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Stochastic Intervention Control of Mean-Field Jump System With Noisy Observation via
L-Derivatives With Application to Finance

Fatiha Korichi, Samira Boukaf and Mokhtar Hafayed

abstract: In this paper, we investigate stochastic optimal intervention control of mean-field jump system
with noisy observation via L-derivatives on Wasserstein space of probability measures We derive the necessary
conditions of optimality for partially observed optimal intervention control problems of mean-field type. The
coefficients depend on the state of the solution process as well as of its probability distribution and the control
variable. The proof of our main results are obtained by applying L-derivatives in the sense of Lions. In our
control problem, there are two models of jumps for the state process, the inaccessible ones which come from
the Poission process and the predictable ones which come from the intervention control Finally, we apply our
result to study conditional mean-variance portfolio selection problem with interventions, where the foreign
exchange interventions are intended to contain excessive fluctuations in foreign exchange rates and to stabilize
them.

Key Words: Stochastic optimal control, Probabilistic methods, stochastic differential equations;
Intervention control, Mean-field stochastic system with jumps, L-derivatives, Conditional mean-variance
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1. Introduction

Since the development of nonlinear filtering theory, stochastic control problems under partial observa-
tion have received much attention and became a powerful tool in many fields with important applications,
such as finance and economics, etc. In many situations, the states of the systems cannot be completely
observed; however, some other processes related to the unobservable states can be observed. Such sub-
jects have been discussed by many authors, such as Wang, Wu and Xiong [1], Wang, Zhang, and Zhang
[2], Wang, Wu and Xiong [3], Wang and Wu [4], Bensoussan and Yam [5], Wang, Shi and Meng [6],
Djehiche and Tembine [7], Lakhdari, Miloudi and Hafayed [8], Miloudi et al [9], Abada, Hafayed and
Meherrem [10].

General mean-field type stochastic differential equations (SDEs) are Itô’s stochastic differential equa-
tions, where the coefficients of the state equation depend on the time variable, the state of the solution
process as well as of its probability law. In his course at Collége de France [11], (refer to Cardaliaguet
[12] for the written version) P.L. Lions introduced and studied the innovative notion of new derivatives
with respect to measure over Wasserstein spaces. Strongly motivated by these works, Buckdahn, Li and
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Ma, [13] proved the necessary conditions for general mean-field systems. Stochastic maximum principles
for general mean-field models were later studied in [9,14,15].

Stochastic irregular (singular or impulse) control problems have received considerable attention in the
literature. There are numerous papers by different authors investigating the stochastic optimal singular
or impulse control problems, e.g., Cadenillas and Haussmann [16], Dufour and Miller [17], Hafayed and
Abbas [18], Zhang [19], Jeanblanc-Piqué [20], Korn [21], Wu and Zhang [22]. An extensive list of recent
references to singular control problem, with some applications in finance and economics can be found in
[18,23,24,25]. Optimal control problems for SDEs with jump processes have been investigated by many
authors, see for instance, [26,27,28,29,30]. A good account and an extensive list of references on jump
processes can be founded in [31] for a comprehensive theoretical study of the topic.

In the present paper, we study a new mean-field type intervention control problem. We establish a
new set of necessary conditions of optimal intervention control for general mean-field jump systems. Our
mean-field dynamic is governed by SDEs with a random measures and an independent Brownian motion,
with noisy observation. The coefficients of our mean-field dynamic depend nonlinearly on both the state
process as well as of its probability law. The control domain is assumed to be convex. The L-derivatives
with respect to probability measure and the associate Itô-formula are applied to prove our main results.
Noting that our general mean-field partially observed control problem occur naturally in the probabilistic
analysis of financial optimization problems. Our model of partially observed intervention control problem
play an important role in different fields of economics and finance, as conditional mean variance portfolio
selection problem with discrete movement in incomplete market. Also, optimal consumption and portfolio
problem under proportional transaction costs. Moreover, the exchange rate under uncertainty, where
government has two means of influencing the foreign exchange rate of its own currency:

1. At all times t the government can choose the domestic interest rate.
2. At selected times τ i the government, or bank can intervene in the foreign exchange market by selling
or buying large amounts of foreign currency.

In our model of mean-field control problem, there are two types of jumps for the state processes, the
inaccessible ones which come from the Poission process and the predictable ones which come from the
intervention control.

As an illustration, by applying our result, conditional mean-variance portfolio selection problem with
interventions with incomplete market is discussed. In financial markets three important objectives of
interventions: to influence the level of the exchange rate, to dampen exchange rate volatility or supply
liquidity to foreign exchange markets; and to influence the amount of foreign reserves. Banks intervene in
foreign exchange markets in order to achieve a variety of overall economic objectives, such as controlling
inflation, maintaining competitiveness or maintaining financial stability.

The rest of the paper is organized as follows. Sect. 2 begins with a formulation of the partially
observed control problem of general mean-field differential equations with Poisson jump processes. We
give the notations and definitions of the L-derivatives on the Wasserstein space via P.L. Lions sense and
assumptions used throughout the paper. In Sect. 3, we prove the necessary conditions of optimality
which are our main results. Conditional mean-variance portfolio selection problem with interventions is
also given in Sect. 4. At the end of this paper, some discussions with concluding remarks and future
developments are presented in the last Section.

2. Formulation of the problem and preliminaries

Spaces and notations. Let T is a fixed terminal time and (Ω,F,Ft,P) be a complete filtered probability
space on which are defined two independent standard one-dimensional Brownian motions W (·) and Y (·).
Let Rn is a n-dimensional Euclidean space, Rn×d the collection of n×d matrices. Let k(·) be a stationary
Ft-Poisson point process with the characteristic measure m (dθ) . We denote by η (dθ, dt) the counting
measure or Poisson measure defined on Θ×R+, where Θ is a fixed nonempty subset of R with its Borel σ-
field B (Θ) and set η̃ (dθ, dt) = η (dθ, dt) −m (dθ) dt satisfying

∫
Θ(1 ∧ |θ|

2
)m (dθ) < ∞ and m (Θ) < +∞.

Let FW
t , FY

t and F
η
t be the natural filtration generated by W (·), Y (·) and η(·, ·) respectively. We

assume that Ft = FW
t ∨ FY

t ∨ F
η
t ∨ N, where N denotes the totality of P-null sets. We denote by 〈·, ·〉

(resp. | · |) the scalar product (resp., norm), E (·) denotes the expectation on (Ω,F,Ft,P) . Throughout
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this work, we denote by L2 (Ft;R
n) the space of Rn-valued Ft-measurable random variable X, such

that E( |X |
2
) < +∞ and by M2 ([0, T ] ;R) : the space of R-valued Ft-adapted measurable process g(·),

such that E
∫ T

0

∫
Θ

|g(t, θ)|
2
m (dθ) dt < +∞. Let L2

(
F;Rd

)
be the Hilbert space with inner product

(X,Y )2 = E [X.Y ] ,where X,Y ∈ L2
(
F;Rd

)
and the norm ‖X‖

2
2 = (X,X)2 . Let X2

(
Rd

)
be the space of

all probability measures µ on
(
R

d,B
(
R

d
))

with finite second moment, i.e,
∫
Rd |x|

2
µ(dx) < +∞, endowed

with the following Wasserstein metric D2(·, ·); for µ, ν ∈ X2

(
Rd

)
,

D2(µ, ν) = inf
δ(·,·)∈X2(R2d)

{[∫

R2d

|x− y|
2
δ (dx, dy)

] 1

2

}
,

where δ (·, ·) ∈ X2

(
R2d

)
, δ

(
A,Rd

)
= µ (A) , δ

(
Rd, B

)
= v (B) . This distance is just the Monge-

Kankorovich distance when p = 2.

2.1. L-derivatives on the Wasserstein space

Now, we recall briefly the innovative notion of L-derivatives with respect to probability distribution
over Wasserstein spaces, which was studied by Lions [11], and Cardaliaguet [12] and the pioneering work
by Cardaliaguet et. al. [32] in their study of the so-called master equation in mean field game systems.
The main idea is to identify a distribution µ ∈ X2

(
Rd

)
with a random variables ϑ ∈ L2

(
F;Rd

)
so that

µ = Pϑ. To be more precise, we assume that probability space (Ω,F,Ft,P) is rich enough in the sense
that for every µ ∈ X2

(
R

d
)
, there is a random variable ϑ ∈ L

2
(
F;Rd

)
such that µ = Pϑ.

Definition 2.1 (Lift function) Let Φ be a given function such that Φ : X2

(
Rd

)
→ R. We define the lift

function Φ̃ : L2
(
F;Rd

)
→ R such that Φ̃ (Z) = Φ (PZ) , Z ∈ L2

(
F;Rd

)
.

Clearly, the lift function Φ̃ of Φ, depends only on the law of random variable Z ∈ L2
(
F;Rd

)
and is

independent of the choice of the representative Z.

Definition 2.2 A function f : X2

(
Rd

)
→ R is said to be differentiable at µ0 ∈ X2

(
Rd

)
if there exists

Z0 ∈ L2
(
F;Rd

)
with µ0 = PZ0

∈ X2

(
Rd

)
such that its lift function f̃ is Fréchet differentiable at Z0.

More precisely, there exists a continuous linear functional Df̃ (·) : L2
(
F;Rd

)
→ R such that

f̃ (Z0 + τ ) − f̃ (Z0) =
〈
Df̃ (Z0) , τ

〉
+ o (‖τ‖2) (2.1)

= Dτf (µ0) + o (‖τ‖2) ,

where 〈·, ·〉 is the dual product on L2
(
F;Rd

)
, and we will refer to Dτf (µ0) as the Fréchet derivative of

f at µ0 in the direction τ . In this case, we have

Dτf (µ0) =
〈
Df̃ (Z0) , τ

〉
=

d

dt
f̃ (Z0 + tτ )

∣∣∣∣
t=0

, with µ0 = PZ0
.

So,

Dτf (PZ0
) =

d

dt

[
f̃ (Z0 + tτ )

]∣∣∣∣
t=0

. (2.2)

From (2.2), then we obtain the following form of the Taylor expansion

f (PZ) − f (PZ0
) = Dαf (PZ) + E (τ) , (2.3)

where E (τ ) is of order o (‖τ‖2) with o (‖τ‖2) → 0 for τ (·) ∈ L2
(
F;Rd

)
.

By using the Riesz’ representation theorem, there is a unique random variable Z0 in the Hilbert space

L2
(
F;Rd

)
such that

〈
Df̃ (Z) , τ

〉
= (Z0, τ )2 = E [(Z0, τ)2] , where τ (·) ∈ L2

(
F;Rd

)
. It was shown, see

the works of Lions [11], see also Cardaliaguet [12], Buckdahn, Li, and Ma [13], that there exists a Boral
function ψ [µ0] : Rd → Rd, depending only on the law µ0 = PZ but not on the particular choice of the
representative Z such that Z0 = ψ [µ0] (Z) .



4 F. Korichi, S. Boukaf and M. Hafayed

Thus, we can write (2.1) as ∀ϑ ∈ L2(F;Rd).

f (Pϑ) − f (PZ) = (ψ [µ0] (Z) , ϑ− Z)2 + o (‖ϑ− Z‖2) .

We denote ∂µf (PZ , y) = ψ [µ0] (y) , y ∈ Rd. We note that for each µ ∈ X2

(
Rd

)
, ∂µf (PZ , ·) = ψ [PZ ] (·)

is only defined in a PZ (dx) − a.e sense, where µ = PZ .

Definition 2.3 (Space of differentiable functions in X2

(
Rd

)
). We say that the function f ∈ C

1,1
b

(
X2

(
Rd

))

if for all ϑ ∈ L2
(
F;Rd

)
, there exists a Pϑ-modification of ∂µf (Pϑ, ·) such that ∂µf : X2

(
Rd

)
×Rd → Rd

is bounded and Lipchitz continuous. That is for some C > 0, it holds that
(i) |∂µf (µ, x)| ≤ C, ∀µ ∈ X2

(
Rd

)
, ∀x ∈ Rd;

(ii) |∂µf (µ1, x) − ∂µf (µ2, y)| ≤ C (D2(µ1, µ2) + |x− y|) , ∀ µ1, µ2 ∈ X2

(
Rd

)
, ∀ x, y ∈ Rd.

We would like to point out that the version of ∂µf (Pϑ, ·) , ϑ ∈ L2
(
F;Rd

)
indicated in the above

definition is unique (see Buckdahn et al. [13] for more information).

Let (Ω̂, F̂, F̂t, P̂) be a copy of the probability space (Ω,F,Ft,P) . For any pair of random variable (ϑ1, ϑ2) ∈

L2
(
F;Rd

)
× L2

(
F;Rd

)
, we let (ϑ̂1, ϑ̂2) be an independent copy of (ϑ1, ϑ2) defined on (Ω̂, F̂, F̂t, P̂).

We consider the product probability space (Ω × Ω̂,F ⊗ F̂,Ft ⊗ F̂t,P⊗P̂) and setting (ϑ̂1, ϑ̂2)(w, ŵ) =

(ϑ1(ŵ), ϑ2(ŵ)) for any (w, ŵ) ∈ Ω × Ω̂. Let (û (t) , x̂ (t)) be an independent copy of (u (t) , x (t)) so that

Px(t)=P̂
x̂(t)

. We denote by Ê (·) = Ê
P̂

(·) the expectation under probability measure P̂ and PX = P◦X−1

denotes the law of the random variable X.

Let A1 be a closed convex subset of Rk and A2 := [0,+∞)
m
.

Definition 2.4. An admissible continuous control u (·) is an FY
t -adapted process with values in A1

satisfies supt∈[0,T ] (E |u(t)|
n
) < ∞, n = 2, 3, . . . . We denote by UY

1 the set of the admissible regular control
variables.

Definition 2.5. An intervention control is a stochastic irregular process ξ(·) of measurable A2−valued,
FY −adapted processes, such that the process ξ(·) : [0, T ] × Ω → A2 is non-decreasing continuous on the
right with left-limits, with bounded variation and ξ(0) = 0. Moreover, E(|ξ(T )|p) < ∞ for any p ≥ 2. We
denote by UY

2 the set of the admissible intervention control variables.

Definition 2.6. An admissible combined control is a pair (u(·), ξ(·)) of measurable A1 ×A2−valued,
FY −adapted processes, such that the process u(·) : [0, T ] × Ω → A1 is regular process satisfies Definition

2.4 and ξ(·) : [0, T ] × Ω → A2 is an intervention control given by Definition 2.5. We denote by UY
1 ×UY

2

the set of the admissible combined control variables.

2.2. Partially observed optimal intervention control Model

In this paper, we formulate this problem mathematically as a combined stochastic continuous con-
trol and irregular control problem. We study partially observed optimal stochastic intervention control
problem for systems governed by mean-field SDEs with correlated noisy between the system and the
observation, allowing both classical and intervention control of the form: t ∈ [0, T ]





dxu,ξ (t) = f(t, xu,ξ (t) ,P[xu,ξ (t)], u (t))dt+ σ(t, xu,ξ (t) ,P[xu,ξ (t)], u (t))dW (t)

+
∫

Θ g(t, xu,ξ (t−) ,P[xu,ξ (t−)], u (t) , θ)η̃ (dθ, dt)

+ c(t, xu,ξ (t) ,P[xu,ξ (t)], u (t))dW̃ (t) +G(t)dξ(t),

xu,ξ (0) = x0,

(2.4)

where P[xu,ξ (t)] = P◦
(
xu,ξ

)−1
denotes the law of the random variable xu,ξ. The mappings

f : [0, T ] × R
n × X2(Rd) × A1 → R

n

σ : [0, T ] × R
n × X2(Rd) × A1 → M(Rn×d)

c : [0, T ] × R
n × X2(Rd) × A1 → M(Rn×d)

g : [0, T ] × R
n × X2(Rd) × A1 × Θ → M(Rn×d)

G : [0, T ] → R
n
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are given deterministic functions.
Suppose that the state processes xu,ξ (·) cannot be observed directly, but the controllers can observe a
related noisy process Y (·), which is governed by the following equation

{
dY (t) = h(t, xu,ξ (t) , u (t))dt+ dW̃ (t)

Y (0) = 0,
(2.5)

where h : [0, T ] × Rn × A1 → Rr, and W̃ (·) is a stochastic process depending on the control u(·).
Consider the cost functional

J(u (·) , ξ(·)) = E
u

[∫ T

0

l(t, xu,ξ(t),P[xu,ξ (t)], u(t))dt (2.6)

+ψ(xu,ξ(T ),P[xu,ξ (t)]) +

∫

[0,T ]

M(t)dξ(t)

]
.

Where l : [0, T ] × Rn × X2 (R) × A1 → R, ψ : Rn × X2 (R) → R and Eu stands for the mathematical
expectation on (Ω,F,Ft,P

u) defined by

E
u(X) = EPu (X) =

∫

Ω

X(w)dPu(w).

In this paper, we shall make use of the following standing assumptions.
Assumption (H1) The maps f, σ, c, l : [0, T ] × R × X2 (R) × A1 → R and ψ : R × X2 (R) → R

are measurable in all variables. Moreover, f(t, ·, ·, u), σ(t, ·, ·, u), c(t, ·, ·, u), l(t, ·, ·, u), g(t, ·, ·, u, θ) ∈
C

1,1
b (R × X2 (R) ,R) and ψ (·, ·) ∈ C

1,1
b (R × X2 (R) ,R) for all u ∈ A1.

Assumption (H2) Let ϕ (x, µ) = f(t, x, µ, u), σ(t, x, µ, u), c(t, x, µ, u), l(t, x, µ, u), g(t, x, µ, u, θ), ψ(x, µ),
the function ϕ (·, ·) satisfies the following properties:
(1) For fixed x ∈ R and µ ∈ X2 (R) , the function ϕ (·, µ) ∈ C1

b (R) and ϕ (x, ·) ∈ C
1,1
b (X2

(
Rd

)
,R). All

the derivatives ϕx and ∂µϕ, for ϕ = f, σ, c, l, ψ are bounded and Lipschitz continuous, with Lipschitz
constants independent of u ∈ A1. Moreover, there exists a constants C (T,m(Θ)) > 0 such that

sup
θ∈Θ

|gx (t, x, µ, u, θ)| + sup
θ∈Θ

|∂µg (t, x, µ, u, θ)| ≤ C.

sup
θ∈Θ

|gx (t, x, µ, u, θ) − gx (t, x′, µ′, u, θ)| + sup
θ∈Θ

|∂µg (t, x, µ, u, θ) − ∂µg (t, x′, µ′, u, θ)|

≤ C [|x− x′| + D2(µ, µ′)] .

(2) The functions f, σ, c, g and l are continuously differentiable with respect to control variable u (·), and
all their derivatives are continuous and bounded. Moreover, there exists a constants C = C (T,m(Θ)) > 0
such that

sup
θ∈Θ

|gu (t, x, µ, u, θ)| ≤ C.

The function h is continuously differentiable in x and continuous in v, its derivatives and h are all
uniformly bounded which satisfies the following Novikov’s condition:

E

(
exp

[
1

2

∫ t

0

∣∣h(s, xu,ξ(s), u(s))
∣∣2

ds

])
< ∞. (2.7)

Assumption (H3) The functions G (·) : [0, T ] × Ω → R, and M (·) : [0, T ] × Ω → R+ are continuous
and bounded.
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Clearly, assumption (H3) allows us to define integrals of the form
∫

[0,T ] G(t)dξ(t) and
∫

[0,T ] M(t)dξ(t).

Moreover, under assumptions (H1), (H2) and (H3), for any (u (·) , ξ(·)) ∈ UY
1 ×UY

2 the mean-field equation
(2.4) admits a unique strong solution xu,ξ (t) given by

xu,ξ (t) = x0 +

∫ t

0

f(s, xu,ξ (s) ,P[xu,ξ (s)], u (s))ds+ σ(s, xu,ξ (s) ,P[xu,ξ (s)], u (s))dW (s)

+c(s, xu,ξ (s) ,P[xu,ξ (s)], u (s))dW̃ (s)

+

∫ t

0

∫

Θ

g(s, xu,ξ (s−) ,P[xu,ξ (s−)], u (s) , θ)η̃ (dθ, ds)

+

∫

[0,T ]

G(s)dξ(s).

We define the FY
t −martingale αu(t) which is the solution of the equation

{
dαu(t) = αu(t)h

(
t, xu,ξ(t), u(t)

)
dY (t),

αu(0) = 1.
(2.8)

This martingale allowed to define a new probability Pu on the space (Ω,F) , to emphasize the fact that
it depend on the control u (·) . It is given by the Radon-Nikodym derivative:

dPu

dP

∣∣∣∣
FY

t

= αu(t). (2.9)

From the linear equation (2.8), and by a simple computation, we can get

αu(t) = exp

[∫ t

0

h(s, xu,ξ(s), u(s))dY (s) −
1

2

∫ t

0

∣∣h(s, xu,ξ(s), u(s))
∣∣2

ds

]
. (2.10)

This type of equations are called Doléan-Dade’s exponential. We note that Eu(ϕ(X)) refers to the
expected value of Ψ(X) with respect to the probability law Pu. Moreover, since dPu = αu(t)dP, we have

E
u(ϕ(X)) = EPu (ϕ(X)) =

∫

Ω

ϕ(X(w))dPu(w),

=

∫

Ω

ϕ(X(w))αu(t)dP(w),

= EP(αu(t)ϕ(X)) = E [αu(t)ϕ(X)] .

Applying Itô’s formula, we can prove that supt∈[0,T ] E (|αu(t)|
n
) < +∞, n > 1. By Girsanov’s theorem

and assumptions (H1), (H2) and (H3), Pu is a new probability measure of density αu(t). The process

W̃ (t) = Y (t) −

∫ t

0

h(s, xu,ξ (s) , u (s))ds,

is a standard Brownian motion independent of B (·) and x0 on the new probability space (Ω,F,Ft,P
u) .

By Radon-Nikodym derivative (2.9), with the martingale property of αu(t), the cost functional (2.6) can
be written as

J(u(·), ξ(·)) = E

[∫ T

0

αu(t)l(t, xu,ξ(t),P[xu,ξ (t)], u(t))dt+ αu(T )ψ(xu,ξ(T ),P[xu,ξ (T )]) (2.11)

+

∫

[0,T ]

αu(t)M(t)dξ(t)

]
.

The main purpose of this paper is to prove stochastic maximum principle, also called necessary optimality
conditions for the partially observed optimal control of mean-field Poisson jumps.
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Notice that the jumps of a singular control ξ(·) at any time tj denote by ∆ξ(tj) = ξ(tj) − ξ(tj−) and we
define the continuous part of the intervention control by

|ξ| (t) = ξ(t) −
∑

0≤tj≤t

∆ξ(tj).

Here |ξ| (t) the process obtained by removing the jumps of ξ(t).
Throughout this paper, we distinguish between the jumps caused by the intervention control ξ(·) and

the jumps caused by the random Poisson measure at any jumping time t.The jumps of xu,ξ(t) caused by
the intervention control ξ(·) by

△ξx
u,ξ(t) = G(t)△ξ(t) = G(t)(ξ(t) − ξ(t−)), (2.12)

and the jumps of xu,ξ(t) caused by the Poisson measure of η̃(θ, t) by

△
η
xu,ξ(t) =

∫

Θ

g
(
t, xu,ξ(t−),P

[
xu,ξ(t−)

]
, u(t−), θ

)
η̃ (dθ, {t}) (2.13)

=

{
g

(
t, xu,ξ(t−),P[xu,ξ(t−)], u(t−), θ

)
: if ξ has a jump of size θ at time t.

0 : otherwise,

where η̃ (dθ, {t}) means the jump in the Poisson random measure, occurring at time t.
Finally, the general jump of the state processes xu,ξ(·) at any jumping time t is given by

△xu,ξ(t) = xu,ξ(t) − xu,ξ(t−) = △ξx
u,ξ(t) + △

η
xu,ξ(t). (2.14)

3. Necessary conditions for optimal intervention control in Wasserstein space

In this section, we prove the necessary conditions of optimality for our partially observed optimal
intervention control problem of general mean-field stochastic differential equations with jumps. The
proof is based on Girsanov’s theorem, the derivatives with respect to probability measure in Wasserstein
space and by introducing the variational equations with some estimates of their solutions.

3.1. Main results

Hamiltonian. We define the Hamiltonian

H : [0, T ] × R × X2 (R) × A1 × R × R × R × R × R → R,

associated with our control problem by

H(t, x, µ, u,Φ (t) , Q (t) , Q (t) ,K (t) , R (t, θ))

= l(t, x, µ, u) + f(t, x, µ, u)Φ (t) + σ(t, x, µ, u)Q (t)

+c(t, x, µ, u)Q (t) + h (t, x, u)K (t) +

∫

Θ

g (t, x, µ, u, θ)R (t, θ)m (dθ) . (3.1)

Adjoint equations. We are now ready to introduce two new adjoint equations that will be the building
blocks of the stochastic maximum principle and





−dΦ (t) =
[
fx (t) Φ (t) + Ê

[
∂µf̂ (t) Φ̂ (t)

]
+ σx (t)Q (t) + Ê

[
∂µσ̂ (t) Q̂ (t)

]

+cx (t)Q (t) + Ê

[
∂µĉ (t) Q̂ (t)

]
+ lx (t) + Ê

[
∂µ l̂ (t)

]

+
∫

Θ

[
gx (t, θ)R (t, θ) + Ê

[
∂µĝ (t, θ) R̂ (t, θ)

]]
m (dθ) + hx (t)K(t)

]
dt

−Q(t)dW (t) −Q(t)dW̃ (t) −
∫

Θ
R (t, θ) η̃ (dθ, dt) ,

Φ(T ) = ψx(x (T ) ,P [x(t)]) + Ê [∂µψ(x̂ (T ) ,P [x(T )] ;x(T ))] .

(3.2)
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and {
−dy(t) = l(t)dt− z (t) dW (t) −K (t) dW̃ (t) −

∫
Θ R (t, θ) η̃ (dθ, dt) ,

y(T ) = ψ(x(T ),P [x(t)]),
(3.3)

Clearly, under assumptions (H1) and (H2), it is easy to prove that BSDEs (3.3) and (3.2) admits a unique
strong solutions, given by

y(t) = ψ(x(T ),P [x(T )]) +

∫ T

t

l(s)ds−

∫ T

t

z (s) dW (s) −

∫ T

t

K (s) dW̃ (s)

−

∫ T

t

∫

Θ

R (s, θ) η̃ (dθ, ds) .

and

Φ (t) = ψx(x (T ) ,P [x(t)]) + Ê [∂µψ(x̂ (T ) ,P [x(t)] ;x(T ))] .

+

∫ T

t

[
fx (s) Φ (s) + Ê

[
∂µf̂ (s) Φ̂ (s)

]
+ σx (s)Q (s) + Ê

[
∂µσ̂ (s) Q̂ (s)

]

+cx (s)Q (s) + Ê

[
∂µĉ (s) Q̂ (s)

]
+ lx (s) + Ê

[
∂µl̂ (s)

]

+

∫

Θ

[
gx (s, θ)R (s, θ) + Ê

[
∂µĝ (s, θ) R̂ (s, θ)

]]
m (dθ) + hx (s)K(s)

]
ds

−

∫ T

t

Q(s)dW (s) −

∫ T

t

Q(s)dW̃ (s) −

∫ T

t

∫

Θ

R (s, θ) η̃ (dθ, ds) .

The main result of this paper is stated in the following theorem.

Theorem 3.1 Let assumptions (H1) and (H2) hold. Let (u∗(·), ξ∗(t), x∗(·)) be the optimal solution of
the control problem (2.4)-(2.6). Then there exists (Φ (·) , Q (·) , Q(·),K (·) , R (·, θ)) solution of (3.2)-(3.3)
such that for any (u, ξ) ∈ A1 × A2, we have P−a.s., a.e.t ∈ [0, T ] ,

0 ≤ E
u

[
Hu(t, x∗(t),P [x∗(t)] , u∗ (t) ,Φ (t) , Q (t) , Q (t) ,K (t) , R (t, θ)) (u (t) − u∗ (t)) | FY

t

]
(3.4)

+E
u

[∫

[0,T ]

(M(t) +G(t)Φ(t))d (ξ − ξ∗) (t) | FY
t

]
,

where the Hamiltonian function H is defined by (3.1).

3.2. Proof of main results

Double convex perturbation. To prove our main result, the approach that we use is based on a double
perturbation of the optimal control. This perturbation is described as follows:
Let (u(·), ξ(·)) ∈ UY

1 × UY
2 , be any given admissible control. Let ε ∈ (0, 1), and write

uε(·) = u∗(·) + εv(·) where v(t) = u(t) − u∗(t), (3.5)

and
ξε(t) = ξ∗(t) + εζ(t) where ζ(t) = ξ(t) − ξ∗(t), (3.6)

where ε a sufficiently small ε > 0. Here (uε(·), ξε(·)) is the so called convex perturbation of (u∗(·), ξ∗(·))
defined as follows: for any t ∈ [0, T ]

(uε(t), ξε(t)) = (u∗(t), ξ∗(t)) + ε [(u(t), ξ(t)) − (u∗(t), ξ∗(t))] ,

Denote by xε(·) = xuε,ξε

(·) the solution of (2.4) associated with (uε(·), ξε(·)) and by αε(·) the solution of
(2.8) corresponding to uε(·).

We denote by xε(·), x(·), αε(·), α(·) the state trajectories of (2.4) and (2.8) corresponding respectively
to uε(·) and u(·).
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Short-hand notation. For simplification, we introduce the short-hand notation

ϕ (t) = ϕ
(
t, xu,ξ(t),P[xu,ξ (t)], u(t)

)
,

ϕε (t) = ϕ(t, xε(t),P [xε(t)] , uε(t)),

and
g (t, θ) = g(t, xu,ξ(t−),P

[
xu,ξ(t−)

]
, u(t), θ), h (t) = h

(
t, xu,ξ(t), u(t)

)
,

gε (t, θ) = g(t, xε(t−),P [xε(t−)] , uε(t), θ), hε (t) = h (t, xε(t), uε(t)) ,

where g, h and ϕ = f, σ, c, l as well as their partial derivatives with respect to x and u.
Also, we will denote for ϕ = f, σ, c, l and g :

∂µϕ (t) = ∂µϕ (t, x(t),P [x(t)] , u(t); x̂(t)) ,

∂µϕ̂ (t) = ∂µϕ (t, x̂ (t) ,P [x̂(t)] , û (t) ;x(t)) ,

and
∂µg (t, θ) = ∂µg (t, x(t−),P [x(t−)] , u(t), θ; x̂(t)) ,

∂µĝ (t, θ) = ∂µg (t, x̂ (t) ,P [x̂(t−)] , û (t) , θ;x (t)) .

In order to prove our main result in Theorem 3.1, we present some auxiliary results
Lemma 3.2 Suppose that assumptions (H1), (H2) and (H3) hold. Then, we have

lim
ε→0

E

[
sup

0≤t≤T

|xε(t) − x∗(t)|
2

]
= 0. (3.7)

Proof Applying standard estimates, the Burkholder-Davis-Gundy inequality, and Proposition A1 (Ap-
pendix), we have

E

[
sup

0≤t≤T

|xε(t) − x∗(t)|2
]

≤ E

∫ t

0

|fε (s) − f∗ (s)|
2
ds+ E

u

∫ t

0

|σε (s) − σ∗ (s)|
2

ds

+ E

∫ t

0

|cε (s) − c∗ (s)|
2

ds+ E

∫ t

0

∫

Θ

|gε (s, θ) − g∗ (s, θ)|
2
m (dθ) ds

+ E

∣∣∣∣∣

∫

[0,t]

G(s)d (ξε − ξ∗) (s)

∣∣∣∣∣

2

,

According to the Lipschitz conditions on the coefficients f, σ, c and g with respect to x, µ and u, (assump-
tions (H2)-(H3)), we obtain the following estimation:

E

[
sup

0≤t≤T

|xε(t) − x∗(t)|
2

]
≤ CTE

∫ t

0

[
|xε(s) − x∗(s)|

2
+ |D2 (P [xε(s)] ,P [x∗(s)])|

2
]

ds

+ CT ε
2
E

∫ t

0

|uε(s) − u∗(s)|2 ds (3.8)

+ CT ε
2
E |ξε(T ) − ξ∗(T )|

2
.

Applying the definition of Wasserstein metric D2 (·, ·), we have

D2 (P[xε(s)],P[x∗(s)]) = inf

{[
E |x̃ε(s) − x̃∗(s)|2

] 1

2

, for x̃ε(·), x̃∗(·) ∈ L
2

(
F;Rd

)
,

P [xε(s)] = P [x̃ε(s)] and P [x∗(s)] = P [x̃∗(s)]}

≤
[
E |xε(s) − x∗(s)|

2
] 1

2

. (3.9)
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By Definition 2.2 and from (3.8) and (3.9), we get

E

[
sup

0≤t≤T

|xε(t) − x∗(t)|2
]

≤ CTE

∫ t

0

sup
r∈[0,s]

|xε(r) − x∗(r)|2 ds+ MT ε
2.

Finally, applying Gronwall’s inequality, the desired result (3.7) follows immediately by letting ε go to 0.
This achieve the proof of Lemma 3.2. �

Variational equations. Now, we introduce the following variational equations involved in the stochastic
maximum principle for our control problem





dZ(t) =
[
fx (t)Z(t) + Ê

[
∂µf (t) Ẑ (t)

]
+ fu(t)(u(t) − u∗(t))

]
dt

+
[
σx(t)Z(t) + Ê

[
∂µσ (t) Ẑ (t)

]
+ σu(t)(u(t) − u∗(t))

]
dW (t)

+
[
cx(t)Z(t) + Ê

[
∂µc (t) Ẑ (t)

]
+ cu (t) (u(t) − u∗(t))

]
dW̃ (t)

+
∫

Θ

[
gx(t, θ)Z(t) + Ê

[
∂µg (t, θ) Ẑ (t)

]
+ gu(t, θ)(u(t) − u∗(t))

]
η̃ (dθ, dt) ,

+G(t)d (ξ − ξ∗) (t),

Z(0) = 0,

(3.10)

and

{
dα1(t) = [α1(t)h(t) + α(t)hx(t)Z(t) + α(t)hu(t)(u(t) − u∗(t))] dY (t),

α1(0) = 0.
(3.11)

Under assumptions (H1) and (H2), equations (3.10) and (3.11) admits a unique adapted solutions Z (·)
and α1 (·), respectively.

Lemma 3.3 Suppose that assumptions (H1), (H2) and (H3) hold. Then, we have

lim
ε→0

sup
0≤t≤T

E

∣∣∣∣
xε(t) − x(t)

ε
− Z(t)

∣∣∣∣
2

= 0. (3.12)

Proof Let γε(t) = xε(t)−x∗(t)
ε

− Z(t), t ∈ [0, T ] . To simplify, we will use the following notations, for
ϕ = f, σ, c, l and g :

ϕλ,ε
x (t) = ϕx

(
t, xλ,ε (t) ,P [xε(t)] , uε(t)

)
,

gλ,ε
x (t, θ) = gx

(
t, xλ,ε (t) ,P [xε(t)] , uε(t), θ

)
,

∂λ,ε
µ ϕ (t) = ∂µϕ(s, xε(t),P

[
x̂λ,ε (t)

]
, uε(t); x̂(t)),

∂λ,ε
µ g (t, θ) = ∂µg(t, xε(t),P

[
x̂λ,ε (t)

]
, uε(t), θ; x̂(t)),

and

xλ,ε (s) = x∗ (s) + λε (γε (s) + Z (s)) ,

x̂λ,ε (s) = x∗(s) + λε(γ̂ε(s) + Ẑ (s)),

uλ,ε (s) = u∗ (s) + λεv (s) .
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By simple computations, we get

γε(t) =
1

ε

∫ t

0

[fε(s) − f∗(s)] ds+
1

ε

∫ t

0

[σε(s) − σ∗(s)] dW (s)

+
1

ε

∫ t

0

[cε(s) − c∗(s)] dW̃ (s) +
1

ε

∫ t

0

∫

Θ

[gε(s, θ) − g∗(s, θ)] η̃ (dθ, ds)

+
1

ε

∫

[0,t]

G(s)d (ξε − ξ∗) (s)

−

∫ t

0

[
fx(s)Z (s) + Ê

[
∂µf(s)Ẑ(s)

]
+ fu(s) (u(s) − u∗(s))

]
ds

−

∫ t

0

[
σx(s)Z(s) + Ê

[
∂µσ(s)Ẑ(s)

]
+ σu(s) (u(s) − u∗(s))

]
dW (s)

−

∫ t

0

[
cx(s)Z(s) + Ê

[
∂µc(s)Ẑ(s)

]
+ cu(s) (u(s) − u∗(s))

]
dW̃ (s)

−

∫ t

0

∫

Θ

[
gx(s, θ)Z(s) + Ê

[
∂µg (s, θ) Ẑ (s)

]
+ gu(s, θ) (u(s) − u∗(s))

]
η̃ (dθ, ds)

−

∫

[0,t]

G(s)d (ξ − ξ∗) (s).

Now, we decompose 1
ε

∫ t

0
[fε(s) − f∗ (s)] ds into the following parts

1

ε

∫ t

0

[fε(s) − f∗ (s)] ds

=
1

ε

∫ t

0

[f(s, xε(s),P [xε(s)] , uε(s)) − f(s, x∗(s),P [x∗(s)] , u∗(s))] ds

=
1

ε

∫ t

0

[f(s, xε(s),P [xε(s)] , uε(s)) − f(s, x∗(s),P [xε(s)] , uε(s))] ds

+
1

ε

∫ t

0

[f(s, x∗(s),P [xε(s)] , uε(s)) − f(s, x∗(s),P [x∗(s)] , uε(s))] ds

+
1

ε

∫ t

0

[f(s, x∗(s),P [x∗(s)] , uε(s)) − f(s, x∗(s),P [x∗(s)] , u∗(s))] ds.

We notice that

1

ε

∫ t

0

[fε(s) − f(s, x∗(s),P [xε(s)] , uε(s))] ds =

∫ t

0

∫ 1

0

[
fλ,ε

x (s) (γε(s) + Z(s))
]

dλds,

1

ε

∫ t

0

[fε(s) − f(s, xε (s) ,P [x∗(s)] , uε(s)] ds =

∫ t

0

∫ 1

0

Ê

[
∂λ,ε

µ f (s) (γ̂ε(s) + Ẑ (s))
]

dλds,

and

1

ε

∫ t

0

[f (s, x(s),P [x(s)] , uε(s)) − f(s, x∗(s),P [x∗(s)] , u∗(s))] ds

=

∫ t

0

∫ 1

0

[
fu

(
s, x(s),P [x(s)] , uλ,ε (s)

)
(u(s) − u∗(s))

]
dλds.

By applying similar method developed above, the analogue approachs hold for the coefficients σ, c and
g. Moreover, from (3.6), we obtain

1

ε

∫

[0,t]

G(s)d (ξε − ξ∗) (s) −

∫

[0,t]

G(s)d (ξ − ξ∗) (s) = 0.
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Now, we turn our attention to estimate γε(s), then we get

E

[
sup

s∈[0,t]

|γε(s)|
2

]
= C (t)E

[∫ t

0

∫ 1

0

∣∣fλ,ε
x (s) γε (s)

∣∣2
dλds

+

∫ t

0

∫ 1

0

Ê
∣∣∂λ,ε

µ f (s) γ̂ε (s)
∣∣2

dλds

+

∫ t

0

∫ 1

0

∣∣σλ,ε
x (s) γε (s)

∣∣2
dλds

+

∫ t

0

∫ 1

0

Ê
∣∣∂λ,ε

µ σ(s)γ̂ε (s)
∣∣2

dλds

+

∫ t

0

∫ 1

0

∣∣cλ,ε
x (s) γε (s)

∣∣2
dλds

+

∫ t

0

∫ 1

0

Ê
∣∣∂λ,ε

µ c(s)γ̂ε (s))
∣∣2

dλds

+

∫ t

0

∫

Θ

∫ 1

0

∣∣gλ,ε
x (s, θ) γε (s)

∣∣2
dλm (dθ) ds

+

∫ t

0

∫

Θ

∫ 1

0

Ê
∣∣∂λ,ε

µ g (s, θ) γ̂ε (s))
∣∣2

dλm (dθ) ds

]

+ C (t)E

[
sup

s∈[0,t]

|πε(s)|
2

]
,

where

πε(t) =

∫ t

0

∫ 1

0

[
fλ,ε

x (s) − fx (s)
]
Z(s)dλds

+

∫ t

0

∫ 1

0

Ê

[(
∂λ,ε

µ f (s) − ∂µf(s)
)
Ẑ(s)

]
dλds

+

∫ t

0

∫ 1

0

[
fu

(
s, x(s),P [x(s)] , vλ,ε (s)

)
− fu (s)

]
(u(s) − u∗(s)) dλds

+

∫ t

0

∫ 1

0

[
σλ,ε

x (s) − σx (s)
]
Z(s)dλdW (s)

+

∫ t

0

∫ 1

0

Ê

[(
∂λ,ε

µ σ(s) − ∂µσ(s)
)
Ẑ(s)

]
dλdW (s)

+

∫ t

0

∫ 1

0

[
σu

(
s, x(s),P [x(s)] , vλ,ε (s)

)
− σu (s)

]
(u(s) − u∗(s)) dλdW (s)
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+

∫ t

0

∫ 1

0

[
cλ,ε

x (s) − cx (s)
]
Z(s)dλdW̃ (s)

+

∫ t

0

∫ 1

0

Ê

[(
∂λ,ε

µ c(s) − ∂µc (s)
)
Ẑ(s)

]
dλdW̃ (s)

+

∫ t

0

∫ 1

0

[
cu

(
s, x (s) ,P [x(s)] , uλ,ε (s)

)
− cu (s)

]
(u(s) − u∗(s)) dλdW̃ (s)

+

∫ t

0

∫

Θ

∫ 1

0

[
gλ,ε

x (s, θ) − gx (s, θ)
]
Z(s−)dλη̃ (dθ, ds)

+

∫ t

0

∫

Θ

∫ 1

0

Ê

[(
∂λ,ε

µ g (s, θ) − ∂µg (s, θ)
)
Ẑ(s−)

]
dλη̃ (dθ, ds)

+

∫ t

0

∫

Θ

∫ 1

0

[
gu

(
s, x(s),P [x(s)] , uλ,ε (s) , θ

)
− gu (s, θ)

]
(u(s) − u∗(s)) dλη̃ (dθ, ds) .

Now, the derivatives of f, σ, c and g with respect to (x, µ, u) are Lipschitz continuous in (x, µ, u), we get

lim
ε→0

E

[
sup

s∈[0,T ]

|πε(s)|
2

]
= 0.

Note that since the derivatives of the coefficients f, σ, c and γ are bounded with respect to (x, µ, u), we
obtain

E

[
sup

s∈[0,t]

|γε(s)|
2

]
≤ C (t)

{
E

∫ t

0

|γε(s)|
2
ds+ E

[
sup

s∈[0,t]

|πε(s)|
2

]}
.

By applying Gronwall’s lemma, we obtain ∀t ∈ [0, T ]

E

[
sup

s∈[0,t]

|γε(s)|
2

]
≤ C (t)

{
E

[
sup

s∈[0,t]

|πε(s)|
2

]
exp

{∫ t

0

C (s) ds

}}
.

Finally, the proof of Lemma 3.3 is fulfilled by putting t = T and letting ε go to zero. �

Now, we introduce the following lemma which play an important role in computing the variational
inequality.

Lemma 3.4. Let assumption (H1) hold. Then, we have

lim
ε→0

sup
0≤t≤T

E

∣∣∣∣
αε(t) − α∗(t)

ε
− α1(t)

∣∣∣∣
2

= 0. (3.13)

Proof. From the definition of α∗ (·) and α1 (·), we obtain

α∗(t) + εα1(t) = α∗(0) +

∫ t

0

α∗(s)h∗(s)dY (s)

+ ε

∫ t

0

[α1 (s) h∗ (s) + α∗(s)hx (s)Z (s) + α∗(s)hu (s) (u (s) − u∗(s))] dY (s)

= α∗(0) + ε

∫ t

0

α1(s)h∗(s)dY (s)

+

∫ t

0

α∗ (s)h(s, x∗ (s) + εZ (s) , u∗ (s) + εv (s))dY (s)

− ε

∫ t

0

α∗(s) [ℓε
0(s)] dY (s),
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where

ℓε
0(s) =

∫ 1

0

[hx(s, x∗(s) + λεZ(s), u∗(s) + λεv(s)) − hx(s)]Z(s)dλ

+

∫ 1

0

[hu(s, x∗(s) + λεZ(s), u∗(s) + λεv(s)) − hu(s)] (u (s) − u∗(s))dλ.

Then, we have

αε(t) − α∗(t) − εα1(t)

=

∫ t

0

αε (s)hε (t) dY (s) − ε

∫ t

0

α1(s)h∗(s)dY (s)

−

∫ t

0

α∗(s)h (s, x∗ (s) + εZ (s) , u∗ (s) + εv (s)) dY (s) + ε

∫ t

0

α∗(s)ℓε
0 (s) dY (s)

=

∫ t

0

(αε (s) − α∗ (s) − εα1 (s))hε (s) dY (s)

+

∫ t

0

(α∗ (s) + εα1 (s)) [hε(s) − h (s, x∗(s) + εZ (s) , u∗ (s) + εv (s))]dY (s)

+ ε

∫ t

0

α1 (s)h(s, x∗ (s) + εZ (s) , u∗ (s) + εv (s))dY (s)

− ε

∫ t

0

α1 (s)h∗(s)dY (s) + ε

∫ t

0

α∗(s)ℓε
0 (s) dY (s)

=

∫ t

0

(αε (s) − α∗ (s) − εα1 (s))hε (s) dY (s)

+

∫ t

0

(α∗(s) + εα1(s))ℓε
1(s)dY (s) + ε

∫ t

0

α1(s)ℓε
2(s)dY (s)

+ ε

∫ t

0

α∗(s)ℓε
0(s)dY (s),

where

ℓε
1(s) = hε (s) − h (s, x∗ (s) + εZ (s) , u∗ (s) + εv (s)) , (3.14)

ℓε
2(s) = h(s, x∗ (s) + εZ (s) , u∗ (s) + εv (s)) − h∗(s).

From (3.14), we have

ℓε
1(s) =

∫ 1

0

[hx(s, x∗ (s) + εZ (s) + λ(xε (s) − x∗ (s) − εZ (s)), vε (s))]

×(xε (s) − x∗ (s) − εZ (s))dλ.

By Lemma 3.3, we have

E

∫ t

0

|(α∗(s) + εα1(s))ℓε
1(s)|

2
ds ≤ ε2C(ε), (3.15)

here C(ε) denotes some nonnegative constant such that C(ε) → 0 as ε → 0.
Moreover, it is easy to see that

sup
0≤t≤T

E

[
ε

∫ t

0

α∗(s)ℓε
0(s)dY (s)

]2

≤ ε2C(ε), (3.16)

and

sup
0≤t≤T

E

[
ε

∫ t

0

α1(s)ℓε
2(s)dY (s)

]2

≤ ε2C(ε). (3.17)
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From (3.15), (3.16) and (3.17), we get

E |(αε(t) − α∗(t)) − εα1(t)|
2

≤ C

[∫ t

0

E |(αε (s) − α∗ (s)) − εα1(s)|2 + E

∫ t

0

|(α∗ (s) + εα1 (s))ℓε
1(s)|2 ds

+ sup
0≤s≤t

E

(
ε

∫ t

0

α∗(s)ℓε
0(s)dY (s)

)2

+ sup
0≤s≤t

E

(
ε

∫ t

0

α1(s)ℓε
2(s)dY (s)

)2
]

≤ C

∫ t

0

E |αε(s) − α∗(s) − εα1(s)|
2

ds+ C(ε)ε2.

Finally, by using Gronwall’s inequality, the proof of Lemma 3.4 is complete. �

Lemma 3.5. Let assumption (H1), (H2) and (H3) hold. Then, we have

0 ≤ E

∫ T

0

[
α1 (t) l(t) + α∗ (t) lx(t)Z (t) + α∗(t)Ê [∂µl(t)]Z(t)

+ α∗(t)lu(t)(u (t) − u∗(t))] dt

+ E [α1 (T )ψ(x (T ) ,P [x(T )])] + E [α∗ (T )ψx(x (T ) ,P [x(T )])Z (T )]

+ E

[
α∗ (T ) Ê [∂µψ(x (T ) ,P [x(T )] ; x̂ (T ))]Z (T )

]
(3.18)

+ E

∫

[0,T ]

α∗ (t)M(t)d (ξ − ξ∗) (t).

Proof. From (2.6), we have

0 ≤
1

ε
[J (uε (t) , ξε(t)) − J (u∗ (t) , ξ∗(t))]

=
1

ε
[J (uε (t) , ξε(t)) − J (u∗ (t) , ξε(t))] (3.19)

+
1

ε
[J (u∗, ξε(t)) − J (u∗ (t) , ξ∗(t))]

= J1 + J2.

From (2.11), we get

J1 =
1

ε
[J (uε (t) , ξε(t)) − J (u∗ (t) , ξε(t))]

=
1

ε
E

∫ T

0

[αε(t)lε(t) − α∗(t)l(t)] dt (3.20)

+
1

ε
E [αε (T )ψ(xε (T ) ,P [xε(T )]) − α∗ (T )ψ(x∗ (T ) ,P [x∗(T )])] ,

and by simple computation, the second term J2 being

J2 =
1

ε
[J (u∗(t), ξε(t)) − J (u∗ (t) , ξ∗(t))] (3.21)

=
1

ε

[
E

∫

[0,T ]

α∗(t)M(t)dξε(t) −

∫

[0,T ]

α∗(t)M(t)dξ∗(t)

]
.

Using the Taylor expansion, Lemmas 3.3 and Lemma 3.4, we get

lim
ε→0

ε−1
E [αε (T )ψ(xε (T ) ,P [xε(T )]) − α∗ (T )ψ(x∗ (T ) ,P [x∗(T )])]

= E [α1(T )ψ(x(T ),P [x(t)]) + α∗(T )ψx(x(T ),P [x(T )])Z (T )] (3.22)

+ E

[
α∗ (T ) Ê [∂µψ(x(T ),P [x(t)] ; x̂(T ))]Z (T )

]
,
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and

lim
ε→0

ε−1
E

∫ T

0

[αε(t)lε(t) − α∗(t)l(t)] dt

= E

∫ T

0

[
α1(t)l(t) + α∗(t)lx(t)Z(t) + α∗(t)Ê [∂µl (t)] Ẑ(t) (3.23)

+ α∗(t)lu(t)(u (t) − u∗(t))] dt

From (3.6), and since ξε(t) − ξ∗(t) = ε(ξ(t) − ξ∗(t)), we get

J2 = lim
ε→0

1

ε

[
E

∫

[0,T ]

α∗(t)M(t)dξε(t) −

∫

[0,T ]

α∗(t)M(t)dξ∗(t)

]

= lim
ε→0

1

ε

[
E

∫

[0,T ]

α∗(t)M(t)d(ξε − ξ∗)(t)

]

= lim
ε→0

1

ε

[
E

∫

[0,T ]

εα∗(t)M(t)d(ξ − ξ∗)(t)

]
(3.24)

= E

∫

[0,T ]

α∗(t)M(t)d(ξ − ξ∗)(t).

Substituting (3.22), (3.23) and (3.24) into (3.19), the desired result (3.18) fulfilled immediately. This
achieve the proof of Lemma 3.5 . �

Let α̃(t) = α1(t)
α∗(t) then we have

{
dα̃(t) = {hx(t)Z(t) + hu(t)(u (t) − u∗(t))} dW̃ (t),

α̃(0) = 0,
(3.25)

Lemma 3.6 Let Φ(·) and Z (·) be the solutions of (3.2) and (3.10) respectively. Then we have

E
u [Φ (T )Z (T )] = E

u

∫ T

0

Φ (t) fu(t)(u (t) − u∗(t))dt+ E
u

∫ T

0

q(t)σu(t)(u (t) − u∗(t))dt

+E
u

∫ T

0

q(t)cu(t)(u (t) − u∗(t))dt − E
u

∫ T

0

Z (t) (lx (t) + Ê(∂µ l̂ (t)))dt

+E
u

∫ T

0

∫

Θ

R (t, θ) gu(t, θ)(u (t) − u∗(t))m (dθ) dt

+E
u

∫ T

0

Φ(t)G(t)d(ξ − ξ∗)(t), (3.26)

and

E
u [y (T ) α̃ (T )] = E

u

∫ T

0

k (t) [hx(t)Z(t) + hu(t)(u (t) − u∗(t))] dt.

−E
u

∫ T

0

α̃ (t) l(t)dt. (3.27)

Proof. By applying Itô’s formula to Φ (t)Z (t) , y (t) α̃ (t) and taking expectation respectively, where
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Z(0) = 0 and α̃(0) = 0, we obtain

E
u [Φ (T )Z (T )]

= E
u

∫ T

0

Φ (t) dZ (t) + E
u

∫ T

0

Z (t) dΦ (t)

+ E
u

∫ T

0

Q(t)
[
σx(t)Z(t) + Ê

[
∂µσ(t)Ẑ(t)

]
+ σu(t)(u (t) − u∗(t))

]
dt (3.28)

+ E
u

∫ T

0

Q(t)
[
cx(t)Z(t) + Ê

[
∂µc(t)Ẑ(t)

]
+ cu(t)(u (t) − u∗(t))

]
dt

+ E
u

∫ T

0

∫

Θ

R (t, θ)
[
gx(t, θ)Z(t) + Ê

[
∂µg (t, θ) Ẑ (t)

]
+ gu(t, θ)(u (t) − u∗(t))

]
m (dθ) dt

= I1 (T ) + I2 (T ) + I3 (T ) + I4 (T ) .

First, note that

I1 (T ) = E
u

∫ T

0

Φ (t) dZ (t)

= E
u

∫ T

0

Φ (t)
[
fx(t)Z(t) + Ê

[
∂µf(t)Ẑ(t)

]
+ fu(t)(u (t) − u∗(t))

]
dt

+ E
u

∫ T

0

Φ(t)G(t)d(ξ − ξ∗)(t), (3.29)

= E
u

∫ T

0

Φ (t) fx(t)Z(t)dt + E
u

∫ T

0

Φ (t) Ê
[
∂µf(t)Ẑ(t)

]
dt

+ E
u

∫ T

0

Φ (t) fu(t)(u (t) − u∗(t))dt+ E
u

∫ T

0

Φ(t)G(t)d(ξ − ξ∗)(t).

We proceed to estimate I2 (T ) , From equation (3.2), we have

I2 (T ) = E
u

∫ T

0

Z (t) dΦ (t)

= −E
u

∫ T

0

Z (t)
[
fx (t) Φ (t) + Ê

[
∂µf̂ (t) Φ̂ (t)

]
+ σx (t)Q(t) (3.30)

+ Ê

[
∂µσ̂ (t) Q̂(t)

]
+ cx (t)Q(t) + Ê

[
∂µĉ (t) Q̂(t)

]
+ lx (t) + Ê

[
∂µ l̂ (t)

]

+

∫

Θ

[
gx (t, θ)R (t, θ) + Ê

[
∂µĝ (t, θ) R̂ (t, θ)

]]
m (dθ) + hx (t)K(t)

]
dt.
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By simple computation, we have

I2 (T ) = −E
u

∫ T

0

Z (t) fx (t) Φ (t) dt− E
u

∫ T

0

Z (t) Ê
[
∂µf̂ (t) Φ̂(t)

]
dt

− E
u

∫ T

0

Z (t)σx (t)Q(t)dt− E
u

∫ T

0

Z (t) Ê
[
∂µσ̂ (t) Q̂(t)

]
dt

− E
u

∫ T

0

Z (t) cx (t)Q(t)dt − E
u

∫ T

0

Z (t) Ê
[
∂µĉ (t) Q̂(t)

]
dt (3.31)

− E
u

∫ T

0

Z (t) lx (t) dt− E
u

∫ T

0

Z (t) Ê
[
∂µ l̂ (t)

]
dt

− E
u

∫ T

0

∫

Θ

Z (t) gx (t, θ)R (t, θ)m (dθ) dt

− E
u

∫ T

0

∫

Θ

Z (t) Ê
[
∂µĝ (t, θ) R̂ (t, θ)

]
m (dθ) dt

− E
u

∫ T

0

Z (t)hx (t)K(t)dt.

Similarly, we can obtain

I3 (T ) = E
u

∫ T

0

Q(t)
[
σx(t)Z(t) + Ê

[
∂µσ(t)Ẑ(t)

]
+ σu(t)(u (t) − u∗(t))

]
dt (3.32)

+ E
u

∫ T

0

Q(t)
[
cx(t)Z(t) + Ê

[
∂µc(t)Ẑ(t)

]
+ cu(t)(u (t) − u∗(t))

]
dt,

and

I4 (T ) = E
u

∫ T

0

∫

Θ

R (t, θ)
[
gx(t, θ)Z(t) + Ê

[
∂µg (t, θ) Ẑ (t)

]
+ gu(t, θ)(u (t) − u∗(t))

]
m (dθ) dt. (3.33)

Now, by applying Fubini’s theorem, we obtain

E
u

∫ T

0

Φ (t) Ê
[
∂µf̂ (t) Ẑ (t)

]
dt = E

u

∫ T

0

Z (t) Ê
[
∂µf(t)Φ̂(t)

]
dt, (3.34)

E
u

∫ T

0

Q (t) Ê
[
∂µσ̂ (t) Ẑ (t)

]
dt = E

u

∫ T

0

Z (t) Ê
[
∂µσ(t)Q̂(t)

]
dt, (3.35)

E
u

∫ T

0

Q (t) Ê
[
∂µĉ (t) Ẑ (t)

]
dt = E

u

∫ T

0

Z (t) Ê
[
∂µc(t)Q̂(t)

]
dt, (3.36)

and

E
u

∫ T

0

∫

Θ

R (t, θ) Ê
[
∂µĝ (t, θ) Ẑ (t)

]
m (dθ) dt = E

u

∫ T

0

∫

Θ

Z (t) Ê
[
∂µg(t, θ)R̂ (t, θ)

]
m (dθ) dt. (3.37)

By substituting (3.29), (3.31), (3.32) and (3.33) into (3.28), with the helps of (3.34), (3.35), (3.36) and
(3.37) the desired result (3.26) follows immediately.

By applying Itô’s formula to y (t) α̃ (t) and taking expectation, we get

E
u [y (T ) α̃ (T )] = E

u

∫ T

0

y (t) dα̃ (t) + E
u

∫ T

0

α̃ (t) dy (t)

+ E
u

∫ T

0

K (t) {hx(t)Z (t) + hu(t)(u (t) − u∗(t))} dt (3.38)

= J1(T ) + J2(T ) + J3(T ),
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where,

J1(T ) = E
u

∫ T

0

y (t) dα̃ (t) (3.39)

= E
u

∫ T

0

y (t) (hx(t)Z(t) + hu(t)(u (t) − u∗(t))) dW̃ (t),

is a martingale with zero expectation. Moreover, by a simple computations, we get

J2(T ) = E
u

∫ T

0

α̃ (t) dy (t) = −E
u

∫ T

0

α̃ (t) l(t)dt, (3.40)

and

J3(T ) = E
u

∫ T

0

K (t) [hx(t)Z(t) + hu(t)(u (t) − u∗(t))] dt. (3.41)

Substituting (3.39), (3.40), (3.41), into (3.38), the desired result (3.27) fulfilled.
Proof of Theorem 3.1. From Lemma 3.5 and based on the fact that y (T ) = ψ(xu,ξ (T ) ,P[xu,ξ (T )]),

and Φ (T ) = ψx(xu,ξ (T ) ,P[xu,ξ (T )]) +Ê
[
∂µψ(x̂ (T ) ,P[x̂ (T )];xu,ξ(T ))

]
we have

0 ≤ E

∫ T

0

[
α1 (t) l(t) + α∗ (t) lx(t)Z (t) + α∗(t)Ê [∂µl(t)]Z(t) + α∗(t)lu(t)(u (t) − u∗(t))

]
dt

+ E [α1 (T ) y(T )] + E [α∗ (T ) Φ (T )Z (T )]

+ E

∫

[0,T ]

α∗ (t)M(t)d (ξ − ξ∗) (t). (3.42)

Since

E [α1 (T ) y(T )] = E [α∗ (T ) α̃ (T ) y(T )] = E
u [α̃ (T ) y (T )] ,

E [α∗ (T ) Φ (T )Z (T )] = E
u [Φ (T )Z (T )] ,

E

∫

[0,T ]

α∗ (t)M(t)d (ξ − ξ∗) (t) = E
u

∫

[0,T ]

M(t)d (ξ − ξ∗) (t).

Finally, by substituting (3.26) and (3.27) of Lemma 3.6 into (3.42), we get

0 ≤ E

∫ T

0

α∗(t)
[
Φ (t) fu(t) +Q (t)σu(t) +Q (t) cu(t)

+

∫

Θ

R (t, θ) gu(t, θ)m (dθ) +K(t)hu (t) + lu(t)

]
(u (t) − u∗(t))dt (3.43)

+ E

∫

[0,T ]

α∗ (t) (M(t) + Φ(t)G(t))d (ξ − ξ∗) (t).

This completes the proof of Theorem 3.1. �

4. Application: Conditional mean-variance portfolio selection problem associated with
interventions

In this section, we study a conditional mean-variance portfolio selection problem in incomplete market,
where the system is governed by Lévy measure associated with some Gamma process and an independent
Brownian motion. The Gamma process is a Lévy process (of bounded variation) (Γ(t))t≥0 , with Lévy
measure given by

µ(dx) =
e−x

x
χ{x>0}dx. (4.1)

It is called Gamma process because the probability law of Γ(·) is a Gamma distribution with mean t and
scale parameter equal to one. The Lévy measure µ(dx) dictates how the jumps occur.
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Let (Γ(t))t∈[0,T ] be a R-valued Gamma process, independent of the Brownian motion W (·). Assume that

the Lévy measure µ(dx) corresponding to the Gamma process Γ(·) has a moments of all orders. This
implies that

∫
(−δ,δ)c e|x|µ(dx) < ∞ for every δ > 0 and

∫
R
(x2 ∧ 1)µ(dx) < ∞. We assume that Ft is P−

augmentation of the natural filtration F
(W,Γ)
t defined as follows

F
(W,Γ)
t = FW

t ∨ σ {Γ(r) : 0 ≤ r ≤ t} ∨ F0,

where FW
t := σ {W (s) : 0 ≤ s ≤ t} , F0 denotes the totality of Pu−null sets and F1 ∨ F2 denotes the

σ-field generated by F1 ∪F2. We denote by ∆Γ(τ j) = Γ(τ j)−Γ(τ j−) the jump size at time τ j . We denote

by Γj(t) =
∑

0≤s≤t (∆Γ(s))
j

: j : 1, ..., n the power jump processes of Γ (·). By using Exponential formula

proved in Bertoin [33], we obtain

E
u

(
exp(iθΓj(t)

)
) = exp

[
t

∫ +∞

0

(exp(iθxj) − 1)
e−x

x
dx

]
.

Let Γ0(n) Gamma function defined by Γ0(n) =
∫ +∞

0 xn−1e−xdx, and ϕΓj(t)(t) : the moment generating

function ϕΓj(t)(t) = E
u(exp(tΓj (t))). Now, based on ϕ

(k)

Γj(t)(0) = E
u

((
Γj(t)

)k
)
, we deduce

E
u

(
Γj(t)

)
= ϕ

′

Γj(t)(0) = tΓ0(j) = (j − 1)!t : j : 1, ..., n

Now, we proceed to obtain Vu
ar

(
Γj(t)

)
, then we have

V
u
ar

(
Γj(t)

)
= E

u
[(

Γj(t)
)2

]
−

[
E

(
Γj(t)

)]2

= ϕ
′′

Γj(t)(0) −
[
ϕ

′

Γj(t)(0)
]2

= t

∫ +∞

0

x2j−1e−xdx

= tΓ0(2j), j : 1, ..., n,

Let

Lj(t) =
Γj(t) − Eu

(
Γj(t)

)

Vu
ar (Γj(t))

=

∑
0≤s≤t (∆Γ(s))j − (j − 1)!t

tΓ0(2j)
, j : 1, ..., n (4.2)

then we have Eu
(
Lj(t)

)
= 0 and Vu

ar

(
Lj(t)

)
= 1.

Derivatives with respect to measure in the sense of P.L. Lions. Let (Γ(t))t≥0 be Gamma process with
Lévy measure µ(·) given by (4.1). We give some examples.

1. If Φ (µ) =
∫
Rn ϕ(x)µ(dx) then the derivatives of Φ (µ) with respect to measure at z is given by

∂µΦ (µ) (z) =
∂ϕ

∂x
(z) .

2. If Φ (µ) =
∫
Rn ϕ(x, µ)µ(dx) then the derivatives of Φ (µ) with respect to measure at z is given by

∂µΦ (µ) (z) =
∂ϕ

∂x
(z, µ) +

∫

Rn

∂ϕ

∂µ
(x, µ) (z)µ(dx).

Conditional mean-variance portfolio selection problem with interventions. In this section, we study a con-
ditional mean-variance portfolio selection problem in incomplete market with interventions. As example,
foreign exchange interventions are conducted by monetary authorities (Bank or minister of finance) to
influence foreign exchange rates by buying and selling currencies in the foreign exchange market.

Suppose that we are given a mathematical market consisting of two investment possibilities:
A risk free security, (bond) where the price S0(t) evolves according to the ordinary differential equation:

{
dS0 (t) = γ0(It)S0 (t) dt, t ∈ [0, T ] ,

S0 (0) > 0,
(4.3)
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where It is a factor process with dynamics governed by a Brownian motion B(·), assumed to be non
correlated with the Brownian motion W (·). We shall assume that the natural filtration generated by the
observable factor process It is equal to the filtration FB

t generated by B(·). Notice that the market is
incomplete as the agent cannot trade in the factor process. The map γ0 (·) : [0, T ] → R+ is a locally
bounded continuous deterministic function.
A risky security (stock), where the price S1 (t) at time t is given by

{
dS1 (t) = S1 (t) [(ς(It) + γ0(It)) dt+ σ(It)dW (t)] + dξ(t) +

∑n
j=1 L

j(t),

S1 (0) > 0,
(4.4)

where Lj(t) is the power jump processes of Γ (·) given by (4.2).
Now, in order to ensure that S1 (t) > 0 for all t ∈ [0, T ] , we assume the functions ς(·) : [0, T ] → R, and
σ(·) : [0, T ] → R are bounded continuous deterministic maps such that

ς(It), σ(It) 6= 0 and ς(It) − γ0(It) > 0, ∀t ∈ [0, T ].

Let x(0) = x0 > 0 be an initial wealth process. By combining (4.3) and (4.4), we introduce the wealth
dynamic

{
dx(t) = γ0(It)(x(t) − ξ(t))dt + u(t) [ς(It)dt+ σ(It)dW (t)] + dξ(t) +

∑n
j=1 L

j(t),

x(0) = x0.
(4.5)

where γ0(It) : is the interest rate, ς(It) : is the excess rate of return, and σ(It) : the volatility (or the
dispersion) of the stock price with σ (It) ≥ ε for some ε > 0.are measurable bounded functions of It. The
process u = u(t) (the regular control process) represents the amount invested in the stock at time t, when
the current wealth is x(t) and based on the past partially observations FB

t of the factor process, ξ(t) is
the intervention control.
The objective of the agent is to minimize over investment strategies a cost functional of the form:

J (u(·), ξ(·)) = E
u

[
δ

2
V

u
ar (x(T ) − ξ(T ) | B(T )) − E

u(x(T ) − ξ(T ) | B(T ))

]
, (4.6)

for some δ > 0, with a dynamics for the wealth process x(t) controlled by the amount u(t).
If we denote z(t) = x(t) − ξ(t) −

∑η
j=1 L

j(t), then the dynamic (4.5) has the form:

{
dz(t) = γ0(It)z(t)dt+ u(t) [ς(It)dt+ σ(It)dW (t)] ,

z(0) = x0.
(4.7)

and the cost functional J (u(·), ξ(·)) has the form

J (u(·), ξ(·)) = E
u

[
δ

2
V

u
ar (z(T ) | B(T )) − E

u(z(T ) | B(T ))

]
, (4.8)

where Eu(z(t) | B(t)) is the conditional expectation and Vu
ar (z(t) | B(t)) is the conditional variance with

respect to Pu. We note that the law of total variance is given by

V
u
ar (z(t)) = V

u
ar (z(t) | B(t)) + V

u
ar [Eu(z(t) | B(t))] .

By applying similar arguments developed in Pham [14], Li and Zhou [34] the optimal intervention control
u∗(t) of (4.7)-(4.8) is given in feedback form:

u∗(t) =
ς(It)

σ2(It)
[Eu(z∗(t) | B(t)) − z∗(t)] (4.9)

+
ς(It)

σ2(It)ct

[
1

2
bt − atE

u (z∗(t) | B(t))

]
,
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where z(t) is given by Eq-(4.7), and at, bt ct satisfy the linear BSDEs: t ∈ [0, T ]





dat =
[

ς2(It)a2

t

σ2(It)ct
− 2γ0(It)at

]
dt+ Za

t dB(t), aT = 0.

dbt =
[

ς2(It)at

σ2(It)ct
− γ0(It)

]
dt+ Zb

t dB(t), bT = −1.

dct =
[

ς2(It)
σ2(It) − 2γ0(It)

]
ctdt+ Zc

t dB(t), cT = δ
2 .

(4.10)

The explicit solutions of the above equations are given by

at ≡ 0, ∀t ∈ [0, T ] ,

bt = E
u

[
− exp

∫ T

t

γ0(Is)ds | FB
t

]
.

ct = E
u

[
δ

2
exp

∫ T

t

(2γ0(Is) −
ς2(Is)

σ2(Is)
)ds | FB

t

]
; (4.11)

Hence, substituting (4.11) into (4.9) yields

u∗(t) =
ς(It)

σ2(It)

[
x0 exp

(∫ t

0

γ0(Iτ )dτ

)
− z∗(t) (4.12)

+
1

2

∫ t

0

ς2(It)

2σ2(It)

|bs|

cs

exp

(∫ t

0

γ0(Iτ )dτ

)
ds+

|bt|

ct

]
.

Finally, we deduce that the optimal control of the problem (4.5)-(4.6) is given in feedback form

u∗(t) =
ς(It)

σ2(It)


x0 exp

(∫ t

0

γ0(Is)ds

)
− x∗(t) + ξ(t) +

n∑

j=1

Lj(t) (4.13)

+
1

2

∫ t

0

ς2(It)

2σ2(It)

|bs|

cs

exp

(∫ t

0

γ0(Iτ )dτ

)
ds+

|bt|

ct

]
.

Now, let ξ∗(t) be FY
t −adapted process satisfies Theorem 3.1, then for any ξ(·) ∈ UY

2 we get

E
u

[∫

[0,T ]

(M(t) +G(t)Φ(t))dξ∗(t) | FY
t

]

≤ E
u

[∫

[0,T ]

(M(t) +G(t)Φ(t))dξ(t) | FY
t

]
.

We define a subset E⊂Ω × [0, T ] such that

E = {(t, w) ∈ [0, T ] × Ω : M(t) +G(t)Φ(t) > 0} , (4.14)

and let ξ(·) ∈ UY
2 defined by

dξ(t) =

{
0 : if (t, w) ∈ E,

dξ∗(t) : if (t, w) ∈ E,
(4.15)

where E is the complement of the set E. We denote by χE the indicator function of E. By a simple
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computations, we get

0 ≤ E
u

[∫

[0,T ]

(M(t) +G(t)Φ(t))d (ξ(t) − ξ∗(t)) | FY
t

]

= E
u

[∫

[0,T ]

(M(t) +G(t)Φ(t))χE(t, w)d (−ξ∗) (t) | FY
t

]

+E
u

[∫

[0,T ]

(M(t) +G(t)Φ(t))χ
E

(t, w)d (ξ∗ − ξ∗) (t) | FY
t

]

= −E
u

[∫

[0,T ]

(M(t) +G(t)Φ(t))χE(t, w)dξ∗(t) | FY
t

]
.

This implies that ξ∗(·) satisfies for any t ∈ [0, T ] :

E
u

[∫

[0,T ]

(M(t) +G(t)Φ(t))χE(t, w)dξ∗(t)

]
= 0.

From (4.14) and (4.15), we can easy shows that the optimal intervention control has the form:

ξ∗(t) = ξ(t) +

∫ t

0

χ
E

(s, w)ds, t ∈ [0, T ] .

Finally, we give the explicit optimal portfolio section strategy for systems governed by Lévy measure
associated with some Gamma process in feedback form by:

u∗(t, x∗) =
ς(It)

σ2(It)


x0 exp

(∫ t

0

γ0(Iτ )dτ

)
− x∗(t) + ξ(t) +

n∑

j=1

Lj(t)

+
1

2

∫ t

0

ς2(It)

2σ2(It)

|bs|

cs

exp

(∫ t

0

γ0(Iτ )dτ

)
ds+

|bt|

ct

]
.

ξ∗(t) =

∫ t

0

χ
E

(s, w)ds+ ξ(t), t ∈ [0, T ] .

Lj(t) =

∑
0≤s≤t (∆Γ(s))

j
− (j − 1)!t

tΓ0(2j)
, j : 1, ..., n.

5. Discussion and Conclusion

In this paper, a new set of general mean-field type necessary conditions for a class of optimal stochastic
intervention control problem for partially observed random jumps on Wasserstein space of probability
measures has been established. Girsanov’s theorem and the L-derivatives with respect to probability
law are applied to prove our main result. Conditional mean-variance portfolio selection problem with
interventions is investigated. In order to assess the effectiveness of interventions, it is helpful to identify
the motives of the government (or banks) activities in this area. Apparently, there are many problems left
unsolved, and one possible problem is to obtain some optimality conditions for partial observed stochastic
optimal intervention control for systems governed by general mean-field backward stochastic differential

equations with Lévy process with moments of all orders with some applications to finance.
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Appendix
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Proposition A1. Let G be the predictable σ−field on Ω × [0, T ], and g be a G × B(Θ)−measurable

function such that E
∫ T

0

∫
Θ |g (s, θ)|

2
m(dθ)ds < ∞, then there exists a two positive constants c1(T,m(Θ)),

and C2(T,m(Θ)) that depend only on T and m(Θ) such that

c1(T,m(Θ))E

[∫ T

0

∫

Θ

|g (r, θ)|
2
m(dθ)ds

]
≤ E

[
sup

0≤t≤T

∣∣∣∣
∫ t

0

∫

Θ

g (s, θ) η(dθ, ds)

∣∣∣∣
2
]

≤ C2(T,m(Θ))E

[∫ T

0

∫

Θ

|g (r, θ)|
2
m(dθ)ds

]
.

Proof. See Bouchard and Elie [26, Appendix ], Proposition 5.1, with p = 2).
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