iif

aπj , where fa(x) = ax, for all a, x ∈ N . If N happens to be a ring, then fa
ij

corresponds to the n × n-matrix with a in position (i, j) and zeros elsewhere. We refer to [9,13,19] for
further definitions and notations in matrix nearrings.
The graphs considered are simple graphs. We denote the vertex set as V , we use d(u, v) to represent the
shortest u ∼ v path, while the eccentricity of a vertex u, is denoted as e(u) which is max{d(u, v) : v ∈ V };
radius is the minimum eccentricity, and the diameter is the maximum eccentricity. A vertex is universal
if it is adjacent to every other vertex. For all other notions and definitions in graph theory, we refer to
[10,9], and for nearrings, we refer to [9,23]. We use ∼ to denote an edge, and ⇐⇒ for "if and only if".

3. Generalized essential ideals in Mn(N)

In this section, we introduce the notion of generalised f -essential ideal in a matrix nearring. We
establish a one-one correspondence between the set of all generalised essential (resp. essential) ideals of
the nearring N and the set of all generalised f -essential (resp. f -essential) full ideals of Mn(N).

Definition 3.1. [9]

1. Let K EMn(N). Then K⋆ = {x ∈ N : x ∈ im(πjA) for some A ∈ K and j, 1 ≤ j ≤ n}.

2. Let I E N . Then I⋆ = {A ∈ Mn(N) : Aρ ⊆ In for all ρ ∈ Nn}.
Lemma 3.2. Let I, J E N . Then (I ∩ J)⋆ = I⋆ ∩ J⋆.

Proof. Let A ∈ (I ∩ J)⋆ ⇐⇒ Aρ ∈ (I ∩ J)n for every ρ ∈ Nn ⇐⇒ πjAρ ∈ I ∩ J for every ρ ∈ Nn and
1 ≤ j ≤ n ⇐⇒ πjAρ ∈ I and πjAρ ∈ J for every ρ ∈ Nn and 1 ≤ j ≤ n ⇐⇒ Aρ ∈ In and Aρ ∈ Jn

for every ρ ∈ Nn ⇐⇒ A ∈ I⋆ ∩ J⋆. �

Lemma 3.3. Let S,T EMn(N) with S ∩ T = (0). Then S⋆ ∩ T⋆ = (0)

Proof. Let x ∈ S⋆ ∩ T⋆. By Lemma 4.4 of [19], we get fx
11 ∈ S and fx

11 ∈ T, implies fx
11 ∈ S ∩ T = (0).

Therefore, fx
11 = (0), and so (x, 0, · · · , 0) = fx

11(1, 1, · · · , 1) = (0, 0, · · · , 0), we get x = 0. �
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Lemma 3.4. Let I, J E N be such that I + J = N . Then I⋆ + J⋆ = Mn(N).

Proof. Clearly I⋆ + J⋆ ⊆ Mn(N). Let A ∈ Mn(N). We use the induction on weight of A. Let w(A) = 1.
Then A = fa

ij for some a ∈ N , 1 ≤ i, j ≤ n. Since N = I+J and a ∈ N , there exists x ∈ I and y ∈ J such

that a = x+y. By Corollary 4.5 of [19], we get fx
ij ∈ I⋆ and fy

ij ∈ J⋆. Now fa
ij = fx+y

ij = fx
ij+fy

ij ∈ I⋆+J⋆.
Assume that whenever w(A) � m, then A ∈ I⋆ + J⋆. Now let w(A) = m. Then A = B + C or A = BC
with w(B) � m and w(C) � m.
Case 1: A = B + C. Since w(B) and w(C) is less than m, by induction hypothesis, we can write
B = B1 + B2 and C = C1 + C2 for some B1, B2 in I⋆ and C1, C2 in J⋆. Now A = B + C =
B1 +B2 + C1 + C2 ∈ I⋆ + J⋆ + I⋆ + J⋆ ∈ I⋆ + J⋆ since I⋆ + J⋆ is an ideal of Mn(N).
Case 2: A = BC. This implies A = (B1 + B2)(C1 + C2) = B1(C1 + C2) +B2(C1 + C2) ∈ I⋆ + J⋆ since
B1 ∈ I⋆ and B2 ∈ J⋆ and I⋆, J⋆ are right ideals of Mn(N).
Therefore, A ∈ Mn(N) implies A ∈ I⋆ + J⋆. Hence I⋆ + J⋆ = Mn(N). �

Lemma 3.5. Let I, J E N . Then I⋆ + J⋆ ⊆ (I + J)⋆.

Proof. Let A ∈ I⋆ + J⋆. Then A = B + C for some B ∈ I⋆ and C ∈ J⋆. This implies Aρ ∈ In and
Bρ ∈ Jn for every ρ ∈ Nn. Now Aρ = (B+C)ρ = Bρ+Cρ ∈ In +Jn = (I+J)n and hence A ∈ (I+J)⋆.
�

Definition 3.6. [19] K EMn(N) is called a full ideal if K = J⋆ for some J E N .

Proposition 3.7. [19] There is a bijection between the set of all ideals of N and the set of all full ideals
of Mn(N) given by I → I⋆ and S → S⋆ such that (I⋆)⋆ = I and (S⋆)⋆ for an ideal I of N and S of
Mn(N).

Definition 3.8. S EMn(N) is called an f -essential ideal if for any full ideal T of Mn(N), S ∩ T = (0)
implies T = (0) and it is denoted by S ≤f

e Mn(N).
Proposition 3.9. Let I E N and S EMn(N). Then

1. S ≤f
e Mn(N) implies S⋆ ≤e N .

2. I ≤e N implies I⋆ ≤f
e Mn(N).

3. There is a one-one correspondence between the set of all essential ideals of N and the set of all
essential full ideals of Mn(N).

Proof. 1. Let B E N such that S⋆ ∩ B = (0). Then (S⋆ ∩ B)⋆ = (0)⋆. By Lemma 3.2, we get
(S⋆)⋆ ∩ B⋆ = (0). Now S ∩ B⋆ ⊆ (S⋆)⋆ ∩ B⋆ = (0). Since S ≤f

e Mn(N), we get B⋆ = (0) which
implies B = (0). Therefore, S⋆ ≤e N .

2. Let T be a full ideal of Mn(N) such that I⋆ ∩ T = (0). Since T is a full ideal, we have T = K⋆ for
some ideal K of N . Therefore, by Lemma 3.2 we get (I ∩K)⋆ = I⋆ ∩K⋆ = (0) and so I ∩K = (0).
Since I ≤e N , we get K = (0) which implies T = K⋆ = (0)⋆ = (0). Therefore, I⋆ ≤f

e Mn(N).

3. Let P = {A E N : A ≤e N} and Q = {A E Mn(N) : A ≤f
e Mn(N)}. Define φ : P → Q by φ(A) =

A⋆ and ψ : Q → P by ψ(A) = A⋆. Take A ∈ P. Then ψ ◦ φ(A) = ψ(φ(A)) = ψ(A⋆) = (A⋆)⋆ = A.
Take A ∈ Q. Then since A is a full ideal, we get φ ◦ ψ(A) = φ(ψ(A)) = φ(A⋆) = (A⋆)⋆ = A.

�

Lemma 3.10. Let a, u ∈ N . If a ∈ 〈u〉, then fa
ij ∈ 〈fu

ij〉.

Proof. From the Notation 3.4.6, given in [9], 〈u〉 = ∪Am, where m ranges from 0 to infinity, A0 = {u} and
Am+1 = A++

m ∪A0
m ∪A+

m ∪A−
m where A++

m = {n+x−n : n ∈ N and x ∈ Am}, A0
m = {a− b : a, b ∈ Am},

A+
m = {n(n

′

+ x) − nn
′

: n, n
′

∈ N and x ∈ Am} and A−
m = {xn : n ∈ N and x ∈ Am}.

We prove by induction on m. Let m = 0. Then A1 = A++
0 ∪A0

0 ∪A+
0 ∪A−

0 . Let a ∈ A1.
Case 1: If a ∈ A++

0 . Then a = n+ u− n for some n ∈ N .
Now fa

ij = fn+u−n
ij = fn

ij + fu
ij − fn

ij ∈ 〈fu
ij〉 as fu

ij ∈ 〈fu
ij〉 and 〈fu

ij〉 is a normal subgroup of Mn(N).
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Case 2: Let a ∈ A0
0. Then a = 0. Clearly f0

ij ∈ 〈fu
ij〉.

Case 3: Let a ∈ A+
0 . Then a = n(n

′

+ u) − nn
′

for some n, n
′

∈ N . Now fa
ij = f

n(n
′

+u)−nn
′

ij =

fn
ij(fn

′

ij + fu
ij) − fn

ijf
n

′

ij =∈ 〈fu
ij〉 as fu

ij ∈ 〈fu
ij〉 and 〈fu

ij〉 is a left ideal of Mn(N).

Case 4: Let a ∈ A−
0 . Then a = un for some n ∈ N . Now fa

ij = fun
ij = fu

ij + fn
ij ∈ 〈fu

ij〉 as fu
ij ∈ 〈fu

ij〉 and
〈fu

ij〉 is a right ideal of Mn(N).
Therefore, a ∈ A1 implies fa

ij ∈ 〈fu
ij〉. Assume that if a ∈ Am, then fa

ij ∈ 〈fu
ij〉. Now let a ∈ Am+1 =

A++
m ∪A0

m ∪A+
m ∪A−

m.
If a ∈ A++

m , then a = n+x−n for some n ∈ N and x ∈ Am. Now fa
ij = fn+x−n

ij = fn
ij +fx

ij −fn
ij ∈ 〈fu

ij〉 as

〈fu
ij〉 is a normal subgroup of Mn(N) and by induction hypothesis, fx

ij ∈ 〈fu
ij〉. If a ∈ A0

m, then a = x− y

where x, y ∈ Am. Clearly fa
ij = fx−y

ij = fx
ij − fy

ij ∈ 〈fu
ij〉 since fa

ij , f
a
ij ∈ 〈fu

ij〉. Now if a ∈ A+
m, then

a = n(n
′

+x)−nn
′

for some n, n
′

∈ N and x ∈ Am. So fa
ij = f

n(n
′

+x)−nn
′

ij = fn
ij(fn

′

ij +fx
ij)−fn

ijf
n

′

ij ∈ 〈fu
ij〉

as fx
ij ∈ 〈fu

ij〉 by induction hypothesis and 〈fu
ij〉 is a left ideal of Mn(N). Also, if a ∈ A−

m, then a = xn
for some n ∈ N and x ∈ Am. Now fa

ij = fxn
ij = fx

ij + fn
ij ∈ 〈fu

ij〉 as fx
ij ∈ 〈fu

ij〉 by induction hypothesis
and 〈fu

ij〉 is a right ideal of Mn(N). Therefore, fa
ij ∈ 〈fu

ij〉 whenever a ∈ 〈u〉. �

Proposition 3.11. If u is an essential element in N , then fu
ij is an essential element in Mn(N).

Proof. To prove fu
ij is an essential element in Mn(N), we need to prove 〈fu

ij〉 ≤e Mn(N). Let S EMn(N)
be a ideal such that 〈fu

ij〉 ∩ S = (0). By Lemma 3.3, we get 〈fu
ij〉⋆ ∩ S⋆ = (0). Now we show S⋆ = (0). Let

x ∈ S⋆. Since S⋆ E N , we get 〈x〉 ⊆ S⋆. Let 0 6= a ∈ 〈x〉. Since 〈x〉 ⊆ S⋆, we get a ∈ S⋆. Since a 6= 0 and
〈fu

ij〉⋆ ∩ S⋆ = (0), we get a /∈ 〈fu
ij〉⋆ and Corollary 4.5 of [19], we get fa

ij /∈ 〈fu
ij〉. Now by Lemma 3.10, we

get a /∈ 〈u〉. Therefore, 〈x〉 ∩ 〈u〉 = (0). Since 〈u〉 ≤e N , we get 〈x〉 = (0) which implies x = 0. Therefore,
S⋆ = (0). Now (S⋆)⋆ = (0)⋆ = (0). Since S ⊆ (S⋆)⋆, we get S = (0), which implies 〈fu

ij〉 ≤e Mn(N).
Hence fu

ij is an essential element of Mn(N). �

Definition 3.12. An ideal S of Mn(N) is said to be f -superfluous in Mn(N) if for any full ideal K of
Mn(N) with S + K = Mn(N) implies K = Mn(N) and it is denoted by S ≪f Mn(N).
Lemma 3.13.

1. Let B E N . If B ≪ N , then B⋆ ≪f Mn(N).

2. Let B be a full ideal of Mn(N). If B ≪f Mn(N), then B⋆ ≪ N .

Proof. 1. Let K be a full ideal of Mn(N) such that B⋆ + K = Mn(N). Since K is a full ideal, there
exists an ideal K of N such that K⋆ = K, which implies B⋆ + K⋆ = Mn(N). By Lemma 3.5, we
get B⋆ + K⋆ ⊆ (B + K)⋆ and so (B +K)⋆ = Mn(N). This implies ((B + K)⋆)⋆ = Mn(N)⋆ = N .
By Proposition 4.7(2) of [19], we get B +K = N . Since B ≪ N , we get K = N . Now, K = K⋆ =
N⋆ = Mn(N). Hence B⋆ ≪f Mn(N).

2. Let K be an ideal of N such that B⋆ + K = N . By Lemma 3.4, we get (B⋆)⋆ + K⋆ = Mn(N).
Since B is a full ideal, we get B + K⋆ = Mn(N). Since B ≪f Mn(N), we get K⋆ = Mn(N), and
so K = (K⋆)⋆ = Mn(N)⋆ = N . Hence B⋆ ≪ N .

�

Definition 3.14. An ideal S of Mn(N) is called a generalized f -essential (abbr. gf -essential) ideal if for
any f -superfluous full ideal T of Mn(N) S ∩ T = (0) implies T = (0).
Proposition 3.15. Let S be an ideal of Mn(N) and I be an ideal of N .

1. If S ≤f
ge Mn(N), then S⋆ ≤ge N .

2. If I ≤ge N , then I⋆ ≤f
ge Mn(N).

3. There is a one-one correspondence between the set of all g-essential ideals of N and the set of all
generalised f -essential full ideals of Mn(N).
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Proof. 1. Let B ≪ N such that S⋆ ∩B = (0). Then (S⋆ ∩B)⋆ = (0)⋆. This implies (S⋆)⋆ = (0). Since
S ⊆ (S⋆)⋆, we get S ∩ B⋆ = (0). Since S ≤f

ge Mn(N), we have B⋆ = (0). Now (B⋆)⋆ = (0)⋆ = (0).
Therefore, S⋆ ≤ge N .

2. Let T be a f -superfluous full ideal of Mn(N) such that I⋆ ∩T = (0). Since T is a full ideal, we have
T = K⋆ for some ideal K of N . Therefore, by Lemma 3.2 we get (I ∩K)⋆ = I⋆ ∩K⋆ = (0) and so
I ∩K = (0). Since T ≪f Mn(N), by Lemma 3.13 (2), we have T⋆ = (K⋆)⋆ ≪ N . Since I ≤ge N ,
we get K = (0) which implies T = K⋆ = (0)⋆ = (0). Therefore, I⋆ ≤f

ge Mn(N).

3. Let P = {A E N : A ≤ge N} and Q = {A E Mn(N) : A ≤f
ge Mn(N)A is a full ideal }. Define

the mappings φ : P → Q by φ(A) = A⋆ and ψ : Q → P by ψ(A) = A⋆. Then the correspondence
follows, similar to the Lemma 3.9(3).

�

4. Generalised essential ideal graph

In this section, we introduce the notion of generalized essential ideal graph (in short, g-essential ideal
graph) of a module H over a nearring N (denoted as, Lg(H)). We derive properties such as diameter,
completeness based on a given N -group.

Definition 4.1. The g-essential ideal graph, Lg(H) of H, is a graph whose vertex set is the set of all
non-trivial ideals of H, and two distinct vertices A, B are adjacent if A+B ≤ge H.
Example 4.2.

1. If H is simple, then Lg(H) is a null graph.

2. Let N = ( Z2(t)
〈t3+t〉 ,+, ·) = {at2 + bt + c : a, b, c ∈ Z2}, and H = N . The non-trivial ideals of H are

〈t〉,〈t+ 1〉,〈t2 + t〉 and 〈t2 + 1〉. The ideal 〈t2 + t〉 is superfluous. Since 〈t2 + 1〉 ∩ 〈t2 + t〉 = (0), we
have 〈t2 + 1〉 is non-g-essential. The corresponding g-essential ideal graph is given in the Figure 1.

Figure 1: Lg( Z2(t)
〈t3+t〉 )

Example 4.3. Consider the nearring N = (Z2 × Z2 × Z2,+, ·) and N = H, where the addition is
carried out component-wise modulo 2 and the multiplication table is given in Table 1. For convenience,
the elements of Z2 × Z2 × Z2 are denoted as (0, 0, 0) = 0, (0, 0, 1) = 1, (0, 1, 0) = 2, (0, 1, 1) = 3,
(1, 0, 0) = 4, (1, 0, 1) = 5, (1, 1, 0) = 6, (1, 1, 1) = 7.
The non-trivial ideals are S1 = {0, 1, 4, 5}, S2 = {0, 1, 6, 7}, S3 = {0, 1, 2, 3} and S4 = {0, 1}. The only

non-zero superfluous ideal of H is S4 and Si ∩ S4 = S4 6= (0) for all 1 ≤ i ≤ 4. Therefore, all non-zero
ideals of H are g-essential. The g-essential ideal graph is given in the Figure 2.

Example 4.4. Let N = ( Z4(t)
〈t2+t〉 ,+, ·) = {at + b : a, b ∈ Z4}, and H = N . The non-trivial ideals of H

are 〈2〉,〈t〉,〈t + 1〉,〈t + 2〉,〈t + 3〉,〈2t〉 and 〈2t+ 2〉, and out of which the ideals 〈2〉, 〈2t〉 and 〈2t+ 2〉 are
superfluous. Since 〈t + 1〉 ∩ 〈2t〉 = (0), 〈t〉 ∩ 〈2t + 2〉 = (0) and 〈2t + 2〉 ∩ 〈2t〉 = (0), we have 〈t + 1〉,
〈t〉, 〈2t+ 2〉 and 〈2t〉 are non-g-essential ideals. The corresponding g-essential ideal graph is given in the
Figure 3.
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Table 1: Multiplication table of Z2 × Z2 × Z2

⋆ 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 1 0 1 0 0
3 0 0 0 1 0 1 0 0
4 0 0 0 0 1 1 1 1
5 0 0 0 0 1 1 1 1
6 0 0 0 1 1 0 1 1
7 0 0 0 1 1 0 1 1

Figure 2: Lg(Z2 × Z2 × Z2)

Example 4.5. Let N = Z2 ×Z2 ×Z2 with the multiplication table given in Table 2. Let N = H. Consider
the notations given in the Example 4.3.
The ideals are S1 = {0}, S2 = {0, 1, 4, 5}, S3 = {0, 1, 2, 3}, S4 = {0, 2, 4, 6}, S5 = {0, 4}, S6 = {0, 2},
S7 = {0, 1} and S8 = H. We have S2 + S6 = H, S3 + S5 = H and S4 + S7 = H. Therefore, all the non-
zero ideals are non-superfluous, and hence all ideals other than (0) are g-essential. The corresponding
g-essential ideal graph is given in the Figure 4.
Proposition 4.6.

1. If H has DCCI and contains only one minimal ideal, then Lg(H) is a complete graph.

2. Let A ∈ V (Lg(H)) be a universal vertex. If A �ge H, then A is a minimal ideal of H.

3. If H has a unique non-zero superfluous ideal, say B, then B is a universal vertex in Lg(H).

We denote Max(H) = {M : M is a maximal ideal of H}.
Theorem 4.7. [23] Let N = N0 and H be finitely generated. Then every proper ideal of H is contained
in a maximal ideal. In particular, H has a maximal ideal.
Proposition 4.8. Let H be a completely reducible N -group. Then

⋂

M∈Max(H)

M = (0).

Proof. Let B =
⋂

M∈Max(H)

M . On the contrary, suppose that B is non-zero. Since H is completely

reducible, we have B is a direct summand. Therefore, there exists a proper ideal S of H such that
B + S = H . As S 6= H and H is finitely generated, we get S ⊆ X for some X ∈ Max(H). Now since
B =

⋂

M∈Max(H)

M ⊆ X , we have H = B + S ⊆ B +X = X , a contradiction. Therefore, B = (0). �
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Figure 3: Lg( Z4(t)
〈t2+t〉 )

Table 2: The multiplication table of Z2 × Z2 × Z2

⋆ 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1
2 0 0 2 2 0 0 2 2
3 0 1 2 3 0 1 2 3
4 4 4 4 4 4 4 4 4
5 4 5 4 5 4 5 4 5
6 4 4 6 6 4 4 6 6
7 4 5 6 7 4 5 6 7

Proposition 4.9. If S ≤ge H, then S + P ≤ge H for any ideal P of H.

Proof. Let S ≤ge H and P EN H . To prove S+P is g-essential, let K ≪ H such that (S+P )∩K = (0).
Now S ∩ K ⊆ (S + P ) ∩ K = (0), implies S ∩ K = (0). Since S ≤ge H , we get K = (0). Therefore,
S + P ≤ge H . �

Lemma 4.10. Any proper g-essential ideal of H is a universal vertex in Lg(H).

Proof. Let A EN H which is proper and g-essential. Let B be a non-trivial ideal of H . We prove
A ∼ B ∈ E(Lg(H)). Since A ≤ge H , by Proposition 4.9, we haveA+B ≤ge H and soA ∼ B ∈ E(Lg(H)).
Since B is arbitrary, A ∼ B ∈ E(Lg(H)) for all B ∈ V (Lg(H)), we conclude that A is a universal vertex
in Lg(H). �

Proposition 4.11. Suppose that H is not simple. If
⋂

L∈Max(H)

L = (0), then Lg(H) is a complete graph.

In particular, if H is completely reducible, then Lg(H) is a complete graph.

Proof. Let B =
⋂

L∈Max(H)

L = (0). We claim that H has no non-zero superfluous ideals. Let K be a

non-zero ideal of H . Since K * B = (0), we have K * L for some L ∈ Max(H). Now L ( B + L ⊆ H
and L ∈ Max(H) imply B + L = H , which means B is not superfluous. Hence H has no non-zero
superfluous ideals and every proper ideal of H is g-essential. By Lemma 4.10, we have every proper
g-essential ideal is a universal vertex and hence Lg(H) is a complete graph. �
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Figure 4: Lg(Z2 × Z2 × Z2)

Proposition 4.12. Let B =
⋂

L∈Max(H)

L. If B 6= (0), then B is a universal vertex in Lg(H).

Proof. Let K ≪ H such that K ∩B = (0). Let P ∈ Max(H). Then P ⊆ P +K ( H implies P +K = P
or P + K = H . Since K ≪ H , we get P + K 6= H and so we have P + K = P , implies K ⊆ P .
Since P ∈ Max(H) is arbitrary, we have that K ⊆ L for every L ∈ Max(H). Hence K ⊆ B. Now
K = B ∩ K = (0). Therefore, B is a g-essential ideal of H . By Lemma 4.10, we get B is a universal
vertex. �

Proposition 4.13.

1. Every maximal ideal of H is a universal vertex in Lg(H).

2. Max(H) induces a clique Lg(H).

Proof. 1. Let K ∈ Max(H). Let (0) 6= L EN H be such that K ∩ L = (0). We prove that L is not
superfluous. Since L 6= (0) and K ∩ L = (0), we get L * K. Therefore, K ( K + L ⊆ H and
K ∈ Max(H), implies that L + K = H . So, L is not superfluous in H . Hence, K ≤ge H and by
Lemma 4.10, K is a universal vertex in Lg(H).

2. Follows from (1).
�

Proposition 4.14. Let P (H) be the set of all ideals J of H satisfying the the property that if J is
non-zero and maximal with respect to J ( K where K ∈ Max(H). Then P (H) induces a clique in
Lg(H).

Proof. Let L, T ∈ P (H).
Case (i) : Suppose that L and T are contained in K where K ∈ Max(H).
Then L + T ⊆ K. Clearly, L * T and T * L. Therefore, L + T 6= L and L + T 6= T . Now
L ( L + T ⊆ K and L ∈ P (H), imply L + T = K. By Proposition 4.13, we have K is g-essential, and
hence L ∼ T ∈ E(Lg(H)).
Case (ii) : Suppose that L and T are contained in two distinct maximal ideals Ki and Kj respectively.
Then L ⊆ Ki and T * Ki imply L + T * Ki. Similarly, L + T * Kj. If L + T ⊆ M for some

M ∈ Max(H), then L, T ⊆ M . Using case (i), we can show L ∼ T ∈ E(L
(
gH)). If L + T * M for some

M ∈ Max(H), then L+ T = H , and therefore, L ∼ T ∈ E(Lg(G)). �

Proposition 4.15. Lg(H) is an empty graph if and only if H has exactly one non-trivial ideal.

Proof. Suppose that Lg(H) is an empty graph. Then by Proposition 4.13, we get |Max(H)| = 1. Let
K ∈ Max(H). Suppose there exists a non-trivial ideal B 6= K of H . Then by the Proposition 4.13, we
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get B ∼ K ∈ E(Lg(H)), a contradiction, as Lg(H) is empty. Conversely, if H has exactly one non-zero,
non g-essential ideal, then Lg(H) = K1, an empty graph. �

Proposition 4.16. Lg(H) is a complete graph if and only if every non-zero, non-g-essential ideal is a
minimal.

Proof. Assume that every non-zero, non-g-essential ideal of M is a minimal ideal. To prove Lg(H) is a
complete graph, let A and B be two distinct vertices of Lg(H). Then A and B are two non-zero proper
ideals of H .
Case 1: Either A or B is g-essential. In this case, by Proposition 4.10, A ∼ B ∈ E(Lg(H)).
Case 2: Neither A nor B is g-essential. Since A and B are non-zero, from the hypothesis A and B
are minimal. Then (0) 6= A $ A + B, implies that A + B is not minimal. Again from the hypothesis,
A+B ≤ge H , and hence A ∼ B ∈ E(Lg(H)).
Conversely, suppose that Lg(H) is a complete graph. We prove every non-zero non-g-essential ideal
is a minimal ideal. On the contrary, let (0) 6= A �ge H which is not minimal. Then, there exists
(0) 6= B EN H such that B $ A. Since Lg(H) is complete, A ∼ B ∈ E(Lg(H)), which implies
A + B = A ≤ge H , a contradiction to the assumption. Thus, every non-zero, non-g-essential ideal is a
minimal ideal. �

Corollary 4.17. If every non-maximal ideal of H is a minimal ideal, then Lg(H) is a complete graph.

Proof. Follows from Proposition 4.13 and 4.16. �

Definition 4.18. Let A EN H. An ideal B of H is a g-complement of A in H if B is maximal with
respect to (A ∩B = (0) and B is superfluous in H).

Example 4.19. Consider the nearring N = (Z2 × Z2 × Z2,+, ·) where the addition is carried out
component-wise modulo 2 and the multiplication table is in the Table ??. Elements are denoted as given
in the Example 4.3. The ideals are I1 = H, I2 = {0, 2, 4, 6}, I3 = {0, 2, 1, 3}, I4 = {0, 2, 5, 7}, I5 = {0, 2},

⋆ 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 2 2
5 0 0 0 0 0 0 2 2
6 0 0 0 0 0 0 2 2
7 0 0 0 0 0 0 2 2

Table 3: The multiplication table of Z2 × Z2 × Z2

I6 = {0, 1} and I7 = {0}. The g-complement of I6 is I5.

Example 4.20. In Z4(t)
〈t2+t〉 given in Example 4.4, the ideal 〈2t〉 is a g-complement of both 〈t + 1〉 and

〈2t+ 2〉.

Lemma 4.21. Let A EN H and C be its g-complement. Then A+ C ≤ge H.

Proof. Let K ≪ H such that (A+C) ∩K = (0). Then A ∩ (C +K) = (0). We claim that C +K ≪ H .
Let D EN H such that (C +K) +D = H . Since C + (K + D) = H and C ≪ H , we have K +D = H .
Again, since K is superfluous in H , we get D = H . Therefore, C +K ≪ H . Since C is a g-complement
of A and C +K ≪ H satisfying A ∩ (C +K) = (0), we get a contradiction. Therefore, A+C ≤ge H . �

Proposition 4.22. Every non g-essential ideal of H is adjacent to its g-complement in Lg(H).
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Proof. Let A 6=ge H . Then there exists a non-zero superfluous ideal (0) 6= B ≪ H such that A∩B = (0).

Now by Zorn’s lemma, A has a non-zero g-complement, say A
′

. Then by Lemma 4.21, A + A
′

≤ge H .

Therefore, A ∼ A
′

∈ E(Lg(H)). �

Lemma 4.23. Let B ∈ V (Lg(H)). If degLg(H)B = 1, then either B is minimal or V (Lg(H)) = {A,B}
where A is a minimal ideal properly contained in B.

Proof. Suppose that B is not minimal. Then there exists a non-zero proper ideal, say A of H such
that A ( B. If B ≤ge H , then B is a universal vertex. Since degLg(H)B = 1, we get V (Lg(H)) =
{A,B}. Suppose B �ge H , then it has a non-zero g-complement, say C. Now B ⊕ C ≤ge H and also
B + (A⊕ C) ≤ge H . As B cannot be adjacent to two ideals, we get A⊕ C is equal to either C or H . If
A⊕C = C, then A = (0), a contradiction. If A⊕C = H , then B⊕C = H . Since both direct sums yield
H , we get A = B, a contradiction. �

Proposition 4.24. Lg(H) is a connected graph of diameter less than 3.

Proof. Since H is finitely generated, H has a maximal ideal, say K. By Proposition 4.13, K is a universal
vertex. Let A and B be two non-zero proper ideal of H which are not maximal. Then, since K is a
universal vertex, K ∼ A and K ∼ B are edges in Lg(H), which give a length 2 path from A to B.
Therefore, diam(Lg(H)) is less than or equal to 2. �

Proposition 4.25. If Lg(H) has exactly one universal vertex, then H has a unique proper essential
ideal.

Proof. Suppose Lg(H) has a unique universal vertex, say A. By Proposition 4.13 and from the hypothesis,
it is clear that Max(M) = {A}. If A is not minimal, then there exists (0) 6= B EN H such that B ( A.
Since A is a universal vertex, A ∼ B ∈ E(Lg(H)), which implies A + B = A ≤ge H . If A is minimal,
then we prove that A is g-essential. On the contrary, suppose A �ge H . Then there exists (0) 6= L EN H
such that J ∩ L = (0). Since A is minimal, we have L * A. By Theorem 4.7, we have L ⊆ P for some
P ∈ Max(H). Now, since A and P are maximal, we get A + P = H . Also, since A is minimal, we
get A ∩ P = (0). Then it can be easily verified that H is isomorphic to H

A
× H

P
. Since A and P are

maximal, H
A

and H
P

are simple. Therefore, the only non-trivial ideals of H
A

× H
P

are (0) × H
P

and H
A

× (0).
Hence, H has only two proper ideals, and Lg(H) = K2, which has two universal vertices, a contradiction.
Therefore, A is g-essential. �

Proposition 4.26. Let A be a non-zero proper ideal of H and B EN H. If A ∼ B ∈ E(Lg(H)), then
A ∼ K ∈ E(Lg(H)) for any proper ideal K of H which contains B.

Proof. Let (0) 6= K be a proper ideal of H such that B ⊆ K. Let P ≪ H such that (A+K) ∩ P = (0).
Then (A + B) ∩ P ⊆ (A + K) ∩ P = (0). Since A ∼ B ∈ E(Lg(H)), we have A + B ≤ge H , and so
P = (0). Therefore, A+K ≤ge H . Hence, A ∼ K ∈ E(Lg(H)). �

Definition 4.27. The proper g-essential ideal graph of H, denoted by Pg(H) is a subgraph of Lg(H),
induced by the ideals which are non-g-essential in H.

Definition 4.28. H is g-uniform if every (0) 6= I EN H is g-essential.
Note 1.

1. Every uniform N -group is g-uniform but the converse need not be true. For instance, a completely
reducible N -group is g-uniform but not uniform.

2. Pg(H) is a null graph if and only if H is g-uniform.
Proposition 4.29. Let H be an N -group in which every non-maximal ideal is a minimal ideal. Then
Pg(H) is an empty graph if and only if H has only one non-zero and non-g-essential ideal.

Proof. Suppose H has exactly one non-trivial and non-g-essential ideal. Then Pg(H) is an empty graph.
Conversely, suppose Pg(H) is an empty graph. We prove that H has only one non-zero and non-g-essential
ideal. On the contrary, suppose that H has two proper non-g-essential ideals, say A and B. Then A,
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B ∈ V (Pg(H)). Since every non-maximal ideal is a minimal ideal, by Corollary 4.17, we get that Lg(H)
is a complete graph, which implies A ∼ B ∈ E(Lg(H)). Since Pg(H) is an induced subgraph of Lg(H),
we get A ∼ B ∈ E(Pg(H)), a contradiction. Therefore, Pg(H) is an empty graph. �

Proposition 4.30. There exists a path between any two superfluous ideals in Pg(H).

Proof. Let I, J be two distinct superfluous ideals of H such that I, J ∈ V (Pg(H)). If I + J ≤ge H ,
then I ∼ J ∈ E(Pg(H)). Assume that I + J is not g-essential. Let SI , SJ be g-complements of I and J
respectively. Since I and J are superfluous ideals, we have that SI and SJ are not g-essential. Therefore,
SI , SJ ∈ V (Pg(H)). Also, by Lemma 4.21, we get I + SI ≤ge H and J + SJ ≤ge H . If I + SJ or J + SI

is g-essential, then either I ∼ SJ ∼ J or I ∼ SJ ∼ J is an IJ path. If neither J + SI nor I + SJ is
g-essential, then J +SI , I+SJ ∈ V (Pg(H)) and hence I ∼ J +SI ∼ I+SJ ∼ J is a path from I to J . �

5. Conclusion

We have defined g-essential ideal graph of an N -group. For a finitely generated N -group H , we have
shown that the maximal ideal is always a universal vertex and hence the g-essential ideal graph of such
N -groups is always connected with diameter not more than 2. We have obtained several properties of
g-essential ideal graphs based on the notions of connectivity, completeness etc. As future scope, we will
explore to study the lattice aspects and graph theoretical properties of essential elements and superfluous
elements as motivated by the authors in [26]. Furthermore, the notions discussed in this paper can be
extended to study the finite dimensional aspects in matrix nearrings.
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