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Numerical Simulation of Time-Dependent Viscous Fluid Flow with Upward and
Downward Fluctuation of Spinning Disk
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abstract: This research used a parametric approach to assess fluid flow across a gyrating disk under
magnetic fields and heat propagation processes. The governing equations, including Navier-Stokes, energy,
concentration, and Maxwell equations, were appropriately represented as a system of non-linear ODEs. Nu-
merical procedures, including the Parametric Continuation Method (PCM), were used to solve the equations,
and the findings were compared to another numerical Matlab scheme boundary value solver for scale relia-
bility purposes. Results, including the impact of convective boundary conditions, suction, and wall injection,
were presented in tabular and graphical forms. The spinning disk’s motion led to comparable findings in an
injection scenario and contributed to wall suction-like effects during downhill motion.
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1. Introduction

Heat and mass transference across a rotating disc is used in a variety of heat exchangers and electrical
equipment. Computer hardware for storage, thermal energy-producing systems, gas turbines, spinning
devices, geothermal industries, and many types of medical instruments are some of the uses of such
problems [1]. Fluid flow over a spinning disc is extremely significant since it is used in a wide range of
businesses, engineering, and scientific disciplines. Hafeez et al. [2] evaluated the magnetized flow of an
Oldroyd-B fluid across a revolving disc by employing the modified Fourier’s law rather than the standard
Fourier’s law. It has been discovered that when the relaxation time factor is increased, the fluid velocity
tends to decrease. Ahmadian et al. [3] addressed a 3D numerical analysis of an unstable nano liquid flow
with variable thermal conductivity produced by the upward/downward movement of a wavy rotating
disc. When associated to a flat superficial, the wavy revolving surface improves heat transference by
up to 15%. Khan et al. [4] used a non-linear radiative viscous fluid flow with slip conditions and mixed
convection across a stretchable spinning disc to investigate the influence of entropy production. Using
the Matlab algorithm boundary value solver (bvp4c) and a porous spinning disc, Li et al. [5] developed
fractional assessments for nano fluid flow with temperature and mass slip parameters. Zhou et al. [6]
developed a Maxwell fluid model utilizing Buongiorno’s formulation over a permeable turning disc with
a constant suction and injection impact. The mass propagation accelerates considerably as the ther-
mophoresis factor is enhanced, whereas radial and angular velocities reduce as the viscosity coefficient is
elevated. Tassaddiq et al. [7] designed an innumerable permeable spinning disc with an incompressible
nano fluid flow. Their goal was to improve our knowledge of energy depletion in industrial and technical
settings. The combination of CNTs and Fe3O4 nano fluids significantly improves the mass and thermal
energy diffusion rate, according to the findings.
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Maxwell’s equations are indeed a sequence of correlated PDEs that constitute the basis of classical con-
ventional optics and electromagnetism, together with the Lorentz force law. The equations serve as
a mathematical formula for optical, electric, and radio technology including power production, electric
motors, lenses, wireless communication, and radar, etc. They explain how currents, charges, and field
changes create magnetic and electric fields. The algorithms are renamed because James Clerk Maxwell,
a mathematician, and physicist, reported an early version of the equations in 1861, which contained
the Lorentz force law. A innovative theory of instability is presented, based on the similarities between
turbulent hydrodynamics and electromagnetism, to characterize the dynamic characteristics of fluid flow
[8]. Euler’s equation of motion, as well as the equations of continuity, vorticity, and entropy, control the
motion of a compressible ideal fluid. This system may be recast to resemble electromagnetism, which is
controlled by Maxwell’s equations with source terms. Fluid mechanics examples are used to illustrate
the importance of reformulation [9]. Luo et al. [10] and Yao et al. [11] addressed the massive asymptotic
behavior of the solutions of the Maxwell equations coupled with Navier–Stokes equations for the weak
deformation wave under tiny perturbations of starting data and a small dielectric constant. The con-
clusion is based on basic L2 energy techniques. Ahmadian et al. [12] examined the dynamics of Maxwell
nanofluid flow by computing the Maxwell equations along with the 3D Navier Stoke’s equations across
two gyrating discs. According to the findings, the disc stretching action opposes the flow behavior. Zhang
[13] has interpreted the Navier–Stokes–incompressible Maxwell’s system with the Ohm law, which may
be obtained from the Navier–Stokes–Maxwell two-fluid system, when the momentum transition constant
reaches zero. The technique is based on the electric and magnetic field’s decaying and dissipating char-
acteristics.
Complex nonlinear boundary value issues that are difficult to solve are common in the professional dis-
ciplines. For numerous issues that are typically handled by other quantitative techniques, progress is
sensitive to the relaxation variables and initial approach. The PCM’s purpose is to investigate the tech-
nique’s generalization as a viable nonlinear problem solution [14]. The 3D unsteady fluid and energy
conduction through the surface of a semi extensible spinning disc was highlighted by Shuaib et al. [15].
The fluid has been studied in the presence of a magnetic field from the outside. Shuaib et al. [16] found
the phenomenon of an ionic transitioning boundary layer flow across a swaying disc. The ionic compo-
sitions were calculated using the Poisson’s, Lorentz, and Navier Stokes equations. Wang et al. [17] used
a parametric continuation approach to offer consistency assessment of complex equations for engineering
purposes. They also focused on static bifurcation, which occurs while solving nonlinear starting value
problems with distinct characteristic roots, and developed a method for estimating the bifurcation points
quickly.
Keeping in view the above literature and its application in different sectors, we have modeled time-
dependent viscous fluid flow across a gyrating disk with upward and downward movement. The major
goal of this research is to study the fluid flow under the influence of magnetic fields and heat propagation
characteristics. The governing equations consisting of traditional Navier Stokes equation and Maxwell
equations have been studied. The governing equations are condensed to the system of non-linear ODEs
through the similarity approach. The acquired system of differential equations has been dealed via nu-
merical procedure (PCM). For reliability and validity purposes of the scheme, the outcomes are compared
to bvp4c. The numerical findings are provided in tabular and graphical forms. The next section explains
the mathematical formulation and solution framework.
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Figure 1: Fluid flow over a spinning disk

2. Mathematical Formulation

An unsteady, incompressible Newtonian fluid flow with up and downward fluctuation generated due
to spinning of the permeable infinite disk is examined. Figure 1 displays the flow mechanism due to
the up and downward movement of gyrating disk. The disk moves around the z-axis with Ω(t) (angular
velocity) is dependent on time. Initially, when t = 0, the disk is at a(0) = h, but then with some time
t the disk moves with vertical velocity w = a(t) to the position z = a(t). The dissipation of viscous
energy in a fluid flow is ignored and because an axisymmetric flow condition is assumed, derivatives
along the perpendicular direction have been ignored. The interface of a heated fluid heated the disc
surface having concentration and temperature (Cf & Tf ). While, far away from the surface of the disc
the ambient concentration and temperature are (C∞ & T∞). The modeled equations are rebound as
[12,13,14,15,16,17,18,19,20]:
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Where, C, T, Tm, cz, kT , D, cP , k, v, µ, p, ρ represent concentration, temperature, fluid mean
temperature, concentration susceptibility, thermal diffusion ratio, mass diffusivity, specific heat, thermal
conductivity, kinetic viscosity, dynamic viscosity, pressure, and fluid density respectively.
The boundary conditions are:























u = 0, v = rΩ, w = βa(t), −k(
∂T

∂z
) = h1(Tf − T ), −D(

∂C

∂z
) = h2(Cf − C),

Br = Bz = 0 at z = a(t),

u → 0, v → 0, w → 0, T → T∞, C → C∞, Br =
dM0

2R
, Bz = −αM0 as z → ∞

(2.9)

Where, β is the surface permeability, in which β = 1 show disk surface impermeability, β > 1 injection
and β < 1 suction effect of the disk surface. Furthermore, h1 and h2 are the constant heat and mass
transition.
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We derive the preceding series of ODEs by using Eq. (2.10) in Eqs. (2.1-2.8):
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The transform condition:
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2
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(2.19)

The dimensionless parameters and number are expressed as [18]:

Here, P r =
µcp

k
is the Prandtl number, S = 2aa′

v
is the disk contracting and expanding factor, Du = DTk
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is the Dufour number, Sr = DTk

vTm
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is the mass transition Biot number,
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D

is the mass transition Biot number, Γ = Ωa2

v
is the disk rotation term, and Sc = v

D
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Schmidt number.
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3. Problem Solution

The following steps demonstrate the fundamental notion of applying the (PCM) technique to a system
of ODEs (2.11-2.18) with their boundary conditions (2.19):
Step 1: Converting the BVP system to a first-order ODE system.
In order to do this, the following functions will be introduced.

{

f = ζ1, f ′ = ζ2, g = ζ3, g′ = ζ4, h = ζ5, h′ = ζ6, θ = ζ7, θ′ = ζ8,

ϕ = ζ9, ϕ′ = ζ10, m = ζ11, m′ = ζ12, m′′ = ζ13, n = ζ14, n′ = ζ15

(3.1)

Using transformation (3.1) into the BVP (2.11- 2.19), which have the following form:
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with the corresponding boundary conditions.















ζ1(0) = 0, ζ3(0) = ω, ζ5(0) = β
S

2
, ζ8(0) = −β1(1 − ζ7(0)), ζ10(0) = −β2(1 − ζ9(0)),

ζ12(η) → 0, ζ14(η) → 0 at η = 0,

ζ1(∞) → 0, ζ3(∞) → 0, ζ5(η) → 0, ζ7(∞) → 0, ζ9(∞) → 0, ζ12(η) → 0, ζ14(η) → 0 as η = ∞

(3.10)
Step 2: Equation (3.2 - 3.9) is modified by adding the embedded factor p:
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ζ′
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Step 3: Differentiating by parameter p

While differentiating Eqs. (3.11 - 3.18) for parameter p, come at the following system in terms of
parameter p:

V ′ = AV + R, (3.19)

where R and A is the remainder and coefficient matrix respectively.

V =
dζi

dτ
, i = 1, 2, ..., 11 (3.20)

Step 4: Use the superposition approach to each problem and characterize the Cauchy
problem

V = aU + W (3.21)

For each element, resolve the two Cauchy problems listed below.

U ′ = aU, (3.22)

W ′ = AW + R (3.23)

We get the approximate answer eq. (3.21)by plugging it into the original eq. (3.19).

(aU + W )′ = A(aU + W ) + R (3.24)

Step 5: Solving the Cauchy problems
This study employs a numerical implicit methodology, which is detailed below.

U i+1
− U i

∆η
= AU i+1, or U i+1(I − ∆ηA) = U i, (3.25)

W i+1
− W i

∆η
= AW i+1, or W i+1(I − ∆ηA) = W i (3.26)

we get the iterative form of the solution.

U i+1 = (I − ∆ηA)−1U i, (3.27)

W i+1 = (I − ∆ηA)−1(W i + ∆ηR), (3.28)
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4. Result and Discussion

The time-dependent viscous fluid flow across a gyrating disk with upward and downward fluctuation
has been studied via using a parametric approach. The results have been reported through Figures and
Tables.
Radial velocity profile:
Figure 2(a)-(d) elaborated the radial velocity profile versus contracting/ expanding term S, rotation
parameter Γ, injection parameter β, and suction parameter −β respectively. The radial velocity f(η) is
reduced with the contracting and relaxation S of the disk surface because the fluctuation of the surface
opposes the flow particles as shown in Figure 2(a). The improvement in disk rotation Γ encourages the
fluid particles and increases their kinetic energy as a result the radial velocity improves as elaborated
through Figure 2(b). Figure 2(c) and (d) expressed that the radial velocity f(η) enhances with the
injection β effect and reduces with the impact of suction −β force respectively. The injection effect
added with fluid flow enhances the radial velocity, while the suction effect opposes the fluid velocity.

Figure 2: Radial velocity profile f(η) versus (a) contracting/ expanding term S (b) rotation parameter
Γ (c) injection paramter β (d) suction parameter −β

Azimuthal velocity profile:
Figure 3(a)-(d) revealed the same behavior as Figure 2(a)-(d) versus contracting/ expanding term S, rota-
tion parameter Γ, injection parameter β, and suction parameter −β respectively. The azimuthal velocity
g(η) is reduced with the contracting and relaxation S of the disk surface because the fluctuation of the
surface opposes the flow particles as shown in Figure 3(a). The improvement in disk rotation Γ encour-
ages the fluid particles and increases their kinetic energy as a result the azimuthal velocity improves as
elaborated through Figure 3(b). Figure 3(c) and (d) expressed that the azimuthal velocity g(η) enhances
with the injection β effect and reduces with the impact of suction −β force respectively. The injection
effect added with fluid flow enhances the radial velocity, while the suction effect opposes the fluid velocity.
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Figure 3: Azimuthal velocity profile g(η) versus (a) contracting/ expanding term S (b) rotation parameter
Γ (c) injection parameter β (d) suction parameter −β

Temperature profile:
Figure 4(a)-(c) illustrated the behavior of energy profile θ(η) versus Dufour number Du, heat transference
Biot number β1, and Prandtl number P r respectively. Figure 4(a) and (b) improves the fluid thermal
energy profile against the Dufour number Du and heat transition Biot number β1 profile. Physically, the
kinetic viscosity and specific heat capacity of the fluid reduces with the increment of the Dufour number,
as a result, the fluid thermal energy θ(η) profile enhances. Figure 4(c) demonstrated the reducing trend
of temperature distribution versus Prandtl number. The specific heat capability and viscosity of fluid
increase with the action of Prandtl number, as a result, the thermal profile rises.

Figure 4: Temperature profile θ(η) versus (a) Dufour number Du (b) heat transfer Biot number β1 (c)
Prandtl number P r
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Concentration profile:
Figure 5(a)-(c) communicated the nature of energy profile ϕ(η) versus Schmidt number Sc, Soret number
Sr and mass transfer Biot number β2 respectively. Figure 5(a) and (b) manifested that the mass transition
rate declines with the action of Schmidt Sc and Soret number Sr. Because, the kinetic viscosity of fluid
increases with the effect of Schmidt number, as a result, mass propagation rate declines as exhibited
in Figure 5(a). The mass diffusivity rises with the increment of the Soret number, which causes the
declination in the mass transition profile ϕ(η) as appeared in Figure 5(b). On the other hand, mass
propogation profile improves with the consequences of mass transfer Biot number β2. The mass diffusivity
negatively effect with the mass transfer Biot number 2, which results in the elevation of mass propogation.

Figure 5: Concentration profile ϕ(η) versus (a) Schmidth number Sc (b) Soret number Sr (c) mass
transfer Biot number β2

Magnetic strength profile:
Figure 6(a)-(d) revealed the nature of magnetic strength profile along radial m′(η) and azimuthal n(η)
directions respectively. Figure 6(a) and (b) convey that the magnetic strength profile along radial m′(η)
direction versus the action of Batchlor number Bt enhances, while it reduces under the consequences
of Reynold number Re. The same phenomena has been observed in the azimuthal direction n(η) with
against same paramters.
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Figure 6: Radial m′(η) and azimuthal n(η) magnetic strength profile versus Batchlor Bt and Reynold
number Re

Table 1 elaborates the comparative analysis between the existing literature with the present work for
skin friction f ′(0) and −g′(0). For reliability and validity of the proposed method Table 2 is plotted.

Table 1: The comparative analysis of the outcomes with the published work for skin friction f ′(0) and
−g′(0)

[18] Present Work [18] Present Work
S β β Γ f ′(0) f ′(0) −g′(0) −g′(0)

-0.4 0.40732 0.40743 0.75172 0.75441
-0.2 0.44526 0.44612 0.68398 0.68476
0.0 0.48559 0.48876 0.161561 0.16321
1.0 0.58945 0.58987 0.44047 0.44153

1.1 0.69276 0.69367 0.25762 0.25981
2.0 0.54880 0.54912 0.50527 0.50712
3.0 0.55748 0.55834 0.45456 0.45490
4.0 0.56323 0.56452 0.40264 0.40312
5.0 0.56351 0.56564 0.31115 0.32243

0.0 0.53352 0.53382 0.57298 0.59321
-1 0.51515 0.51545 0.64065 0.67072
-2 0.49271 0.49342 0.0.71498 0.72578
-3 0.46663 0.46677 0.79640 0.81432
-4 0.43766 0.43321 0.88576 0.99567

1.0 0.54763 0.54799 0.51115 0.61123
1.5 0.95780 0.95998 1.00518 1.23211
2.0 1.43242 1.43773 1.59766 1.98230
2.5 1.96157 1.96287 2.27419 2.36711
3.0 2.53845 2.53782 3.02524 3.43212
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Table 2: The comparative analysis between PCM and bvp4c for −θ′(0)

PCM bvp4c
P r Du −θ′(0) −θ′(0)
6.7 0.11954 0.11944
6.9 0.12824 0.12813
7.1 0.13646 0.13635
7.3 0.14856 0.14600

0.3 0.15260 0.15120
0.4 0.14458 0.14321
0.5 0.13271 0.13173
0.6 0.12732 0.11012

5. Conclusion

In this work, we examined the time-dependent viscous fluid flow over a rotating disk with upward
and downward movement. The major goal of this research is to assess fluid flow under the influence
of magnetic fields and heat propagation processes. The results have been found out through numerical
procedure Parametric Continuation Method (PCM). For the scale reliability purpose, the outcomes are
compared to another numerical Matlab scheme boundary value solver. The following conclusion have
been made:
1) The radial velocity f(η) is reduced with the contracting and relaxation S of the disk surface because
the fluctuation of the surface opposes the flow. While, the improvement in disk rotation Γ encourages
the fluid particles and increases their kinetic energy as a result the radial velocity improves.
2) The fluid thermal energy profile θ(η) improves against the variation in Dufour number Du and heat
transition Biot number β1 profile.
3) The dynamic viscosity and specific heat capacity of fluid increases with the action of Prandtl number,
as a result, the thermal energy profile f(η) rises.
4) The mass transition rate declines with the action of Schmidt Sc and Soret number Sr. Because, the
kinetic viscosity of fluid increases with the effect of Schmidt number, as a result, mass propagation rate
declines.
5) The magnetic strength profile along radial m′(η) direction versus the action of Batchlor number Bt

enhances, while it reduces under the consequences of Reynold number Re.
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