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abstract: Purpose of this article is to examine some geometric features of Clairaut anti-invariant semi-
Riemannian submersions from para-Kaehler manifold to a Riemannian manifold. We give Lagrangian semi-
Riemannian submersion in para-Kaehler space froms. Then, we investigate under what conditions Clairaut
submersions can become anti-invariant semi-Riemannian submersions. After, we obtain conditions for totally
geodesic on vertical and horizontal distributions. We also supply a non-trivial example of Clairaut submersion.
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1. Introduction

Clairaut’s theorem specifies that for any timelike geodesic ζ on a surface of revolution M̄1, for ρ is the
distance from a point on the surface to the rotation axis, ρ cosh φ is constant along timelike geodesic ζ,

where φ is the angle between ζ and the meridian through ζ in the theory of surface. Allison in ( [3]) was
applied this opinion to the pseudo-Riemannian submersions ( [27]). He also presented a necessary and
sufficient condition for Clairaut submersions can become anti-invariant semi-Riemannian submersions
and the submersions have quirky implementations in static space-times.

Some researchers studies of C∞−submersion Φ from a (semi)Riemannian manifold (M̄1, gM̄1
) onto

a (semi)-Riemannian manifold (M̄2, gM̄2
), according to the circumstances on the map Φ : (M̄1, gM̄1

) →

(M̄2, gM̄2
) such as:

a (semi) Riemannian submersion ( [4], [12], [18], [26], [30]), an almost Hermitian submersion ( [32]), a
Clairaut submersion ( [6], [31], [24]), an anti-invariant submersion ( [13], [16,17], [25], [29], [23]), a conformal
anti-invariant submersion ( [1], [2]), a para-contact para-complex submersion ( [15]), a para-contact sub-
mersion ( [14]), a (para) quaternionic submersion ( [21], [9]), a H-anti-invariant submersion ( [28]), etc. As
we know that O’Neill ( [26]) and Gray ( [18]) were severally introduced Riemannian submersions in 1960s.
Especially, in ( [32]), Watson presented several differential geometric properties between total manifolds,
fibers and base manifolds by utilize the notion of almost Hermitian submersions. After that, there are
many consequences on this issue. As we know that Riemannian submersions are related to physics and
have their applications such as in the Kaluza-Klein theory ( [7], [19]), supergravity and superstring theo-
ries ( [20]), Yang-Mills theory ( [8]) and many more.

The paper is organized as follows. In part 2, we give brief information about semi-Riemannian
manifolds, para-Kaehler manifolds and distributions that are defined by the semi-Riemannian submersion.
In part 3, we give Lagrangian semi-Riemannian submersion in para-Kaehler space forms. In part 4, we
describe Clairaut anti-invariant semi Riemannian submersions and symbolize them as semi-Riemannian
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submersions which have totally umbilic fibers with a gradient field as mean curvature vector field. Finally,
we give a non-trivial example for Clairaut anti-invariant semi-Riemannian submersion.

2. Preliminaries

Let Φ : (M̄1, gM̄1
) → (M̄2, gM̄2

) be a semi-Riemannian submersion between two Riemannian mani-
folds. The map satisfies the following axioms:
1. Φ∗|q is onto for all q ∈ M̄1;

2. The fibers Φ−1(q̄), q̄ ∈ M̄2, are k− dimensional semi-Riemannian submanifolds of M̄1, where k =
dim(M̄1) − dim(M̄2).
3. Φ∗ preserves scalar products of vectors normal to fibres.

The tangent bundle T M̄1 of M̄1 has got an orthogonal decomposition

T M̄1 = kerΦ∗ ⊕ (kerΦ∗)⊥,

where kerΦ∗ is called the vertical distribution and (kerΦ∗)⊥ denotes its orthogonal distribution. A semi-
Riemannian submersion Φ : (M̄1, gM̄1

) → (M̄2, gM̄2
) specifies two tensor fields as T and A on M̄1, with

O’Neill formulas ( [26]):
TE1

E2 = h∇vE1
vE2 + v∇vE1

hE2 (2.1)

and
AE1

E2 = v∇hE1
hE2 + h∇hE1

vE2 (2.2)

for any E1, E2 ∈ χ(M̄1), where h and v are the horizontal and vertical projections respectively. It is
simple to see that AE1

and TE1
are skew-symmetric operators on the tangent bundle T M̄1 of the total

space M̄1 reversing the horizontal and the vertical distributions.
From (2.1) and (2.2), we obtain the followings:

∇E1
E2 = TE1

E2 + ∇̂E1
E2; (2.3)

∇E1
F1 = TE1

F1 + h(∇E1
F1); (2.4)

∇F1
E1 = AF1

E1 + v(∇F1
E1), (2.5)

∇F1
F2 = AF1

F2 + h(∇F1
F2), (2.6)

for any F1, F2 ∈ Γ((kerΦ∗)⊥), E1, E2 ∈ Γ(kerΦ∗). Besides, if F1 is fundamental vector field then we have
h(∇E1

F1) = h(∇F1
E1) = AF1

E1.

Let F1, F2 be horizontal and E1, E2 be vertical vector fields on M̄1. Then, we have the fundamental
tensor fields T, A as follows:

TE1
E2 = TE2

E1, E1, E2 ∈ Γ(kerΦ∗), (2.7)

AF1
F2 = −AF2

F1 =
1

2
v[F1, F2], F1, F2 ∈ Γ((kerΦ∗)⊥). (2.8)

Lemma 2.1. (see [12], [27])Let Φ : (M̄1, gM̄1
) → (M̄2, gM̄2

) be a semi-Riemannian submersion and

F1, F2 basic vector fields on M̄1. If Φ−related to F1∗ and F2∗ on M̄2, then we can say that the following
properties are valid:

1.h[F1, F2] is a fundamental and Φ∗h[F1, F2] = [F1∗, F2∗] ◦ Φ;
2.h(∇F1

F2) is a fundamental Φ−related to (∇∗
F1∗

F2∗), where ∇∗ and ∇ are respectively the Rieman-

nian connection on M̄2 and M̄1, ;
3.[E, E1] ∈ Γ(kerΦ∗), for every E1 ∈ Γ(kerΦ∗) and any vector field E .

Remark 2.1. Let Φ be a semi-Riemannian submersion from a semi-Riemannian manifold (M̄1, gM̄1
)

onto a Riemannian manifold (M̄2, gM̄2
). In this case, one can see that the main equations are the same

in the semi-Riemannian case( [5]).
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Let (M̄1, gM̄1
) and (M̄2, gM̄2

) be (semi) Riemannian manifolds and Φ : (M̄1, gM̄1
) → (M̄2, gM̄2

) is a
differentiable map. At that time, the second fundamental form of Φ is given by

(∇Φ∗)(E1, E2) = ∇Φ
E1

Φ∗E2 − Φ∗(∇E1
E2) (2.9)

for E1, E2 ∈ Γ(T M̄1). Remind that Φ is called harmonic if trace(∇Φ∗) = 0 and Φ is said to be a totally
geodesic map if (∇Φ∗)(E1, E2) = 0 for E1, E2 ∈ Γ(T M̄1) [22].

Let M̄1 be an almost para-Hermitian manifold equipped with a semi-Riemannian metric gM̄1
and an

almost para-complex structure P 6= ±I, where I is the identity map. Then, we have

P2 = I, gM̄1
(PE1, PE2) = −gM̄1

(E1, E2) (2.10)

for E1, E2 tangent to M̄1. The signature of gM̄1
is (n, n) and the dimension of M̄1 is even, where

dimM̄1 = 2n. Take into account an almost para-Hermitian manifold (M̄1, P, gM̄1
) and denote the Levi-

Civita connection by ∇ on M̄1 with respect to gM̄1
. If P is parallel with respect to ∇ then we can say

that M̄1 is said to be a para-Kaehler manifold, that means,

(∇E1
P)E2 = 0 (2.11)

for E1, E2 tangent to M̄1 [11].

Definition 2.2. ( [16]) Let (M̄1, P, gM̄1
) be an almost para-Hermitian manifold and (M̄2, gM̄2

) a (semi)

Riemannian manifold. Suppose that there exists a semi-Riemannian submersion Φ : M̄1 → M̄2 such that
kerΦ∗ is anti-invariant with respect to P, i.e., P(kerΦ∗) ⊆ (kerΦ∗)⊥. Then we say that Φ is an anti-
invariant semi-Riemannian submersion from an almost para-Hermitian manifold to a (semi) Riemannian
manifold.

We can see that P(kerΦ∗)⊥ ∩ (kerΦ∗) 6= 0, from Definition (2.2), If we indicate the complementary
orthogonal distribution to P(kerΦ∗) in (kerΦ∗)⊥ by η, then we can write

(kerΦ∗)⊥ = P(kerΦ∗) ⊕ η, Pη ⊂ η. (2.12)

Thus, for space-like vector field F1 ∈ Γ((kerΦ∗)⊥), we have

PF1 = µF1 + νF1, (2.13)

here µF1 ∈ Γ(kerΦ∗) and νF1 ∈ Γ(η). Moreover, we can write

T M̄2 = Φ∗(P(kerΦ∗)) ⊕ Φ∗(η). (2.14)

An anti-invariant semi-Riemannian submersion Φ is called a Lagrangian semi-Riemannian submersion
if P(kerΦ∗) = (kerΦ∗)⊥. So, if Φ is a Lagrangian semi-Riemannian submersion, then we have PF1 =
µF1, νF1 = 0, for any space-like vector field F1 ∈ Γ((kerΦ∗)⊥).

Let R4
2 be a semi-Euclidean space given with coordinates (z1, z2, z3, z4). Naturally, we can get an

almost para-complex structure P on R4
2 as given follows:

P(
∂

∂z1
) =

∂

∂z2
, P(

∂

∂z2
) =

∂

∂z1
, P(

∂

∂z3
) =

∂

∂z4
, P(

∂

∂z4
) =

∂

∂z3
.

Let R4
2 be a semi-Euclidean space with respect to the canonical basis ( ∂

∂z1

, ∂
∂z2

, ∂
∂z3

, ∂
∂z4

) and have signa-
ture (−, +, −, +).

Thus, we can give an example of anti-invariant semi-Riemannian submersions.
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Example 2.3. Let Φ be a map from semi-Euclidean space R̄4
2 to a Riemannian manifold R̄2

0 given by

Φ(z1, ..., z4) = (sinh az1 + cosh az2, sinh bz3 + cosh bz4).

By direct calculations, we have

kerΦ∗ = Span{E1 = − cosh a
∂

∂z1
+ sinh a

∂

∂z2
, E2 = − cosh b

∂

∂z3
+ sinh b

∂

∂z4
}

and

(kerΦ∗)⊥ = Span{F1 = − sinh a
∂

∂z1
+ cosh a

∂

∂z2
, F2 = − sinh b

∂

∂z3
+ cosh b

∂

∂z4
}.

We can easily see that Φ satisfies the conditions for being a semi-Riemannian submersion. Moreover,
PE1 = −F1, PE2 = −F2 imply that P(kerΦ∗) ⊆ (kerΦ∗)⊥. Consequently, Φ is an anti-invariant semi-
Riemannian submersion.

We note that kerΦ∗ is a time-like subspace and (kerΦ∗)⊥ is a space-like subspace of TqR̄4
2 for every

q ∈ R̄4
2.

Remark 2.2. In ( [5]), the authors stated the semi-Riemannian submersions from a semi-Riemannian
manifold (M̄1, gM̄1

) onto a Riemannian manifold (M̄2, gM̄2
).

That is why we have defined the Definition (2.2) anti-invariant semi-Riemannian submersions from an
almost para-Hermitian manifold onto a Riemannian manifold.

3. Lagrangian semi-Riemannian submersions in para-Kaehler space forms

Let (M̄2n
1 , P, gM̄1

) be a para-Hermitian manifold and (M̄2, gM̄2
) be a Riemannian manifold and let

Φ : M̄2n
1 → M̄2 be an anti-invariant Riemannian submersion. Then we call Φ a Lagrangian Rieman-

nian submersion, if dim(kerΦ∗) = dim(kerΦ∗)⊥. In this instance, the para-complex structure P of M̄1

reverses the horizontal and the vertical distributions, i.e., P(kerΦ∗)⊥ = kerΦ∗ and P(kerΦ∗) = (kerΦ∗)⊥.

The Riemannian curvature tensor of para-Kaehler space forms (M̄2n
1 (ν), P, gM̄1

) of constant para-
sectional curvature ν satisfies [10]

R1(E1, E2)E3 =
ν

4
{gM̄1

(E2, E3)E1 − gM̄1
(E1, E3)E2 (3.1)

+gM̄1
(PE2, E3)PE1

−gM̄1
(P E1, E3)P E2 + 2gM̄1

(E1, P E2)P E3}

for all non-null E1, E2, E3 ∈ (T M̄1).
Let Φ be a Lagrangian semi-Riemannian submersion from a para-Kaehler space form (M̄2n

1 (ν), P, gM̄1
)

to a Riemannian manifold (M̄2, gM̄2
). Suppose {X1, X2, ..., Xn} is a timelike orthonormal basis of the

vertical space kerΦ∗q, for q ∈ M̄1, and {X̄n+1, ..., X̄2n} be a spacelike orthonormal basis of the horizontal
space (kerΦ∗q)⊥.

We defined the scalar curvature τkerΦ∗ on the vertical space kerΦ∗q by

τkerΦ∗ = Σn
k,s=1ǫkǫsg

M̄1

(R̃(Xk, Xs)Xs, Xk).

We obtain g
M̄1

(Xk, Xs) = ǫkδks for every k, s (here ǫk ∈ {−1}).
Then, we can write

Tβ
ks = ǫkgM̄1

(T (Xk, Xs), Xβ), k, s = 1, ..., n, β = n + 1, ..., 2n,

‖T‖2 = Σn
k,s=1ǫkǫsgM̄1

(T(Xk, Xs), T(Xk, Xs)),

traceT = Σn
k=1ǫkT(Xk, Xk), ‖traceT‖2 = gM̄1

(traceT, traceT)
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and the squared norm of T over the manifold M̄1, denoted by C
kerΦ∗ , is called the vertical Casorati

curvatures of the vertical space (kerΦ∗)q. Thus, we get

C
kerΦ∗ =

1

n
‖T‖2 =

1

n
Σ2n

β=n+1Σn
k,s=1ǫkǫs(Tβ

ks)2.

Using (3.1) and Proposition 1.3 (i) of ( [4]) we have

2τkerΦ∗ =
ν

4
n(n − 1) + nCkerΦ∗ − ‖traceT‖2. (3.2)

From here, we obtain:

Theorem 3.1. Let Φ be a Lagrangian semi-Riemannian submersion from a para-Kaehler space form
(M̄2n

1 (ν), P, gM̄1
) to a Riemannian manifold (M̄2, gM̄2

)with 3 ≤ n. Then the vertical Casorati curvature
on the vertical space satisfies

C
kerΦ∗ = −

ν

4
(n − 1) +

1

n
‖traceT‖2 +

2

n
τkerΦ∗ .

Theorem 3.2. Let Φ be a Lagrangian semi-Riemannian submersion from a para-Kaehler space form
(M̄2n

1 (ν), P, gM̄1
) to a Riemannian manifold (M̄2, gM̄2

)with 3 ≤ n. We deduce that if the fibres are totally
geodesic, kerΦ∗ is Einstein.

Proof. Let’s remember that the trace of scalar curvature is Ricci curvature. Then, we get

S̃(E1, E2) =

n
∑

k=1

ǫkR̃(E1, Xk, Xk, E2)

for all timelike vector fields E1, E2 ∈ (kerΦ∗) and {X1, ...Xn} is timelike orthonormal basis on (kerΦ∗).
Then, if the fibres are totally geodesic, from (3.1) and Proposition 1.3 (i) of ( [4]), we obtain

S̃(E1, E2) =
ν

4
(n − 1)gM̄1

(E1, E2),

where S̃ is the scalar curvature of fibres. �

Lemma 3.3. Let Φ be a Lagrangian semi-Riemannian submersion from a para-Kaehler manifold
(M̄2n

1 , P, gM̄1
) to a Riemannian manifold (M̄2, gM̄2

). Then we have

AF1
PF2 = −AF2

PF1,

for any spacelike vector fields F1, F2 ∈ Γ((kerΦ∗)⊥).

Proof. For any spacelike vector fields F1, F2 ∈ Γ((kerΦ∗q)⊥), Since M̄1 is a para-Kaehler manifold and
using (2.5),(2.6) and (2.11) we have AF1

PF2 = PAF1
F2. By (2.8), we obtain PAF1

F2 = −PAF2
F1 =

−AF2
PF1. �

Proposition 3.4. Let Φ be a Lagrangian semi-Riemannian submersion from a para-Kaehler manifold
(M̄2n

1 , P, gM̄1
) to a Riemannian manifold (M̄2, gM̄2

). Then, the horizontal distribution (kerΦ∗)⊥ is inte-
grable.

Proof. For any spacelike vector fields F1, F2 ∈ Γ((kerΦ∗q)⊥), since AF1
F2 = 1

2 [F2, F1], it is sufficient to
show thatAF1

= 0. For spacelike vector fields F3 ∈ Γ((kerΦ∗)⊥), then using (2.6), (2.8),(2.10) and (2.11)
and Lemma (3.3), we get

gM̄1
(AF1

PF2, F3) = gM̄1
(AF2

PF1, F3) = −gM̄1
(∇F2

PF1, F3)

= −gM̄1
(P∇F2

F1, F3) = gM̄1
(∇F2

F1, PF3) = −gM̄1
(AF2

F1, PF3)

= gM̄1
(AF1

PF3, F1) = −gM̄1
(AF3

PF1, F2) = gM̄1
(AF3

F2, PF1)

= −gM̄1
(AF2

F3, PF1) = gM̄1
(AF2

PF1, F3) = −gM̄1
(AF1

PF2, F3).
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Thus AF1
PF2 = 0. Hence, we obtain AF1

= 0.

Since A vanishes, for any spacelike vector fields F1, F2, F3, F4 ∈ Γ((kerΦ∗q)⊥), using Proposition 1.3 (vi)
of ( [4]) we have

R1(F1, F2, F3, F4) = R∗(F1∗, F2∗, F3∗, F4∗) (3.3)

here we denote by R1, R∗ the Riemannian tensors of the metrics gM̄1
, gM̄2

, respectively. �

Using (3.1) and (3.3) we have:

Theorem 3.5. Let Φ be a Lagrangian semi-Riemannian submersion from a para-Kaehler space form
(M̄2n

1 (ν), P, gM̄1
) to a Riemannian manifold (M̄2, gM̄2

)with 3 ≤ n. Then the scalar curvature τ∗ on M̄2

satisfies

τ∗ =
ν

4
n(n − 1).

From (3.1) and (3.3) we obtain:

Theorem 3.6. Let Φ be a Lagrangian semi-Riemannian submersion from a para-Kaehler space form
(M̄2n

1 (ν), P, gM̄1
) to a Riemannian manifold (M̄2, gM̄2

)with 3 ≤ n. Then the base manifold M̄2 is Einstein.

4. Clairaut anti-invariant semi Riemannian submersions

Let (M̄1, gM̄1
) be a semi Riemannian manifold and (M̄2, gM̄2

) a Riemannian manifold. Let Φ :

(M̄1, gM̄1
) → (M̄2, gM̄2

) be a semi Riemannian submersion. Every horizontal vector field in TqM̄1 is

space-like. So, (kerΦ∗)⊥ is a space-like subspace and kerΦ∗ is a time-like subspace of TqM̄1 for every
q ∈ M̄1( [27]).

Suppose that ζ is a time-like geodesic in (M̄1, gM̄1
). Using the notation above, ζ̇ = Z = F1 + E1,

here F1 is horizontal and E1 is vertical. F1 is space-like and the time-like character of ζ implies E1 is
timelike. At each point ζ(r), we define φ(r) to be the hyperbolic angle between Z and E1, i.e., φ ≥ 0 is
the number satisfying

gM̄1
(Z, E1) = −|Z||E1| cosh φ (4.1)

where |Z|2 = −gM̄1
(Z, Z) and |E1|2 = −gM̄1

(E1, E1).
Let φ be the angle among a meridian and the velocity vector of a timelike geodesic. Clairaut’s relation

implies that ρ cosh φ is constant, where ρ is the distance to the axis of a surface of revolution. As we
know that this concept was defined by Allison in ( [3]), in the submersions theory. According to this
expression, a submersion Φ : M̄1 → M̄2 to be a Clairaut submersion if there is a function ρ : M̄1 → R+

such that for every timelike geodesic, making angles φ with the spacelike subspaces (kerΦ∗)⊥, ρ cosh φ is
constant.

Theorem 4.1. ( [3]) Let Φ : (M̄1, gM̄1
) → (M̄2, gM̄2

) be a semi Riemannian submersion with connected

fibers. Then Φ is a Clairaut submersion with ρ = eδ if and only if each fibre is totally umbilical and has
the mean curvature vector field H = −∇δ, here ∇δ is the gradient of the function δ with respect to gM̄1

.

From the above it follows that timelike geodesic on a surface creates the origin of the concept of
Clairaut submersion. Then, for a curve on the total space to be timelike geodesic we will try to find
necessary conditions.

Lemma 4.2. Let Φ be an anti-invariant semi-Riemannian submersion from a para-Kaehler manifold
(M̄1, P, gM̄1

) onto a Riemannian manifold (M̄2, gM̄2
). If ζ : J ⊂ R → M̄1 is a regular curve and E1(s)

and F1(s) are respectively the vertical and horizontal parts of the tangent vector field ζ̇(r) = Z of ζ(r),
then we can say that ζ is a timelike geodesic if and only if along ζ the followings hold:

v∇ζ̇µF1 + AF1
PE1 + TE1

PE1 + (AF1
+ TE1

)ZF1 = 0, (4.2)

and
h∇ζ̇ZF1 + h∇ζ̇PE1 + (AF1

+ TE1
)µF1 = 0. (4.3)
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Proof. From (2.11), we get
P∇ζ̇ ζ̇ = (∇ζ̇Pζ̇). (4.4)

Since ζ̇ = E1 + F1, we can write
P∇ζ̇ ζ̇ = (∇E1+F1

P(E1 + F1)). (4.5)

By direct computations, we get

P∇ζ̇ ζ̇ = (∇E1
PE1 + ∇E1

PF1 + ∇F1
PE1 + ∇F1

PF1).

Using (2.13), we have

P∇ζ̇ ζ̇ = (∇E1
PE1 + ∇E1

(µF1 + ZF1) + ∇F1
PE1 + ∇F1

(µF1 + ZF1)).

Using (2.3)−(2.6), we obtain

P∇ζ̇ ζ̇ = (h(∇ζ̇PE1 + ∇ζ̇ZF1) + (AF1
+ TE1

)(µF1 + ZF1)

+v∇ζ̇µF1 + AF1
PE1 + TE1

PE1).

if we take the vertical and horizontal parts of this equation, then we obtain

v∇ζ̇µF1 + AF1
PE1 + TE1

PE1 + (AF1
+ TE1

)ZF1 = vP∇ζ̇ ζ̇ (4.6)

and
h∇ζ̇ZF1 + h∇ζ̇PE1 + (AF1

+ TE1
)µF1 = hP∇ζ̇ ζ̇. (4.7)

From (4.6) and (4.7), we can easily see that ζ is a timelike geodesic if and only if (4.2) and (4.3) hold. �

Theorem 4.3. Let Φ be an anti-invariant semi-Riemannian submersion from a para-Kaehler manifold
(M̄1, P, gM̄1

) onto a Riemannian manifold (M̄2, gM̄2
). By then, Φ is a Clairaut submersion with ρ = eδ

if and only if along Φ the following equation is provided

gM̄1
(h∇ζ̇ZF1 + (AF1

+ TE1
)µF1, PE1) = gM̄1

(∇δ, F1)‖E1‖2, (4.8)

where E1(r) and F1(r) are severally the vertical and horizontal parts of the tangent vector field ζ̇(r) of
the timelike geodesic ζ(r) on M̄1..

Proof. Let ζ(r) be a timelike geodesic on M̄1, at that time, we get

|E1|2 = −gM̄1
(E1, E1) = −gM̄1

(Z, E1) = |Z||E1| cosh φ

and
|E1| = |Z| cosh φ. (4.9)

Squaring both sides of (4.9), we have

−gM̄1
(E1, E1) = |E1|2 = |Z|2 cosh2 φ = −gM̄1

(Z, Z) cosh2 φ.

So,
gM̄1

(E1, E1) = x cosh2 φ. (4.10)

Since ζ is a timelike geodesic, x = gM̄1
(Z, Z) is a negative constant. So, we have

gM̄1
(F1, F1) = −x sinh2 φ. (4.11)

Differentiating (4.10), we get

d

dr
gM̄1

(E1(r), E1(r)) = 2gM̄1
(∇ζ̇(r)E1(r), E1(r)) = 2x cosh φ sinh φ

dφ

dr
. (4.12)



8 Y. Gündüzalp and M. Polat

Thus, using (2.10) and (2.11), we obtain

−gM̄1
(h∇ζ̇(r)PE1(r), PE1(r)) = x cosh φ sinh φ

dφ

dr
. (4.13)

By (4.3), we arrive at along timelike geodesic ζ,

gM̄1
(h∇ζ̇ZF1 + (AF1

+ TE1
)µF1, PE1) = x cosh φ sinh φ

dφ

dr
. (4.14)

Moreover, Φ is a Clairaut submersion with ρ = eδ if and only if

d

dr
(eδ cosh φ) = 0 ⇔ eδ(

dδ

dr
cosh φ + sinh φ

dφ

dr
) = 0.

If we multiply the last equation by the non-zero factor x cosh φ, then we have

dδ

dr
x cosh2 φ + x cosh φ sinh φ

dφ

dr
= 0. (4.15)

Using (4.14) and (4.15), we have

gM̄1
(h∇ζ̇ZF1 + (AF1

+ TE1
)µF1, PE1) =

dδ

dr
(ζ(r))‖E1‖2. (4.16)

Since dδ
dr

(ζ(r)) = ζ̇[δ] = gM̄1
(∇δ, ζ̇) = gM̄1

(∇δ, F1), the claim (4.8) follows from(4.16). �

The fibers of Φ is called totally umbilical if

TE1
E2 = gM̄1

(E1, E2) H (4.17)

for any E1, E2 ∈ Γ(ker Φ∗), here H is the mean curvature vector field of the fiber of Φ [5].

Theorem 4.4. Let Φ be a Clairaut anti-invariant semi-Riemannian submersion from a para-Kaehler
manifold (M̄1, P, gM̄1

) onto a Riemannian manifold (M̄2, gM̄2
) with ρ = eδ. Then

AP E3
P F1 = −F1(δ)E3,

for timelike vector field E3 ∈ kerΦ∗ and spacelike vector field F1 ∈ η such that P E3 is fundamental.

Proof. Let Φ be a Clairaut anti-invariant semi-Riemannian submersion from a para-Kaehler manifold
(M̄1, P, gM̄1

) onto a Riemannian manifold (M̄2, gM̄2
) with ρ = eδ. If we crash equation (4.17) by P E3,

timelike vector field E3 ∈ kerΦ∗ such that P E3 is fundamental and from (2.3), then we have

gM̄1
(∇E1

E2, P E3) = −gM̄1
(E1, E2) gM̄1

(∇δ,P E3).

From (2.10), we get
gM̄1

(∇E1
P E3, E2) = gM̄1

(E1, E2) gM̄1
(∇δ,P E3).

Using (2.9) and (2.11), we have

−gM̄1
(∇E1

E3, P E2) = gM̄1
(E1, E2) gM̄1

(∇δ,P E3).

Using (2.3), we obtain

−gM̄1
(TE1

E3, P E2) = gM̄1
(E1, E2) gM̄1

(∇δ,P E3).

Using (4.17) in above equation, we get

gM̄1
(E1, E3)gM̄1

(∇δ, P E2) = gM̄1
(E1, E2) gM̄1

(∇δ,P E3). (4.18)
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If we take E1 = E3 and interchanging the role of E1 and E2, then we have

gM̄1
(E2, E2)gM̄1

(∇δ, P E1) = gM̄1
(E1, E2) gM̄1

(∇δ,P E2). (4.19)

Now, just taking E1 = E3 in (4.18), we get

gM̄1
(E1, E1)gM̄1

(∇δ, P E2) = gM̄1
(E1, E2) gM̄1

(∇δ,P E1). (4.20)

If we multiply (4.19) and (4.20), we get

gM̄1
(∇δ,P E1) =

g2
M̄1

(E1, E2)

‖E1‖
2

‖E2‖
2 gM̄1

(∇δ,P E1). (4.21)

On the other hand, using (2.10) and (2.11), we have

gM̄1
(∇E2

P E3, P F1) = gM̄1
(P ∇E2

E3, P F1) = −gM̄1
(∇E2

E3, F1),

for any spacelike vector field F1 ∈ η. Using (2.3) and (4.17), we get

gM̄1
(∇E2

P E3, P F1) = gM̄1
(E2, E3)gM̄1

(∇δ,F1). (4.22)

Since P E3 is fundamental and from h(∇E2
P E3) = AP E3

E2, we get

gM̄1
(h∇E2

P E3, P F1) = gM̄1
(AP E3

E2, P F1). (4.23)

From (4.22), (4.23) and the anti symmetry of A, we obtain

gM̄1
(AP E3

P F1, E2) = −gM̄1
(∇δ,F1)gM̄1

(E2, E3). (4.24)

Since AP E3
P F1, E2 and E3 are vertical and ∇δ is horizontal, then we have

gM̄1
(AP E3

P F1, E2) = gM̄1
(E2, −gM̄1

(∇δ,F1)E3).

Hence, we obtain
AP E3

P F1 = −gM̄1
(∇δ,F1)E3.

Therefore by using gM̄1
(∇δ,F1) = F1(∇δ), we get result. �

From Theorem (4.4), we can give the following results.

Corollary 4.5. Let Φ be a Clairaut anti-invariant semi-Riemannian submersion from a para-Kaehler
manifold (M̄1, P, gM̄1

) onto a Riemannian manifold (M̄2, gM̄2
) with ρ = eδ. If ∇δ ∈ PkerΦ∗, then either

the fibres of Φ are 1-dimensional or δ is constant on PkerΦ∗.

Corollary 4.6. Let Φ be a Clairaut anti-invariant semi-Riemannian submersion from a para-Kaehler
manifold (M̄1, P, gM̄1

) onto a Riemannian manifold (M̄2, gM̄2
) with ρ = eδ and ∇δ ∈ PkerΦ∗. If

dim(kerΦ∗) > 1, then the fibres of Φ are totally geodesic if and only if AP E3
P F1 = 0 for timelike

vector field E3 ∈ kerΦ∗ such that spacelike vector field F1 ∈ η and P E3 is fundamental.

Also, for a Lagrangian submersion we can give the following result:

Corollary 4.7. Let Φ be a Clairaut Lagrangian anti-invariant semi-Riemannian submersion from a para-
Kaehler manifold (M̄1, P, gM̄1

) onto a Riemannian manifold (M̄2, gM̄2
) with ρ = eδ. Then either the fibers

of Φ are totally geodesic or the fibres are 1-dimensional.

Proof. Let Φ be a Clairaut Lagrangian anti-invariant semi-Riemannian submersion from a para-Kaehler
manifold (M̄1, P, gM̄1

) onto a Riemannian manifold (M̄2, gM̄2
) with ρ = eδ. Then η = {0} . So,

AP E3
P F1 = 0 always. �
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Lastly, we give a non-trivial example for Clairaut anti-invariant semi Riemannian submersion from
a para Kaehler manifold.

Example 4.8. Let (M̄1, P, gM̄1
) be a para-Kaehler manifold equipped with semi-Euclidean metric gM̄1

on

M̄1 expressed as
M̄1 =

{

(x, y, z, w) ∈ R4
2 : (y, z, w) 6= 0, x 6= 0

}

.

we define the semi-Euclidean metric gM̄1
on M̄1 given by

gM̄1
= −e2xdx2 + e2xdy2 − dz2 + dw2.

Let M̄2 =
{

(x, t) ∈ R2
0

}

be a Riemannian manifold with Riemannian metric gM̄2
on M̄2 given by

gM̄2
= e2xdx2 + dt2.

Now, we define a map Φ :(M̄1, P, gM̄1
) → (M̄2, gM̄2

) by

Φ(x, y, z, w) = (sinh ax + cosh ay, w).

Then we find kerΦ∗ and (kerΦ∗)⊥ as follow:

kerΦ∗ = Span{E1 = −e−x cosh a
∂

∂x
+ e−x sinh a

∂

∂y
, E2 =

∂

∂z
}

(kerΦ∗)⊥ = Span{F1 = −e−x sinh a
∂

∂x
+ e−x cosh a

∂

∂y
, F2 =

∂

∂w
}.

It is easy to see that

gM̄1
(Fi, Fi) = gM̄2

(Φ∗Fi, Φ∗Fi) = 1

gM̄1
(P Ei, P Ei) = gM̄2

(Φ∗(P Ei), Φ∗(P Ei) = 1,

for i = 1, 2. Thus Φ is a Riemannian submersion. On the other hand, we obtain P E1 = −F1, P E2 = F2.

It is implies that P (kerΦ∗) ⊆ (kerΦ∗)⊥. Therefore, Φ is a anti-invariant semi-Riemannian submersion.
Now, we will find smooth function δ on M̄1 satisfying TEE = −gM̄1

(E, E) grad δ for E ∈ Γ (kerΦ∗) . We
can calculate that

∇E1
E1 = e−2x sinh a(sinh a

∂

∂x
− cosh a

∂

∂y
),

∇E2
E2 = 0,

∇E1
E2 = ∇E2

E1 = 0.

If we take E = k1E1 + k2E2 for k1, k2 ∈ R, then we have

TEE = k2
1TE1

E1 + 2k1k2TE1
E2 + k2

2TE2
E2.

From (2.7) and (2.3)-(2.6), by direct calculations, we have

TEE = k2
1e−2x sinh a(sinh a

∂

∂x
− cosh a

∂

∂y
).

Since E = k1E1 + k2E2, then by direct calculations, we have

gM̄1
(E, E) = −(k2

1 + k2
2).

On the other hand, for any smooth function δ on R4
2, the gradient of δ with respect to the metric gM̄1

is
given by

∇δ =
4

∑

i,j=1

g
ij

M̄1

∂δ

∂ui

∂

∂uj

= −e−2x ∂δ

∂x

∂

∂x
+ e−2x ∂δ

∂y

∂

∂y
−

∂δ

∂z

∂

∂z
+

∂δ

∂w

∂

∂w
.
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Thus, ∇δ =
k2

1

(k2

1
+k2

2
)
e−2x sinh a(sinh a ∂

∂x
− cosh a ∂

∂y
) for the function

δ = −
k2

1

(k2
1 + k2

2)
sinh a(sinh a.x + sinh a cosh a.y).

Therefore, we can easily see that TEE = −gM̄1
(E, E) grad δ. Hence Φ is a Clairaut anti-invariant

semi-Riemannian submersion.
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