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Fractional Navier-Stokes Equations With Delay Conditions

M. H. Ben tahir , S. Melliani , M. Elomari

abstract: Throught this paper,we study the cauchy problem for the conformable fractional Navier-Stokes
Equations (FNSE) with finite delay external forces, contains some hereditary features, on a bounded domain.
We prove the existence and uniqueness of local mild solutions for the initial datum by using semigroup theory,
conformable fractional calculus and Banach contraction theorem. In the end, with more conditions on delay
external forces, we establish the globality and continuation of the mild solutions.

Key Words: Conformable Fractional Derivative, Navier-Stokes equations, Fractional power of op-
erator.
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1. Introduction

In fact, there are many researches dealing with the local or global existence of mild solutions of the
Cauchy problem for the Navier Stokes equations (NSE). In spite of the variation of researches about this,
approaches to study this problems remains the same, the basic principal of this approaches is to transform
the Navier-Stokes equations, with the finite delay external force f , charachterised by hereditary qualities
related not only with the present state, but also on the past history of the system. The first mathematical
study of NSE was carried by J. Leray [9]. In 2001, T. Caraballo and al. [2] was the first to consider
several situations of ordinary NSE in which the external force contains some hereditary features and
prove existence of solutions. After, the study of model with time fractional differential [3, 13, 14], become
more advanced than the ordinary model [4, 7, 12], in the field of science and engineering researchers and
applications.
In our work, we study the local existence and globality of mild solutions for time fractional NSE with
finite delayed external forces in R3 with conformable fractional derivative. We find the existence result
by using the Banach contraction mapping principle and fractional power of operators.
This paper will deal with the following sections. In section 2, we make a recapitulation of some basic
facts on the conformable fractional calculus and Fractional Laplace transform, the other sections are
specified for proving the mains results: Existence, uniqueness of mild solutions and example of delayed
force function to illustrate our existence result in section 3, and globality of mild solution in section 4.
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2. Preliminaries

The system model presented as follows:
Let B ⊂ R3 be a bounded domain with regular boundary ∂B.















Dα
t v − ∆v + (v · ∇)v = −∇p+ f (t, vt) , t > 0, x ∈ B

∇ · v = 0, t > 0, x ∈ B

v|∂B = 0, t > 0,
v(x, t) = ϕ(x, t), −a ≤ t ≤ 0, x ∈ B,

(2.1)

such that:
•v = v(., t) = (vi(., t), vj(., t), vk(., t)) is the velocity of the fluid,
•p = p(x, t) is the associated pressure,
•vt(s) = v(t+ s),−a ≤ s ≤ 0, f is an external force related to vt,
•ϕ is the initial datum in the delayed interval [−a, 0],
•Dα

t v is the conformable fractional derivative of order α ∈ (0, 1) with respect to t.
First, we give some basic definitions and properties of the fractional calculus theory notations and pre-
liminary results which will be used further in this paper.
we introduce the usual abstract space as follows:

ν =
{

v ∈ (C∞
0 (B))

3
: ∇ · v = 0

}

•Hν(B) = closure of ν in
(

L2(B)
)3

,with the norm ‖ · ‖,

Let P :
(

L2(B)
)3

→ Hν(B) be the Projection operator,

•A = −P∆ : D(A) ⊂ Hν(B) → Hν(B) with D(A) = Hν(B) ∩
(

H1
0 (B)

)3
∩

(

H2(B)
)3

is a Stokes operator
associated to the bilinear form define as a(u, v) = 〈∇u,∇v〉, where u, v ∈ ϑ and 〈, 〉 is the user inner
product on Hν(B),
•(−A) generates analytic semigroup of contractions {T (t)}t≥0 on Hν(B).
Using the projection operator and Stokes operatoron on (1), we can transform the system to the following
evolution equation in a Banach space Hν(B):

{

Dα
t v +Av = Fv + Pf (t, vt) , t > 0,

v(t) = ϕ(t), −a ≤ t ≤ 0,
(2.2)

where Fv = −P (v · ∇)v.
Now, we present the sectorial operators on Hν(B), as follows:

Definition 2.1. [11] A : D(A) ⊂ X −→ X is said to be sectorial operator of type (M,ω, θ) if there exist
M > 0, ω ∈ R and 0 < θ < π

2 such that:
1. A be a closed and linear operator,
2. ∀λ /∈ ω + Sθ, the resolvent (λI −A)−1 of A exists,
3. ∀λ /∈ ω + Sθ,

∣

∣(λI −A)−1
∣

∣ ≤ M
|λ−ω| .

where
ω + Sθ := {ω + λ | λ ∈ C with | Arg(−λ)| < θ}.

Theorem 2.2. [11] (−A) densely sectorial operator generates a strongly analytic semigroup (T (t))t≥0.
Moreover, we have:

T (t) =
1

2πi

∫

Σ

eλt(λI +A)−1dλ, (2.3)

with Σ being a suitable path λ /∈ ω + Sθ.

Definition 2.3. [8] Let α ∈]0, 1]. The conformable fractional derivative of order α of a function x(.) for
t > 0 is defined as follows:

dαx(t)

dtα
= lim

ε−→0

x
(

t+ εt1−α
)

− x(t)

ε
. (2.4)
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For t = 0, we adopt the following definition:

dαx(0)

dtα
= lim

t→0+

dαx(t)

dtα
.

The fractional integral Iα(.) associated with the conformable fractional derivative is defined by:

Iα(x)(t) =

∫ t

0

sα−1x(s)ds (2.5)

Theorem 2.4. [8] If x(.) is a continuous function in the domain of Iα(.), then we have

dα (Iα(x)(t))

dtα
= x(t) (2.6)

Definition 2.5. [1] The Laplace transform of a function x(.) is defined by:

L(x(t))(λ) =

∫ +∞

0

e−λtx(t)dt, λ > 0. (2.7)

The adapted transform is given by the following definition.
The Fractional Laplace transform of order α ∈]0, 1] of a function x(.) is defined by:

Lα(x(t))(λ) =

∫ +∞

0

tα−1e−λ(tα/α)x(t)dt, λ > 0 (2.8)

Proposition 2.6. [1] If x(.) is a differentiable function, then we have the following results:

Iα

(

dαx(.)

dtα

)

(t) = x(t) − x(0) (2.9)

Lα

(

dαx(t)

dtα

)

(λ) = λLα(x(t))(λ) − x(0) (2.10)

For two functions x(.) and y(.), we have

Lα

(

x

(

tα

α

))

(λ) = L(x(t))(λ) (2.11)

Lα

(
∫ t

0

sα−1x

(

tα − sα

α

)

y(s)ds

)

(λ) = L(x(t))(λ)Lα(y(t))(λ) (2.12)

Now, Let 0 ∈ ρ(−A), where ρ(−A) is the resolvent set of −A,
then for 0 < β ≤ 1, we can define a closed linear operator with the fractional power Aβ on its domain
D

(

Aβ
)

.

Definition 2.7. [11] Let A be a sectorial operator defined on a Banach space X, such that Reσ(A) > 0;
for β > 0, we note by A−β the operator defined by:

A−β =
1

Γ(β)

∫ +∞

0

tβ−1T (t)dt.

Definition 2.8. [11]Let A be a sectorial operator defined on a Banach space X, such that Reσ(A) > 0.
We define the family of cperators

(

Aβ
)

β≥0
as follows: A0 = IX , and for β > 0,

Aβ =
(

A−β
)−1

, D
(

Aβ
)

= Im
(

A−β
)

.

For analytic semigroup {T (t)}t≥0, the following properties will be used.
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Lemma 2.9. [6,11,12] If (−A) is the infinitesimal generator of an analyic semigroup (T (t)))t≥0 and if
0 ∈ ρ(A), then:

(a) D
(

Aβ
)

is a Banach space with the norm ‖x‖β
D =

∥

∥Aβx
∥

∥ for every x ∈ D
(

Aβ
)

.
(b) There is a M ≥ 1 such that:

M := sup
t∈[0,+∞)

|T (t)| < ∞

(c) for any β ∈ (0, 1], there exists a positive constant Mβ such that

∥

∥AβT (t)
∥

∥ ≤
Mβ

tβ
, 0 < t ≤ T

(d)For x ∈ Hν(Ω) and t > 0, AβT (t)x = T (t)Aβx.
(e) For 0 < α < β < 1, D

(

Aβ
)

→֒ D (Aα).

Lemma 2.10. [4] Let u, v ∈ D
(

A
1
2

)

, then following estimations hold:

(1)There exists l1 > 0 such that
∥

∥

∥
A− 1

4Fu
∥

∥

∥
≤ l1

∥

∥

∥
A

1
2u

∥

∥

∥

2

,

(2)
∥

∥

∥
A− 1

4 (Fu− Fv)
∥

∥

∥
≤ l1

∥

∥

∥
A

1
2 (u− v)

∥

∥

∥

(∥

∥

∥
A

1
2 u

∥

∥

∥
+

∥

∥

∥
A

1
2 v

∥

∥

∥

)

.

Lemma 2.11. [14] Let 0 < β < 1 and T (t) is defined by (3). Then there exists Mβ > 0 such that
‖AβT (t)− AβT (s)‖ ≤ Mβ

(

t(1−β) − s(1−β)
)

for all s, t > 0 with t > s. implies that, t 7→ AβT (t) is
continuous for t > 0 with respect to uniform operator topology.

Lemma 2.12. [10] Let X be a Banach space and A : D(A) ⊂ X → X be a closed operator.
For −∞ ≤ a < b ≤ ∞ and f : I =]a; b[→ D(A) be such that the functions t → f(t), t → Af(t) are
integrable (Bochner sense) on I. Then

∫ b

a

f(t)dt ∈ D(A), A

∫ b

a

f(t)dt =

∫ b

a

Af(t)dt

3. Existence and uniqueness of mild solution

This section is speciefed to prove the local existence and uniqueness of mild solution to (2.2).
First, by using the fractional Laplace transform in equation (2.2), we have:

λLα(v(t))(λ) +ALα[v(t))](λ) = ϕ(0) + Lα(Fv(t))(λ) + Lα(Pf(t, xt)(λ) (3.1)

Then :

Lα(v(t) = (λ+A)−1 (ϕ(0)) + (λ+A)−1
Lα(Fv(t))(λ) + (λ+A)−1

Lα(Pf(t, xt)(λ) (3.2)

Applying the inverse fractional Laplace transform combined with (2.11) and (2.12), we obtain:



































v(t) =T

(

tα

α

)

(ϕ(0)) +

∫ t

0

sα−1T

(

tα − sα

α

)

Fv(s)ds

+

∫ t

0

sα−1T

(

tα − sα

α

)

Pf(s, xs)ds; t ∈ [0, T ]

v0(t) = ϕ(t); t ∈ [−a, 0]

(3.3)

Now , we can introduce the following definition of mild solutions for the Cauchy problem (2.2);
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Definition 3.1. Let 0 < T < ∞. We say that v : [−a, T ] → D
(

A
1
2

)

is a local mild solution of the

cauchy problem (2) if v ∈ C
(

[0, T ];D
(

A
1
2

))

and v satisfies:



































v(t) =T

(

tα

α

)

(ϕ(0)) +

∫ t

0

sα−1T

(

tα − sα

α

)

Fv(s)ds

+

∫ t

0

sα−1T

(

tα − sα

α

)

Pf(s, vs)ds; t ∈ [0, T ]

v0(t) = ϕ(t); t ∈ [−a, 0]

(3.4)

we denote by C := C
(

[−a, 0];D
(

A
1
2

))

the Banach space of continuous functions from [−a; 0] into

D
(

A
1
2

)

with the norm ‖.‖∗ , V ⊂ C be open, and C([0, T ]);D
(

A
1
2

))

is endowed with sup-norm topology.

To obtain the existence of Mild Solution, we will introduce the foollowing assumptions:

(H1) : Pf : [0,∞) × V → Hν(Ω) be such that : ‖Pf(t, φ)‖ ≤ µ(t)‖φ‖∗ for all t ≥ 0, ϕ ∈ V and
µ ∈ Lp

loc[0,∞), where p > 2
α ,

(H2) : ‖Pf(t, φ) − Pf(t, ψ)‖ ≤ Kf ‖φ− ψ‖∗ for all φ, ψ ∈ V and for some Kf > 0.

Theorem 3.2. If (H1) − (H2) are satisfied, Then for every ϕ ∈ V , there exists a unique mild solution

v : [−a, T ] → D
(

A
1
2

)

to the Cauchy problem with delay (2.2) , for T = Tϕ > 0.

Proof. Let ϕ ∈ V and R > 0 be such that {ζ ∈ C : ‖ζ − ϕ‖∗ ≤ R} ⊂ U . Let T > 0. we define the
following set:

Yϕ; 1
2

=
{

u ∈ C([−a, T ]);D
(

A
1
2

)

: u0 = ϕ and ‖ut − ϕ‖∗ ≤ R, ∀t ∈ [0, T ]
}

Yϕ; 1
2

⊂ C
(

[−a, T ]);D(A
1
2

))

is non-empty and closed .

Now, we define an operator Γ on Yϕ; 1
2

as follows,

Γv(t) =















T
(

tα

α

)

(ϕ(0)) +
∫ t

0
sα−1T

(

tα−sα

α

)

Fv(s)ds

+
∫ t

0
sα−1T

(

tα−sα

α

)

Pf(s, vs)ds, t ∈ [0, T ],

ϕ(t), t ∈ [−a, 0].

Step 1: we prove that Γ
(

Yϕ; 1
2

)

⊂ Yϕ; 1
2

Let v ∈ Yϕ; 1
2
.

So, we have ‖v(t)‖
D

(

A
1
2

) = ‖vt(0)‖
D

(

A
1
2

) ≤ ‖vt‖∗ ≤ R+ ‖ϕ‖∗ for all t ∈ [0, T ].

Now, ∀t ∈ [0, T1] and θ ∈ [−a, 0] such that 0 ≤ t+ θ ≤ T1, we have;
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‖(Γv)t(θ) − ϕ(θ)‖
D

(

A
1
2

) ≤ ‖T ((t+ θ)α)ϕ(0) − ϕ(0)‖
D

(

A
1
2

)

+

∥

∥

∥

∥

∥

A
1
2

∫ t+θ

0

sα−1A
1
4 T (

(t+ θ)α − sα

α
)A− 1

4Fv(s)ds

∥

∥

∥

∥

∥

+ ‖ϕ(θ) − ϕ(0)‖
D

(

A
1
2

) +

∥

∥

∥

∥

∥

A
1
2

∫ t+θ

0

sα−1T (
(t+ θ)α − sα

α
)Pf (s, vs) ds

∥

∥

∥

∥

∥

≤ ‖T ((t+ θ)α)ϕ(0) − ϕ(0)‖
D

(

A
1
2

)

+M 3
4
α

3
4

∫ t+θ

0

sα−1((t+ θ)α − sα)
−3

4

∥

∥

∥
A− 1

4Fv(s)
∥

∥

∥
ds

+M 1
2
α

1
2

∫ t+θ

0

sα−1((t+ θ)α − sα)
−1

2 µ(s) ‖vs‖∗ ds+ ‖ϕ(θ) − ϕ(0)‖
D

(

A
1
2

)

≤ ‖T ((t+ θ)α)ϕ(0) − ϕ(0)‖
D

(

A
1
2

)

+M 3
4
α

3
4 l1

∫ t+θ

0

sα−1((t+ θ)α − sα)
−1

4 ‖v(s)‖
2

D

(

A
1
2

) ds

+ ‖ϕ(θ) − ϕ(0)‖
D

(

A
1
2

) +M 1
2
α

1
2

∫ t+θ

0

sα−1((t+ θ)α − sα)
−1

2 µ(s) ‖vs‖∗ ds

≤ ‖T ((t+ θ)α)ϕ(0) − ϕ(0)‖
D

(

A
1
2

)

+M 3
4
α

3
4 l1

∫ t+θ

0

sα−1((t+ θ)α − sα)
−3

4 (R+ ‖ϕ‖∗)
2
ds

+ ‖ϕ(θ) − ϕ(0)‖
D

(

A
1
2

)

+M 1
2
α

1
2

∫ t+θ

0

sα−1((t+ θ)α − sα)
−1

2 µ(s) (R+ ‖ϕ‖∗) ds

choose :
t1 > 0 such that ‖ϕ(t+ θ) − ϕ(θ)‖

D(A
1
2

≤ R
4 , ∀t ∈ [0, t1] and θ ∈ [−a, 0] such that t+ θ ≤ 0,

t2 > 0 such that
∥

∥T
(

tα

α

)

ϕ(0) − ϕ(0)
∥

∥

D

(

A
1
2

) ≤ R
4 , ∀t ∈ [0, t2],

t3 > 0 such that
∫ t

0 s
α−1(tα − sα)

−1

2 µ(s)ds ≤ R
4M 1

2

(R+‖ϕ‖∗)2 ∀t ∈ [0, t3]. and ,

t4 > 0 such that
∫ t

0
sα−1(tα − sα)

−1

4 ds ≤ R
4M 3

4

l1(R+‖ϕ‖∗)2 ∀t ∈ [0, t4].

Let T1 = min {t1, t2, t3, t4}. For t+ θ ∈ [−a, 0], t ∈ [0, T1], we have:
‖(Γv)t(θ) − ϕ(θ)‖

D

(

A
1
2

) = ‖ϕ(t+ θ) − ϕ(θ)‖
D

(

A
1
2

) ≤ R
4 ≤ R.

Hence, ‖(Γv)t − ϕ‖∗ ≤ R for all t ∈ [0, T1].

Step 2 : we prove that Γv(t) is continuous on (0, T1] with respect to the topology induced by D
(

A
1
2

)

-
norm.
First define u(t) :=

∫ t

0
sα−1T

(

tα−sα

α

)

Fv(s)ds and let t0 ∈ ]0, T1]
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For t > t0 and ǫ > 0 .

∥

∥

∥
A

1
2 (u(t) − u (t0))

∥

∥

∥
≤

∥

∥

∥

∥

A
1
2

∫ t0−ǫ

0

sα−1A
1
4

[

T

(

tα − sα

α

)

− T

(

tα0 − sα

α

)]

A− 1
4Fv(s)ds

∥

∥

∥

∥

+

∥

∥

∥

∥

A
1
2

∫ t0

t0−ǫ

sα−1A
1
4

[

T

(

tα − sα

α

)

− T

(

tα0 − sα

α

)]

A− 1
4Fv(s)ds

∥

∥

∥

∥

+

∥

∥

∥

∥

A
1
2

∫ t

t0

sα−1A
1
4T

(

tα − sα

α

)

A− 1
4Fv(s)ds

∥

∥

∥

∥

:=I1 + I2 + I3.

For I1, we get that:

I1 ≤ l1 sup
0≤s≤t0−ǫ

∥

∥

∥

∥

A
3
4

[

T

(

tα − sα

α

)

− T

(

tα0 − sα

α

)]
∥

∥

∥

∥

∫ t0−ǫ

0

sα−1
∥

∥

∥
A

1
2 v(s)

∥

∥

∥

2

ds

≤ l1 sup
0≤s≤t0−ǫ

∥

∥

∥

∥

A
3
4

[

T

(

tα − sα

α

)

− T

(

tα0 − sα

α

)]
∥

∥

∥

∥

(R+ ‖ϕ‖∗)
2 (t0 − ǫ)

α

α
.

So, by using Lemma 2.6, t 7→ A
3
4 T (t) is continuous in the uniform operator topology on [ǫ, T1] for every

ǫ > 0, there exists η ∈ [0, t0 − ǫ] such that,

sup
0≤s≤t0−ǫ

∥

∥

∥

∥

A
3
4

[

T

(

tα − sα

α

)

− T

(

tα0 − sα

α

)]
∥

∥

∥

∥

= sup
0≤s≤t0−ǫ

∥

∥

∥

∥

A
3
4

[

T

(

tα − ηα

α

)

− T

(

tα0 − ηα

α

)]
∥

∥

∥

∥

hence I1 → 0 as t → t0. Now, consider I2 and I3 . Using Lemmas 1,2 we have,

I2 ≤

∫ t0

t0−ǫ

sα−1

∥

∥

∥

∥

A
3
4

[

T

(

tα − sα

α

)

− T

(

tα0 − sα

α

)]

A− 1
4Fv(s)

∥

∥

∥

∥

ds

≤ M 3
4
α

3
4 l1

∫ t0

t0−ǫ

sα−1(tα − sα)
−3

4 + sα−1(tα0 − sα)
−3

4

∥

∥

∥
A

1
2 v(s)

∥

∥

∥

2

ds

≤ 2M 3
4
α

3
4 l1 (R+ ‖ϕ‖∗)

2
∫ t0

t0−ǫ

sα−1(tα0 − sα)
−3

4 ds → 0 as ǫ → 0.

Similaraly:

I3 ≤ M 3
4
α

3
4 l1

∫ t

t0

sα−1(tα − sα)
−1

4 (R+ ‖ϕ‖∗)2 ds → 0 as t → t0.

Therefore,
∥

∥

∥
A

1
2 (u(t) − u (t0))

∥

∥

∥
→ 0 as t → t0+.

we can be proved that
∥

∥

∥
A

1
2 (u(t) − u (t0))

∥

∥

∥
→ 0 as t → t0− .

Hence, t 7→ u(t) is continuous on (0, T1] with respect to the topology induced by D
(

A
1
2

)

-norm.

Now, define u
′

(t) :=
∫ t

0
sα−1T

(

tα−sα

α

)

Pf(s, vs)ds and let t0 ∈ (0, T1] with t > t0 and ǫ > 0 small enough.
Analogously, by using Lemma 2.6 and assumption H1, H2 we show that:

∥

∥

∥
A

1
2

(

u
′

(t) − u
′

(t0)
)∥

∥

∥
→ 0 as t → t0

Therfore, t 7→ u
′

(t) is continuous on (0, T1] with respect to the topology induced by D
(

A
1
2

)

-norm.

Since u(0) = ϕ(0) ∈ D
(

A
1
2

)

, therefore by the continuity of T (t) , we can say that
∥

∥

∥
A

1
2T

(

tα

α

)

ϕ(0) −A
1
2 T

(

tα

0

α

)

ϕ(0)
∥

∥

∥
=

∥

∥

∥
T

(

tα

α

)

A
1
2ϕ(0) − T

(

tα

0

α

)

A
1
2ϕ(0)

∥

∥

∥
→ 0 as t → t0
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Hence, we proved that t 7→ Γv(t) is continuous on [−r, T1] with respect the topology induced by D
(

A
1
2

)

-

norm, and Γ
(

Y 1
2

)

⊂ Y 1
2

Step 3 : let u, v ∈ Yϕ, 1
2
, t ∈ [0, T1]. Then using Lemmas (2.2),(2.3) and (H1), (H2) we get,

∥

∥

∥
∆ 1

2

∥

∥

∥
=

∥

∥

∥
A

1
2 {Γu(t) − Γv(t)}

∥

∥

∥
≤

∥

∥

∥

∥

A
1
2

∫ t

0

sα−1A
1
4T

(

tα − sα

α

)

A− 1
4 (Fu(s) − Fv(s))ds

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ t

0

sα−1A
1
2T

(

tα − sα

α

)

{Pf (s, us) − Pf (s, vs)} ds

∥

∥

∥

∥

≤ M 3
4
α

3
4

∫ t

0

sα−1(tα − sα)
−3

4

∥

∥

∥
A− 3

4 (Fu(s) − Fv(s))
∥

∥

∥
ds

+M 1
2
α

1
2

∫ t

0

sα−1(tα − sα)
−1

2 ‖(Pf (s, us) − Pf (s, vs))‖ ds

≤ l1M 3
4
α

3
4

∫ t

0

sα−1(tα − sα)
−3

4 l1

∥

∥

∥
A

1
2 (u− v)

∥

∥

∥

(∥

∥

∥
A

1
2 u

∥

∥

∥
+

∥

∥

∥
A

1
2 v

∥

∥

∥

)

ds

+M 1
2
α

1
2Kf

∫ t

0

sα−1(tα − sα)
−3

4 ‖us − vs‖∗ ds

≤ l1M 3
4
α

3
4

∫ t

0

sα−1(tα − sα)
−3

4 ‖u− v‖Yϕ, 1
2
2 (R + ‖ϕ‖∗ds

+M 1
2
α

1
2Kf

∫ t

0

sα−1(tα − sα)
−1

2 sup
0≤r≤Tϕ

∥

∥

∥
A

1
2 (u(r) − v(r))

∥

∥

∥
ds

∥

∥

∥
∆ 1

2

∥

∥

∥
≤

{

2 (R+ ‖ϕ‖∗)M 3
4
α

3
4

∫ t

0
sα−1(tα − sα)

−3

4 ds+M 1
2
α

1
2Kf

∫ t

0
sα−1(tα − sα)

−1

2 ds
}

‖u− v‖Yϕ, 1
2
.

Since: M 3
4
α

3
4

∫ t

0 s
α−1(tα − sα)

−3

4 ds+M 1
2
α

1
2Kf

∫ t

0 s
α−1(tα − sα)

−1

2 ds → 0 as t → 0, we can choose:

Tϕ ≤ T1 such:
∥

∥

∥
A

1
2 {Γu(t) − Γv(t)}

∥

∥

∥
≤ L‖u− v‖Y

ϕ,
1
2

for all t ∈ [0, Tϕ] and 0 < L < 1.

This implies that ‖Γu− Γv‖Y
ϕ,

1
2

≤ L‖u− v‖Y
ϕ,

1
2

for 0 < L < 1.

Therefore, Γ : Yϕ, 1
2

→ Yϕ, 1
2

is a contraction map.

Hence, by Banach contraction theorem, Γ has a unique fixed point v ∈ Yϕ, 1
2

which satisfies the inte-

gral equation (3.4). This proves the existence of uniqueness local mild solution of (2.2). �

3.1. Exemple of delay External force :

Let ω : [0,∞) × [−a, 0] → R a measurable function such that |ω(t, p)| ≤ (−p)−γ for all t ≥ 0,−a <
p ≤ 0 and γ < 1.

For ψ ∈ C
(

[−a, 0];D
(

A
1
2

))

, we define the project of a function f ,

Pf(t, ψ) =

∫ 0

−a

ω(t, p)ψ(s)ds, t ≥ 0.

Then Pf (t, vt) =
∫ 0

−a
ω(t, p)v(t+ p)ds. and (t, ψ) 7→ Pf(t, ψ) satisfy the assymptions (H1) − (H2) of the

Theorem 4 with µ(t) = Kf = a1−γ

1−γ for all t ≥ 0.

4. Globality of mild solution

Theorem 4.1. Under the same assumptions as in Theorem 3.1 for V = X 1
2

and t > 0, for every ϕ ∈ X 1
2
,

the problem (2.2) has a unique mild solution on a maximal interval of existence [−a, tmax). and either
tmax = ∞ or lim supt→tmax

‖v(t)‖D(A 1
2 ) = ∞.
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Proof. according the result under the conditions , the mild solution of (2.2) exists in the interval [−a, T ].
Now we prove that this solution can be extended to the interval [−a, T + θ] for some θ > 0. Let v be the
mild solution of (2.2) on [−a, T ]. Define u(t) = v(t+ T ) where u(t) is a mild solution of:

{

Dα
t u+Au(t) = Fu(t) + Pf (t+ T, ut) , t > 0,

u0 = vT .
(4.1)

we have v ∈ C
(

[−a, T ];D
(

A
1
2

))

, then u0 = vT ∈ X 1
2
. Therfore, according to the Theorem3.1, the mild

solution of (4.1) exist on some interval [−a, τ ], where τ > 0 . So , Let R > 0 fix and Cθ = C ([−a, T + θ]),
Consider the following set:

Λϕ; 1
2

=







ψ ∈ Cθ : ψ(t) = v(t), ∀t ∈ [−a, T ], sup
0≤t≤T

‖ψt − ϕ‖∗ ≤ R, sup
T ≤t≤T +θ

‖ψ(t) − ψ(T )‖
D

(

A
1
2

) ≤ R







Similaraly as the prove in Theorem 3.1, we show that there exists a θ > 0 such that the problem (2.2) has
a unique mild solution in Λϕ; 1

2
, wich prove the maximality of the interval of existence of mild solution

the problem (2.2)
let [−a, tϕmax) be the maximal interval of existence of mild solution of (2.2). So:
-case 1: If tϕmax = ∞, then the mild solution is global.
-case 2: If tϕmax < ∞, we prove that limsupt→tϕmax

‖v(t)‖
D

(

A
1
2

) = ∞.

suppose that limsupt→tϕmax
‖v(t)‖

D

(

A
1
2

) < ∞. Then, limsupt→tϕmax
‖vt‖X 1

2

< ∞.

Therfore, there exists B > 0 such that ‖vt‖X 1
2

≤ B ,∀ t ∈ [0, tϕmax).

Then ‖Pf (t, vt)‖ ≤ Bµ(t), ∀t ∈ [0, tϕ,max).
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Now, Let 0 < t < t0 < tmax and ǫ > 0 be sufficiently small. Then we have

‖v(t) − v(t0‖
D

(

A
1
2

) =

∥

∥

∥

∥

T (
tα

α
)ϕ(0) − T (

tα0
α

)ϕ(0)

∥

∥

∥

∥

D

(

A
1
2

)

+

∥

∥

∥

∥

∫ t0

t

sα−1

[

T

(

tα − sα

α

)

Pf (s, us)

]

ds

∥

∥

∥

∥

D

(

A
1
2

)

+

∥

∥

∥

∥

∫ t−ǫ

0

sα−1

[

T

(

tα − sα

α

)

− T

(

tα0 − sα

α

)]

Pf (s, us) ds

∥

∥

∥

∥

D

(

A
1
2

)

+

∥

∥

∥

∥

∫ t

t−ǫ

sα−1

[

T

(

tα − sα

α

)

− T

(

tα0 − sα

α

)]

Pf (s, us) ds

∥

∥

∥

∥

D

(

A
1
2

)

+

∥

∥

∥

∥

A
1
2

∫ t0−ǫ

0

sα−1A
1
4

[

T

(

tα − sα

α

)

− T

(

tα0 − sα

α

)]

A− 1
4Fv(s)ds

∥

∥

∥

∥

+

∥

∥

∥

∥

A
1
2

∫ t0

t0−ǫ

sα−1A
1
4

[

T

(

tα − sα

α

)

− T

(

tα0 − sα

α

)]

A− 1
4Fv(s)ds

∥

∥

∥

∥

+

∥

∥

∥

∥

A
1
2

∫ t

t0

sα−1A
1
4 T

(

tα − sα

α

)

A− 1
4Fv(s)ds

∥

∥

∥

∥

≤

∥

∥

∥

∥

T (
tα

α
)ϕ(0) − T (

tα0
α

)ϕ(0)

∥

∥

∥

∥

D

(

A
1
2

) +BM 1
2
α

1
2

∫ t0

t

sα−1(t0 − s)
−1

2 µ(s)ds

+B sup
0≤s≤t−ǫ

∥

∥

∥

∥

A
1
2

[

T

(

tα − sα

α

)

− T

(

tα0 − sα

α

)]
∥

∥

∥

∥

∫ t−ǫ

0

sα−1µ(s)ds

+ 2B

∫ t

t−ǫ

sα−1(t0 − s)
−1

2 µ(s)ds

+B2
tαϕmax

α
sup

0≤s≤t−ǫ

∥

∥

∥

∥

A
3
4

[

T

(

tα − sα

α

)

− T

(

tα0 − sα

α

)]∥

∥

∥

∥

+ 2B

∫ t

t−ǫ

sα−1(t0 − s)
−1

4 ds+B2

∫ t0

t

sα−1(t0 − s)
−1

4 ds.

by applying Hölder’s inequality with µ ∈ Lp [0, tϕmax) for p > 2
α and the continuity of T(t) in the

uniform-topology norm, we get that t 7→ v(t) is uniformly continuous on (0, tmax ) with respect to the

topology induced by D
(

A
1
2

)

-norm.

Hence limt→tmax
v(t) = v (tϕ max) exists, so , one can extended the interval of existence which contradicts

the maximality . the proof is complete. �

By the same procedure as the proof of theorem 4.1, we can proved the globality of mild solution by
using more conditions, and get the following theorem.

Theorem 4.2. Under the same assumptions as in Theorem3.1, if there exist B > 0 and a locally
integrable functions ξ(t) such that ‖Pf (t, ϕ)‖ ≤ Bξ(t) ∀t > 0, ϕ ∈ X 1

2
and ξ ∈ Lp

loc[0,∞), where p > 2
α ,

then Equation (2.2) has global mild solutions.

5. Conclusion

In this paper, we proved the existence of D(A
1
2 )-valued local mild solution for a time fractional Navier-

Stokes differential equations with the finite external forces involving conformable fractional derivative of
order 0 < α < 1. The existence theorems is proved by using some Lipschitz conditions and Banach
contraction theorem. As application, an example of delayed force function is presented to illustrate the
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applicability our main result. The globality has been established by using more assymptions on forces
when the initial datum curve belong to the whole space V = X 1

2
.
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