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On the Ideal Discriminant of Some Relative Pure Extensions

Mohammed. E. Charkani and Omar Boughaleb

abstract: Let L = K(α) be an extension of a number field K where α satisfies the monic irreducible
polynomial P (X) = Xp

− a ∈ R[X] of prime degree p and such that a is pth power free in R := OK (the ring
of integers of K). The purpose of this paper is to give an explicit formula for the ideal discriminant DL/K

of L over K involving only the prime ideals dividing the principal ideals aR and pR. As an illustration, we
compute the discriminant DL/K of a family of septic and quintic pure fields over quadratic fields. Hence a
slightly simpler computation of discriminant DL/Q is obtained.
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1. Introduction

Computation of the discriminant of certain number fields is in general a difficult task and is related
to the computation of integral bases which is a classical hard problem in algebraic number theory. Many
works are available in this area (cf. [1], [7], [8], [11], [12], [13], [14], [22], [23], [25], and others). It is
called a problem of Hasse to characterize whether the ring of integers in an algebraic number field has a
power integral basis or does not. Let R be a Dedekind ring of characteristic zero and K its fraction field.
Let L/K be a finite separable extension of degree n and let OL denote the ring of the integral elements
of L. We say that L/K is monogenic if L possesses a relative monogenic integral basis, or equivalently,
{1, α, α2, . . . , αn−1} is an integral basis of L/K for some α in OL, in other words OL = R[α] (In this
case one may say that α is a power basis generator of L/K (see [10]). In 2010 Del Corso and Rossi [8]
provided a formula for the discriminant of Kummer cyclic extension of number fields. For pure algebraic
number fields Jakhar and Khanduja [13] gave a formula for the discriminant of pure number fields having
square free degree. In 2020 the authors of [12] gave a formula for the discriminant of n-th degree fields of
the type Q( n

√
a) using Newton polygon techniques. Let L be a relative pure extension, in other word an

algebraic field of the type L = K( p
√

a), where K is an algebraic number field and the polynomial Xp − a
of prime degree belonging to K[X ] is irreducible over the field K. In the present paper, our aim is to give
an explicit formula for the relative discriminant DL/K of OL the ring of integer of L in terms of the set of
primes p in OK (denoted by Spec(OK)) with pZZ = p ∩ OK and such that aOK ⊆ p. As a consequence,
using the tower formula stated below (2.2), we compute the discriminant DL/Q for two families of septic
and quintic pure fields L, such that [L : Q] = 10 and [L : Q] = 14 respectively.

Let R be a Dedekind ring with finite residual fields and containing Z. Let K be its fraction field. Let
p be a non zero prime ideal in R and Np =| R/p | be the cardinality of the residual field R/p. Let a be a
non zero element in R. We will say that a is nth power free in R if υp(a) ≤ n − 1 for any non zero prime
ideal p in R, where υp is the p-adic discrete valuation associated to p. Let p be a prime number. We
denote by FibR(p) the set of all non zero primes ideals in R which lie above p. It is clear that p ∈ FibR(p)
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if and only if char(R/p) = p. We note also that if a non zero element a in K, is nth power free in K
then a /∈ Kp. The converse is false. By theorem 9.1 [ [17] p. 331], if K is a field, p is an odd prime and
a ∈ K − {0} then the polynomial P = Xp − a is irreducible in K[X ] if and only if a /∈ Kp. Hence if a
is nth power free in K then the polynomial P = Xp − a is irreducible in K[X ]. If further R is integrally
closed and a is nth power free in R then the polynomial P = Xp − a is irreducible in R[X ].

Let L be a finite separable extension of K and OL the integral closure of R in L. Let α ∈ OL such
that L = K(α). Assume that charK = 0 and P = Xp − a ∈ R[X ] is the monic minimal polynomial
of α, where p is an odd prime number and a is pth power free in R. The main result of this paper is
Theorem 1.1 which gives the discriminant DL/K of a pure relative cyclic fields of prime degree. Precisely
stated, we prove the following result:

Theorem 1.1. With the above assumptions, if υp( aNp − a) = 1, for all primes p ∈ FibR(p), then

DL/K = pp ap−1,

where a is the ideal radical of aR.

Corollary 1.1. With the above assumptions, if the ideal aR is square free and υp( aNp − a) = 1, for all
primes p ∈ FibR(p), then α is a power basis generator of L/K.

Proof.indeed if the ideal aR is square free then its radical is aR and hence DL/K = DiscRP .
Note the above corollary is approved by Theorem 6.1 in [21]. Indeed p satisfies the Wieferich congru-

ence if and only if υp( aNp−1 − 1) ≥ 2 (see [6]).

2. Preliminary results

Throughout this article, unless specifically stated otherwise, R is a Dedekind ring of characteristic
zero and K its fraction field. Let L/K be a finite separable extension of degree n, OL the integral closure
of R in L, and L = K(α) for some α ∈ OL. Let P ∈ K[X ] be the minimal irreducible polynomial of
α over K. Since R is integrally closed, P ∈ R[X ] (see [15, p. 7]). Let DiscR(P ) be the principal ideal
of R generated by Res(P, P ′), where Res(P, P ′) denotes the resultant of the two polynomials P and its
derivative P ′, we let DL/K denote the discriminants over R of the number field L over K. The following
Index-discriminant formula (2.1) and the tower formula (2.2) are well known (see [2], [5] or [9]).

DiscR(P ) = IndR(α)2 DL/K , (2.1)

DL/Q = NK/Q(DL/K).(DK/Q)[L: K]. (2.2)

where NK/Q denotes the norm from K to Q (see [19, Corollary 10. 2] and [9]). We denote by Spec(R),
the set of the prime ideals of a commutative ring R. Recall that the closed sets of the Zariski topology
on Spec(R), are the sets:

V (I) = {p ∈ Spec (R) | I ⊆ p}
where I is an arbitrary ideal in R. Note also that for any non-zero prime ideal p in R, we consider the
set of prime ideals q in OL such that p = q ∩ R. We call this set the fibre of p in L and we will denote it
by FibL(p).

In view of the previous Index-Discriminant formula (2.1), the element α is a power basis generator
(PBG for short) of L over K if and only if p doesn’t divide the index ideal [OL : R[α]]R, for any non zero
prime ideal p in R, such that p2 divides DiscR(P ). This fact leads us to introduce, for any irreducible
polynomial P , the set SP of prime ideals which square divides the ideal DiscRP . Then:

SP = { p ∈ specR | p2 divides DiscR(P ) }.

It may pointed out that SP is the set of non zero primes whose may divide the ideal IndR(α). Finally
recall that -with notation as above - for a polynomial P belonging to R[X ], P will stand for the polynomial
over k = R/p obtained on replacing each coefficient of P by its residue modulo p. Denote by Rp the
localization of R at the prime p.

The following lemma is an immediate consequence of the already known results [1, Proposition 5.12,
p. 62]) and [2, property (2), p. 10]), its proof is omitted (cf. [ [6], Lemma 3.4]).
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Lemma 2.1. Let R be a Dedekind ring, K its fraction field, L is a finite separable extension over K and
OL is the integral closure of R in L. Let α ∈ OL be an algebraic integer over R such that L = K(α). Let
p be a non zero prime ideal in R and B the integral closure of Rp in L. Then IndRp

(α) = (IndR(α))p.
In particular p doesn’t divide the index ideal IndR(α) if and only if B = Rp[α].

Definition 2.1. Let R be a Dedekind ring, K its fraction field and υ be a valuation on K. Let P =
a0 + a1X + ... + anXn ∈ K[X ], we put:

υG(P ) = inf{υ(ai) | 0 ≤ i ≤ n},

then υG is a valuation on K[X ] called the Gauss valuation on K[X ] relative to υ.

The well known Dedekind criterion permits us to decide whether a primitive element α ∈ OL is a
power basis generator of L over K (PBG for short or a monogenic element of L over K).

Theorem 2.2 (Dedekind Criterium). (see [20], [3], [18], [16], [4], [23]) With notations as above, let
P = Irrd(α, R) ∈ R[X ] be the monic irreducible polynomial of α. Let p be a non zero prime ideal in

R and k := R/p its residual field. Let P̄ be the image in k[X ] of P and assume that P̄ = Πr
i=1P̄i

li
is

the primary decomposition of P̄ in k[X ] with Pi ∈ R[X ] a monic lift of the irreducible polynomial Pi for
1 ≤ i ≤ r. Let T ∈ R[X ] satisfying P =

∏r
i=1 P li

i + π T . Then α is a P BG of L over Rp if and only if
gcd

(

P i, T
)

= 1 for all i = 1, · · · , r such that li ≥ 2.

Corollary 2.1. With notations as in Theorem 2.2. Let Vi ∈ R[X ] be the remainder of Euclidean division
of P by Pi. Let υp be the p-adic discrete valuation associated to p. Let υG be the Gauss valuation on
K[X ] associated to υp. Then p doesn’t divide the index ideal IndR(α) if and only if υG(Vi) = 1 for all
i = 1, · · · , r such that li ≥ 2.

Proof.Let T ∈ R[X ] satisfying P =
∏r

i=1 P li

i + π T . Then it can be easily verified that gcd
(

P i, T
)

= 1
for all i = 1, · · · , r such that li ≥ 2 if and only if υG(Vi) = 1 for all i = 1, · · · , r such that li ≥ 2, where
Vi ∈ R[X ] is the remainder of Euclidean division of P by Pi.

3. Proof of Theorem 1.1

Let R be a Dedekind ring containing Z and P = Xp − a a monic irreducible polynomial in R[X ].
Recall that the discriminant of P is equal to DiscR(P ) = pp ap−1R. As p ≥ 3, then the set SP =
FibR(p) ∪ V ( a R). Recall also if p is a non zero prime ideal in R then char(R/p) = p if and only if
p ∈ FibR(p).

To prove Theorem 1.1 we shall need the following lemmas:

Lemma 3.1. Let R be a Dedekind ring with finite residual fields and K its fraction field. Assume that
charK = 0 and L = K(α) is a finite separable extension of K. Let P = Xp − a ∈ R[X ] be the monic
minimal polynomial of α, where p is an odd prime number. Let p be a non zero prime of R and υp be the
p-adic discrete valuation associated to p. Assume that p ∈ V ( aR) − FibR(p). Then υp(DL/K) = p − 1.

Proof.Assume that p ∈ V ( aR) − FibR(p), by localization at p the ring Rp is a discrete valuation ring,
putting p = πR its maximal ideal, we obtain P ≡ Xp mod πR, therefore it is immediate that the
remainder of the Euclidean division of P by X is a. Hence if υp(a) = 1, then by Dedekind Criterion
(Theorem 2.2) α is a P BG of L over Rp. Now applying Lemma 2.1 we see that p does not divide the
index ideal IndR(α) and hence by the index-discriminant formula (2.1) we have υp(DL/K) = p − 1. Set

υp(a) = s and suppose that s > 1, let 1 < r < p such that sr ≡ 1[p]. Set t = rs−1
p , then the element

β = αr

πt is an algebraic integer satisfies the polynomial Q = Xp − b where b = ar

πtp . As the remainder of
the Euclidean division of Q by X is b and υp(b) = rs − tp = 1, we see that β is a PBG of L over Rp.
Now by index-discriminant formula (2.1) we immediately conclude that

ppbp−1 = IndR(β)2 DL/K .

Since in view of Lemma 2.1, p does not divide the index IndR(β), the above equation shows that the
exact power of p dividing DL/K is p − 1.
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Lemma 3.2. With notations as in Lemma 3.1 assume that p ∈ FibR(p) − V ( aR) and υp( aNp − a) = 1.
Then υp(DL/K) = p e(p/p).

Proof.Let p ∈ FibR(p) − V ( aR) and assume that υp( aNp − a) = 1, by localization at p the ring Rp is

a discrete valution ring, set p = πR its maximal ideal, we claim that λ = α − a
Np

p is a P BG of L over
Rp. Observe first that the element λ is an algebraic integer satisfying the polynomial

Pλ(X) =
(

X + a
Np

p

)p

− a =

p
∑

k=1

(

p

k

)

Xk
(

a
Np

p

)p−k

+ aNp − a,

Since p divide
(

p
k

)

for 1 ≤ k ≤ p − 1, then we see immediately that Pλ ≡ Xp mod πR and hence the
remainder of the Euclidean division of P by X is aNp − a, this proves in view of Dedekind Criterion and
the fact that υp( aNp − a) = 1 that λ is a PBG of L over Rp, consequently in view of Lemma 2.1 p does
not divide the index IndR(λ) = IndR(α). Now by index-discriminant formula (2.1) one can write

DiscR(Pλ) = DiscR(P ) = ppap−1 = IndR(α)2 DL/K ,

the above equation shows that the exact power of p dividing DL/K is p − 1.

Proof of Theorem 1.1.

Indeed pR =
∏

p| p p
e(p/p). Let c := pp pp−1. It suffices to show that υp(DL/K) = υp(c) for all prime

p ∈ SP . Let p ∈ SP . It is clear first that

υp(c) = υp(p) + (p − 1)υp(p) =

{

p e(p/p) + (p − 1) if υp(a) > 1,

p e(p/p) if υp(a) = 0,

If υp(a) = 0, then p ∈ FibR(p) and hence in view of Lemma 3.2 υp(DL/K) = p e(p/p). If υp(a) > 1, then
then there is two cases: If p 6∈ FibR(p) then e(p/p) = 0 and in view of Lemma 3.2 υp(DL/K) = υp(c) =
p − 1. If p ∈ FibR(p) then υp(a) = 1 as υp( aNp − a) = 1 hence p does not divide the index IndR(α) and
consequently υp(DL/K) = υp(DiscR(P )) = υp(c) = p e(p/p) + p − 1.

4. Illustration

4.1. Relative pure septic extension

Theorem 4.1. Let K = Q(
√

35) be a quadratic extension and OK its ring of integer. Let L = K(α) be
a septic extension of the field K, where α satisfies an irreducible polynomial P = X7 − am belonging to
OK [x] such that am =

√
35 + m, (m ∈ Z), furthermore we assume that 7 ∤ m and m6 ≡ 1 mod 49. Then

DL/K = 77b6
m,

where bm is the ideal radical of amR.

Proof.First of all we note that 7OK = p2, it is known that the cardinality of OK/p is 7 since the residual
degree of p is f = 1. We claim that vp(a7

m − am) = 1. Observe first that

a6
m − 1 =

6
∑

k=0

(

6

k

)

(√
35
)k

m6−k − 1

= m6 − 1 + 525m4 + 18375m2 + 42875 +
√

35
(

6m5 + 700m3 + 7350m
)

.

Now by property of dominance principle, and using the fact that υ7(m) = 0, it is easy to check that

vp
(

6m5 + 700m3 + 7350m
)

= 0,
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and
vp
(

525m4 + 18375m2 + 42875
)

= 2.

Keeping this in mind and using the fact that m6 ≡ 1 mod 49, we see immediately that

vp
(

a6
m − 1

)

= min
(

vp
(

525m4 + 18375m2 + 42875
)

, vp((m6 − 1)), vp(
√

35)
)

= 1

Now it is clear that vp(a7
m −am) = 1, as υp(am) = 0 since 7 ∤ m. Satisfying the conditions of Theorem

1.1, so the discriminant of L over K is given by

DL/K = 77b6
m,

where bm is the ideal radical of amR.

Corollary 4.1. With notations as in Theorem 4.1, the discriminant DL/Q is given by

DL/Q = 721 · 214 · 57 · NK/Q(pm)6.

Proof.The proof immediately follows from the discriminant tower formula (2.2) and the fact that DK/Q =
22 · 5 · 7.

Exemples 4.1. With notations as in Theorem 4.1, let m = 1, then L = Q(
√

35,
7

√

1 +
√

35). Now using
the facts that NK/Q(

√
35+ 1) = 2 × 17, x2 − 35 ≡ (x+ 1)2 mod 2, x2 − 35 ≡ (x+ 1)(x+ 16) mod 17, we

see that (
√

35 + 1)OK = p2
1p2 where p1 = 2OK + (

√
35 + 1)OK and p2 ∈ FibOK

(17). Hence by Theorem
4.1 the discriminant of L over K is given by

DL/K = 77(p1p2)6,

Using now corollary 4.1 we see that

DL/Q = 721 · 214 · 57 · NK/Q(p1)6NK/Q(p2)6 = 721 · 220 · 57 · 176.

4.2. Relative pure quintic extension

Theorem 4.2. Let K = Q(
√

3) be a quadratic extension and OK its ring of integer. Let L = K(α) be
a quintic extension of the field K where α satisfies an irreducible polynomial P = X5 − am belonging to
OK [x] such that am = 52m +

√
3, (m ∈ Z). Then

DL/K = 55b4
m,

where bm is the ideal radical of amR.

Proof.Observe first that OK = Z[
√

3] and 5OK = p is prime in OK . We claim that vp(a25
m − am) = 1. It

is clear that

a24
m − 1 =

24
∑

k=0

(

24

k

)

(√
3
)k

(52m)24−k − 1,

=
(√

3
)24

− 1 +

23
∑

k=0

(

24

k

)

(√
3
)k

(52m)24−k.

Now using the fact that for any 0 6 k 6 23, we have

υp(52m)24−k = (24 − k)(υp(m) + 2).

It is easy to check that

υp

(

23
∑

k=0

(

24

k

)

(√
3
)k

(52m)24−k

)

> 1.
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Now since υp(
(√

3
)24 − 1) = 1, then by property of dominance principle, it is easy to check that

υp(a24
m − 1) = min

(

υp((
√

3)24 − 1), υp

(

23
∑

k=0

(

24

k

)

(√
3
)k

(52m)24−k

))

= 1.

To complete the proof. It is clearly enough to show that υp(am) = 0. Suppose to the contrary that 5
divides am, now since 5 divides 52m, then 5 divides

√
3 which is impossible as υ5(

√
3) = 0, this proves

that υp(am) = υ5(am) = 0. Satisfying the conditions of Theorem 1.1, so the discriminant of L over K is
given by

DL/K = 55b4
m,

where bm is the ideal radical of amR.

Corollary 4.2. With previous conditions in Theorem 4.2. The discriminant DL/Q is given by:

DL/Q = 510 · 210 · 35NK/Q(pm)4.

Proof.The proof follows immediately from the fact that Since DK/Q = 22.3 and the discriminant tower
formula (2.2).

Exemples 4.2. Assume that m = 2, then L = Q(
√

3,
5

√

50 +
√

3) Now using the facts that NK/Q(50 +√
3) = 11.277 and x2 − 3 ≡ mod (x + 5)(x + 6) mod 11, x2 − 3 ≡ mod (x + 130)(x + 147) mod 277,

we see that (50 +
√

3)OK = p1p2 where p1 ∈ FibOK
(11). and p2 ∈ FibOK

(277). Hence by Theorem 4.2
we see that

DL/K = 55(p1p2)4.

Now using corollary 4.2 we see that the discriminant of L over Q is given by

DL/Q = 510 · 210 · 35NK/Q(p1)4NK/Q(p2)4 = 510 · 210 · 35 · 114 · 2774.
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