On the Ideal Discriminant of Some Relative Pure Extensions

Mohammed. E. Charkani and Omar Boughaleb

Abstract

Let $L=K(\alpha)$ be an extension of a number field K where α satisfies the monic irreducible polynomial $P(X)=X^{p}-a \in R[X]$ of prime degree p and such that a is $p^{t h}$ power free in $R:=O_{K}$ (the ring of integers of K). The purpose of this paper is to give an explicit formula for the ideal discriminant $D_{L / K}$ of L over K involving only the prime ideals dividing the principal ideals $a R$ and $p R$. As an illustration, we compute the discriminant $D_{L / K}$ of a family of septic and quintic pure fields over quadratic fields. Hence a slightly simpler computation of discriminant $D_{L / \mathbb{Q}}$ is obtained.

Key Words: Integral closure, discriminant, relative pure extensions.

Contents

1 Introduction 1
2 Preliminary results 2
3 Proof of Theorem 1.1 3
4 Illustration 4
4.1 Relative pure septic extension 4
4.2 Relative pure quintic extension 5

1. Introduction

Computation of the discriminant of certain number fields is in general a difficult task and is related to the computation of integral bases which is a classical hard problem in algebraic number theory. Many works are available in this area (cf. [1], [7], [8], [11], [12], [13], [14], [22], [23], [25], and others). It is called a problem of Hasse to characterize whether the ring of integers in an algebraic number field has a power integral basis or does not. Let R be a Dedekind ring of characteristic zero and K its fraction field. Let L / K be a finite separable extension of degree n and let O_{L} denote the ring of the integral elements of L. We say that L / K is monogenic if L possesses a relative monogenic integral basis, or equivalently, $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$ is an integral basis of L / K for some α in O_{L}, in other words $O_{L}=R[\alpha]$ (In this case one may say that α is a power basis generator of L / K (see [10]). In 2010 Del Corso and Rossi [8] provided a formula for the discriminant of Kummer cyclic extension of number fields. For pure algebraic number fields Jakhar and Khanduja [13] gave a formula for the discriminant of pure number fields having square free degree. In 2020 the authors of [12] gave a formula for the discriminant of n-th degree fields of the type $\mathbb{Q}(\sqrt[n]{a})$ using Newton polygon techniques. Let L be a relative pure extension, in other word an algebraic field of the type $L=K(\sqrt[p]{a})$, where K is an algebraic number field and the polynomial $X^{p}-a$ of prime degree belonging to $K[X]$ is irreducible over the field K. In the present paper, our aim is to give an explicit formula for the relative discriminant $D_{L / K}$ of O_{L} the ring of integer of L in terms of the set of primes \mathfrak{p} in O_{K} (denoted by $\operatorname{Spec}\left(O_{K}\right)$) with $p \mathbb{Z}=\mathfrak{p} \cap O_{K}$ and such that $a O_{K} \subseteq \mathfrak{p}$. As a consequence, using the tower formula stated below (2.2), we compute the discriminant $D_{L / \mathbb{Q}}$ for two families of septic and quintic pure fields L, such that $[L: \mathbb{Q}]=10$ and $[L: \mathbb{Q}]=14$ respectively.

Let R be a Dedekind ring with finite residual fields and containing \mathbb{Z}. Let K be its fraction field. Let \mathfrak{p} be a non zero prime ideal in R and $N_{\mathfrak{p}}=|R / \mathfrak{p}|$ be the cardinality of the residual field R / \mathfrak{p}. Let a be a non zero element in R. We will say that a is $n^{\text {th }}$ power free in R if $v_{\mathfrak{p}}(a) \leq n-1$ for any non zero prime ideal \mathfrak{p} in R, where $v_{\mathfrak{p}}$ is the \mathfrak{p}-adic discrete valuation associated to \mathfrak{p}. Let p be a prime number. We denote by $\operatorname{Fib}_{R}(p)$ the set of all non zero primes ideals in R which lie above p. It is clear that $\mathfrak{p} \in \operatorname{Fib}_{R}(p)$

[^0]if and only if $\operatorname{char}(R / \mathfrak{p})=p$. We note also that if a non zero element a in K, is $n^{\text {th }}$ power free in K then $a \notin K^{p}$. The converse is false. By theorem 9.1 [[17] p. 331], if K is a field, p is an odd prime and $a \in K-\{0\}$ then the polynomial $P=X^{p}-a$ is irreducible in $K[X]$ if and only if $a \notin K^{p}$. Hence if a is $n^{\text {th }}$ power free in K then the polynomial $P=X^{p}-a$ is irreducible in $K[X]$. If further R is integrally closed and a is $n^{\text {th }}$ power free in R then the polynomial $P=X^{p}-a$ is irreducible in $R[X]$.

Let L be a finite separable extension of K and O_{L} the integral closure of R in L. Let $\alpha \in O_{L}$ such that $L=K(\alpha)$. Assume that char $K=0$ and $P=X^{p}-a \in R[X]$ is the monic minimal polynomial of α, where p is an odd prime number and a is $p^{t h}$ power free in R. The main result of this paper is Theorem 1.1 which gives the discriminant $D_{L / K}$ of a pure relative cyclic fields of prime degree. Precisely stated, we prove the following result:
Theorem 1.1. With the above assumptions, if $v_{\mathfrak{p}}\left(a^{N_{\mathfrak{p}}}-a\right)=1$, for all primes $\mathfrak{p} \in F i b_{R}(p)$, then

$$
D_{L / K}=p^{p} \mathfrak{a}^{p-1}
$$

where \mathfrak{a} is the ideal radical of aR.
Corollary 1.1. With the above assumptions, if the ideal aR is square free and $v_{\mathfrak{p}}\left(a^{N_{\mathfrak{p}}}-a\right)=1$, for all primes $\mathfrak{p} \in \operatorname{Fib}_{R}(p)$, then α is a power basis generator of L / K.
Proof.indeed if the ideal $a R$ is square free then its radical is $a R$ and hence $D_{L / K}=D i s c_{R} P$.
Note the above corollary is approved by Theorem 6.1 in [21]. Indeed \mathfrak{p} satisfies the Wieferich congruence if and only if $v_{\mathfrak{p}}\left(a^{N_{\mathfrak{p}}-1}-1\right) \geq 2$ (see [6]).

2. Preliminary results

Throughout this article, unless specifically stated otherwise, R is a Dedekind ring of characteristic zero and K its fraction field. Let L / K be a finite separable extension of degree n, O_{L} the integral closure of R in L, and $L=K(\alpha)$ for some $\alpha \in O_{L}$. Let $P \in K[X]$ be the minimal irreducible polynomial of α over K. Since R is integrally closed, $P \in R[X]$ (see [15, p. 7]). Let $\operatorname{Disc}_{R}(P)$ be the principal ideal of R generated by $\operatorname{Res}\left(P, P^{\prime}\right)$, where $\operatorname{Res}\left(P, P^{\prime}\right)$ denotes the resultant of the two polynomials P and its derivative P^{\prime}, we let $D_{L / K}$ denote the discriminants over R of the number field L over K. The following Index-discriminant formula (2.1) and the tower formula (2.2) are well known (see [2], [5] or [9]).

$$
\begin{gather*}
\operatorname{Disc}_{R}(P)=\operatorname{Ind}_{R}(\alpha)^{2} D_{L / K}, \tag{2.1}\\
D_{L / \mathbb{Q}}=N_{K / \mathbb{Q}}\left(D_{L / K}\right) \cdot\left(D_{K / \mathbb{Q}}\right)^{[L: K]} . \tag{2.2}
\end{gather*}
$$

where $N_{K / \mathbb{Q}}$ denotes the norm from K to \mathbb{Q} (see [19, Corollary 10. 2] and [9]). We denote by $\operatorname{Spec}(R)$, the set of the prime ideals of a commutative ring R. Recall that the closed sets of the Zariski topology on $\operatorname{Spec}(R)$, are the sets:

$$
V(I)=\{\mathfrak{p} \in \operatorname{Spec}(R) \mid I \subseteq \mathfrak{p}\}
$$

where I is an arbitrary ideal in R. Note also that for any non-zero prime ideal \mathfrak{p} in R, we consider the set of prime ideals \mathfrak{q} in O_{L} such that $\mathfrak{p}=\mathfrak{q} \cap R$. We call this set the fibre of \mathfrak{p} in L and we will denote it by $\mathrm{Fib}_{L}(\mathfrak{p})$.

In view of the previous Index-Discriminant formula (2.1), the element α is a power basis generator (PBG for short) of L over K if and only if \mathfrak{p} doesn't divide the index ideal $\left[O_{L}: R[\alpha]\right]_{R}$, for any non zero prime ideal \mathfrak{p} in R, such that \mathfrak{p}^{2} divides $\operatorname{Disc}_{R}(P)$. This fact leads us to introduce, for any irreducible polynomial P, the set S_{P} of prime ideals which square divides the ideal $D i s c_{R} P$. Then:

$$
S_{P}=\left\{\mathfrak{p} \in \operatorname{spec} R \mid \mathfrak{p}^{2} \text { divides } \operatorname{Disc}_{R}(P)\right\}
$$

It may pointed out that S_{P} is the set of non zero primes whose may divide the ideal $\operatorname{Ind}_{R}(\alpha)$. Finally recall that -with notation as above - for a polynomial P belonging to $R[X], \bar{P}$ will stand for the polynomial over $k=R / \mathfrak{p}$ obtained on replacing each coefficient of P by its residue modulo \mathfrak{p}. Denote by $R_{\mathfrak{p}}$ the localization of R at the prime \mathfrak{p}.

The following lemma is an immediate consequence of the already known results [1, Proposition 5.12, p. 62]) and [2, property (2), p. 10]), its proof is omitted (cf. [[6], Lemma 3.4]).

Lemma 2.1. Let R be a Dedekind ring, K its fraction field, L is a finite separable extension over K and O_{L} is the integral closure of R in L. Let $\alpha \in O_{L}$ be an algebraic integer over R such that $L=K(\alpha)$. Let \mathfrak{p} be a non zero prime ideal in R and B the integral closure of $R_{\mathfrak{p}}$ in L. Then $\operatorname{Ind}_{R_{\mathfrak{p}}}(\alpha)=\left(\operatorname{Ind}_{R}(\alpha)\right)_{\mathfrak{p}}$. In particular \mathfrak{p} doesn't divide the index ideal $\operatorname{Ind}_{R}(\alpha)$ if and only if $B=R_{\mathfrak{p}}[\alpha]$.

Definition 2.1. Let R be a Dedekind ring, K its fraction field and v be a valuation on K. Let $P=$ $a_{0}+a_{1} X+\ldots+a_{n} X^{n} \in K[X]$, we put:

$$
v_{G}(P)=\inf \left\{v\left(a_{i}\right) \mid 0 \leq i \leq n\right\}
$$

then v_{G} is a valuation on $K[X]$ called the Gauss valuation on $K[X]$ relative to v.
The well known Dedekind criterion permits us to decide whether a primitive element $\alpha \in O_{L}$ is a power basis generator of L over K (PBG for short or a monogenic element of L over K).

Theorem 2.2 (Dedekind Criterium). (see [20], [3], [18], [16], [4], [23]) With notations as above, let $P=\operatorname{Irrd}(\alpha, R) \in R[X]$ be the monic irreducible polynomial of α. Let \mathfrak{p} be a non zero prime ideal in R and $k:=R / \mathfrak{p}$ its residual field. Let \bar{P} be the image in $k[X]$ of P and assume that $\bar{P}=\Pi_{i=1}^{r} \bar{P}_{i}^{l_{i}}$ is the primary decomposition of \bar{P} in $k[X]$ with $P_{i} \in R[X]$ a monic lift of the irreducible polynomial $\overline{P_{i}}$ for $1 \leq i \leq r$. Let $T \in R[X]$ satisfying $P=\prod_{i=1}^{r} P_{i}^{l_{i}}+\pi T$. Then α is a $P B G$ of L over $R_{\mathfrak{p}}$ if and only if $\operatorname{gcd}\left(\bar{P}_{i}, \bar{T}\right)=1$ for all $i=1, \cdots, r$ such that $l_{i} \geq 2$.

Corollary 2.1. With notations as in Theorem 2.2. Let $V_{i} \in R[X]$ be the remainder of Euclidean division of P by P_{i}. Let $v_{\mathfrak{p}}$ be the \mathfrak{p}-adic discrete valuation associated to \mathfrak{p}. Let v_{G} be the Gauss valuation on $K[X]$ associated to $v_{\mathfrak{p}}$. Then \mathfrak{p} doesn't divide the index ideal $\operatorname{Ind}_{R}(\alpha)$ if and only if $v_{G}\left(V_{i}\right)=1$ for all $i=1, \cdots, r$ such that $l_{i} \geq 2$.

Proof.Let $T \in R[X]$ satisfying $P=\prod_{i=1}^{r} P_{i}^{l_{i}}+\pi T$. Then it can be easily verified that $\operatorname{gcd}\left(\bar{P}_{i}, \bar{T}\right)=1$ for all $i=1, \cdots, r$ such that $l_{i} \geq 2$ if and only if $v_{G}\left(V_{i}\right)=1$ for all $i=1, \cdots, r$ such that $l_{i} \geq 2$, where $V_{i} \in R[X]$ is the remainder of Euclidean division of P by P_{i}.

3. Proof of Theorem 1.1

Let R be a Dedekind ring containing \mathbb{Z} and $P=X^{p}-a$ a monic irreducible polynomial in $R[X]$. Recall that the discriminant of P is equal to $\operatorname{Disc}_{R}(P)=p^{p} a^{p-1} R$. As $p \geq 3$, then the set $S_{P}=$ $\operatorname{Fib}_{R}(p) \cup V(a R)$. Recall also if \mathfrak{p} is a non zero prime ideal in R then $\operatorname{char}(R / \mathfrak{p})=p$ if and only if $\mathfrak{p} \in \operatorname{Fib}_{R}(p)$.

To prove Theorem 1.1 we shall need the following lemmas:
Lemma 3.1. Let R be a Dedekind ring with finite residual fields and K its fraction field. Assume that char $K=0$ and $L=K(\alpha)$ is a finite separable extension of K. Let $P=X^{p}-a \in R[X]$ be the monic minimal polynomial of α, where p is an odd prime number. Let \mathfrak{p} be a non zero prime of R and $v_{\mathfrak{p}}$ be the \mathfrak{p}-adic discrete valuation associated to \mathfrak{p}. Assume that $\mathfrak{p} \in V(a R)-F i b_{R}(p)$. Then $v_{\mathfrak{p}}\left(D_{L / K}\right)=p-1$.

Proof.Assume that $\mathfrak{p} \in V(a R)-F i b_{R}(p)$, by localization at \mathfrak{p} the ring $R_{\mathfrak{p}}$ is a discrete valuation ring, putting $\mathfrak{p}=\pi R$ its maximal ideal, we obtain $P \equiv X^{p} \bmod \pi R$, therefore it is immediate that the remainder of the Euclidean division of P by X is a. Hence if $v_{\mathfrak{p}}(a)=1$, then by Dedekind Criterion (Theorem 2.2) α is a $P B G$ of L over $R_{\mathfrak{p}}$. Now applying Lemma 2.1 we see that \mathfrak{p} does not divide the index ideal $\operatorname{Ind}_{R}(\alpha)$ and hence by the index-discriminant formula (2.1) we have $v_{\mathfrak{p}}\left(D_{L / K}\right)=p-1$. Set $v_{\mathfrak{p}}(a)=s$ and suppose that $s>1$, let $1<r<p$ such that $s r \equiv 1[p]$. Set $t=\frac{r s-1}{p}$, then the element $\beta=\frac{\alpha^{r}}{\pi^{t}}$ is an algebraic integer satisfies the polynomial $Q=X^{p}-b$ where $b=\frac{a^{r}}{\pi^{t p}}$. As the remainder of the Euclidean division of Q by X is b and $v_{\mathfrak{p}}(b)=r s-t p=1$, we see that β is a PBG of L over $R_{\mathfrak{p}}$. Now by index-discriminant formula (2.1) we immediately conclude that

$$
p^{p} b^{p-1}=\operatorname{Ind}_{R}(\beta)^{2} D_{L / K}
$$

Since in view of Lemma 2.1, \mathfrak{p} does not divide the index $\operatorname{Ind}_{R}(\beta)$, the above equation shows that the exact power of \mathfrak{p} dividing $D_{L / K}$ is $p-1$.

Lemma 3.2. With notations as in Lemma 3.1 assume that $\mathfrak{p} \in F i b_{R}(p)-V(a R)$ and $v_{\mathfrak{p}}\left(a^{N_{\mathfrak{p}}}-a\right)=1$. Then $v_{\mathfrak{p}}\left(D_{L / K}\right)=p e(\mathfrak{p} / p)$.

Proof.Let $\mathfrak{p} \in \operatorname{Fib}_{R}(p)-V(a R)$ and assume that $v_{\mathfrak{p}}\left(a^{N_{\mathfrak{p}}}-a\right)=1$, by localization at \mathfrak{p} the ring $R_{\mathfrak{p}}$ is a discrete valution ring, set $\mathfrak{p}=\pi R$ its maximal ideal, we claim that $\lambda=\alpha-a^{\frac{N_{\mathfrak{p}}}{p}}$ is a $P B G$ of L over $R_{\mathfrak{p}}$. Observe first that the element λ is an algebraic integer satisfying the polynomial

$$
P_{\lambda}(X)=\left(X+a^{\frac{N_{\mathfrak{p}}}{p}}\right)^{p}-a=\sum_{k=1}^{p}\binom{p}{k} X^{k}\left(a^{\frac{N_{\mathfrak{p}}}{p}}\right)^{p-k}+a^{N_{\mathfrak{p}}}-a
$$

Since p divide $\binom{p}{k}$ for $1 \leq k \leq p-1$, then we see immediately that $P_{\lambda} \equiv X^{p} \bmod \pi R$ and hence the remainder of the Euclidean division of P by X is $a^{N_{\mathfrak{p}}}-a$, this proves in view of Dedekind Criterion and the fact that $v_{\mathfrak{p}}\left(a^{N_{\mathfrak{p}}}-a\right)=1$ that λ is a PBG of L over $R_{\mathfrak{p}}$, consequently in view of Lemma $2.1 \mathfrak{p}$ does not divide the index $\operatorname{Ind}_{R}(\lambda)=\operatorname{Ind}_{R}(\alpha)$. Now by index-discriminant formula (2.1) one can write

$$
\operatorname{Disc}_{R}\left(P_{\lambda}\right)=\operatorname{Disc}_{R}(P)=p^{p} a^{p-1}=\operatorname{Ind}_{R}(\alpha)^{2} D_{L / K}
$$

the above equation shows that the exact power of \mathfrak{p} dividing $D_{L / K}$ is $p-1$.
Proof of Theorem 1.1.
Indeed $p R=\prod_{\mathfrak{p} \mid p} \mathfrak{p}^{e(\mathfrak{p} / p)}$. Let $\mathfrak{c}:=p^{p} \mathfrak{p}^{p-1}$. It suffices to show that $v_{\mathfrak{p}}\left(D_{L / K}\right)=v_{\mathfrak{p}}(\mathfrak{c})$ for all prime $\mathfrak{p} \in S_{P}$. Let $\mathfrak{p} \in S_{P}$. It is clear first that

$$
v_{\mathfrak{p}}(\mathfrak{c})=v_{\mathfrak{p}}(p)+(p-1) v_{\mathfrak{p}}(\mathfrak{p})= \begin{cases}p e(\mathfrak{p} / p)+(p-1) & \text { if } v_{\mathfrak{p}}(a) \geqslant 1 \\ p e(\mathfrak{p} / p) & \text { if } v_{\mathfrak{p}}(a)=0\end{cases}
$$

If $v_{\mathfrak{p}}(a)=0$, then $\mathfrak{p} \in \operatorname{Fib}_{R}(p)$ and hence in view of Lemma $3.2 v_{\mathfrak{p}}\left(D_{L / K}\right)=p e(\mathfrak{p} / p)$. If $v_{\mathfrak{p}}(a) \geqslant 1$, then then there is two cases: If $\mathfrak{p} \notin F i b_{R}(p)$ then $e(\mathfrak{p} / p)=0$ and in view of Lemma $3.2 v_{\mathfrak{p}}\left(D_{L / K}\right)=v_{\mathfrak{p}}(\mathfrak{c})=$ $p-1$. If $\mathfrak{p} \in \operatorname{Fib}_{R}(p)$ then $v_{\mathfrak{p}}(a)=1$ as $v_{\mathfrak{p}}\left(a^{N_{\mathfrak{p}}}-a\right)=1$ hence \mathfrak{p} does not divide the index $\operatorname{Ind}_{R}(\alpha)$ and consequently $v_{\mathfrak{p}}\left(D_{L / K}\right)=v_{\mathfrak{p}}\left(\operatorname{Disc}_{R}(P)\right)=v_{\mathfrak{p}}(\mathfrak{c})=p e(\mathfrak{p} / p)+p-1$.

4. Illustration

4.1. Relative pure septic extension

Theorem 4.1. Let $K=\mathbb{Q}(\sqrt{35})$ be a quadratic extension and O_{K} its ring of integer. Let $L=K(\alpha)$ be a septic extension of the field K, where α satisfies an irreducible polynomial $P=X^{7}-a_{m}$ belonging to $O_{K}[x]$ such that $a_{m}=\sqrt{35}+m,(m \in \mathbb{Z})$, furthermore we assume that $7 \nmid m$ and $m^{6} \equiv 1 \bmod 49$. Then

$$
D_{L / K}=7^{7} \mathfrak{b}_{m}^{6}
$$

where \mathfrak{b}_{m} is the ideal radical of $a_{m} R$.
Proof.First of all we note that $7 O_{K}=\mathfrak{p}^{2}$, it is known that the cardinality of O_{K} / \mathfrak{p} is 7 since the residual degree of \mathfrak{p} is $f=1$. We claim that $v_{\mathfrak{p}}\left(a_{m}^{7}-a_{m}\right)=1$. Observe first that

$$
\begin{aligned}
a_{m}^{6}-1 & =\sum_{k=0}^{6}\binom{6}{k}(\sqrt{35})^{k} m^{6-k}-1 \\
& =m^{6}-1+525 m^{4}+18375 m^{2}+42875+\sqrt{35}\left(6 m^{5}+700 m^{3}+7350 m\right)
\end{aligned}
$$

Now by property of dominance principle, and using the fact that $v_{7}(m)=0$, it is easy to check that

$$
v_{\mathfrak{p}}\left(6 m^{5}+700 m^{3}+7350 m\right)=0
$$

and

$$
v_{\mathfrak{p}}\left(525 m^{4}+18375 m^{2}+42875\right)=2 .
$$

Keeping this in mind and using the fact that $m^{6} \equiv 1 \bmod 49$, we see immediately that

$$
v_{\mathfrak{p}}\left(a_{m}^{6}-1\right)=\min \left(v_{\mathfrak{p}}\left(525 m^{4}+18375 m^{2}+42875\right), v_{\mathfrak{p}}\left(\left(m^{6}-1\right)\right), v_{\mathfrak{p}}(\sqrt{35})\right)=1
$$

Now it is clear that $v_{\mathfrak{p}}\left(a_{m}^{7}-a_{m}\right)=1$, as $v_{\mathfrak{p}}\left(a_{m}\right)=0$ since $7 \nmid m$. Satisfying the conditions of Theorem 1.1, so the discriminant of L over K is given by

$$
D_{L / K}=7^{7} \mathfrak{b}_{m}^{6},
$$

where \mathfrak{b}_{m} is the ideal radical of $a_{m} R$.
Corollary 4.1. With notations as in Theorem 4.1, the discriminant $D_{L / \mathbb{Q}}$ is given by

$$
D_{L / \mathbb{Q}}=7^{21} \cdot 2^{14} \cdot 5^{7} \cdot N_{K / \mathbb{Q}}\left(\mathfrak{p}_{m}\right)^{6} .
$$

Proof. The proof immediately follows from the discriminant tower formula (2.2) and the fact that $D_{K / \mathbb{Q}}=$ $2^{2} \cdot 5 \cdot 7$.

Exemples 4.1. With notations as in Theorem 4.1, let $m=1$, then $L=\mathbb{Q}(\sqrt{35}, \sqrt[7]{1+\sqrt{35}})$. Now using the facts that $N_{K / \mathbb{Q}}(\sqrt{35}+1)=2 \times 17, x^{2}-35 \equiv(x+1)^{2} \bmod 2, x^{2}-35 \equiv(x+1)(x+16) \bmod 17$, we see that $(\sqrt{35}+1) O_{K}=\mathfrak{p}_{1}^{2} \mathfrak{p}_{2}$ where $\mathfrak{p}_{1}=2 O_{K}+(\sqrt{35}+1) O_{K}$ and $\mathfrak{p}_{2} \in$ Fib $_{O_{K}}(17)$. Hence by Theorem 4.1 the discriminant of L over K is given by

$$
D_{L / K}=7^{7}\left(\mathfrak{p}_{1} \mathfrak{p}_{2}\right)^{6},
$$

Using now corollary 4.1 we see that

$$
D_{L / \mathbb{Q}}=7^{21} \cdot 2^{14} \cdot 5^{7} \cdot N_{K / \mathbb{Q}}\left(\mathfrak{p}_{1}\right)^{6} N_{K / \mathbb{Q}}\left(\mathfrak{p}_{2}\right)^{6}=7^{21} \cdot 2^{20} \cdot 5^{7} \cdot 17^{6} .
$$

4.2. Relative pure quintic extension

Theorem 4.2. Let $K=\mathbb{Q}(\sqrt{3})$ be a quadratic extension and O_{K} its ring of integer. Let $L=K(\alpha)$ be a quintic extension of the field K where α satisfies an irreducible polynomial $P=X^{5}-a_{m}$ belonging to $O_{K}[x]$ such that $a_{m}=5^{2} m+\sqrt{3},(m \in \mathbb{Z})$. Then

$$
D_{L / K}=5^{5} \mathfrak{b}_{m}^{4},
$$

where \mathfrak{b}_{m} is the ideal radical of $a_{m} R$.
Proof.Observe first that $O_{K}=\mathbb{Z}[\sqrt{3}]$ and $5 O_{K}=\mathfrak{p}$ is prime in O_{K}. We claim that $v_{\mathfrak{p}}\left(a_{m}^{25}-a_{m}\right)=1$. It is clear that

$$
\begin{aligned}
a_{m}^{24}-1 & =\sum_{k=0}^{24}\binom{24}{k}(\sqrt{3})^{k}\left(5^{2} m\right)^{24-k}-1 \\
& =(\sqrt{3})^{24}-1+\sum_{k=0}^{23}\binom{24}{k}(\sqrt{3})^{k}\left(5^{2} m\right)^{24-k}
\end{aligned}
$$

Now using the fact that for any $0 \leqslant k \leqslant 23$, we have

$$
v_{\mathfrak{p}}\left(5^{2} m\right)^{24-k}=(24-k)\left(v_{\mathfrak{p}}(m)+2\right) .
$$

It is easy to check that

$$
v_{\mathfrak{p}}\left(\sum_{k=0}^{23}\binom{24}{k}(\sqrt{3})^{k}\left(5^{2} m\right)^{24-k}\right)>1 .
$$

Now since $v_{\mathfrak{p}}\left((\sqrt{3})^{24}-1\right)=1$, then by property of dominance principle, it is easy to check that

$$
v_{\mathfrak{p}}\left(a_{m}^{24}-1\right)=\min \left(v_{\mathfrak{p}}\left((\sqrt{3})^{24}-1\right), v_{\mathfrak{p}}\left(\sum_{k=0}^{23}\binom{24}{k}(\sqrt{3})^{k}\left(5^{2} m\right)^{24-k}\right)\right)=1
$$

To complete the proof. It is clearly enough to show that $v_{\mathfrak{p}}\left(a_{m}\right)=0$. Suppose to the contrary that 5 divides a_{m}, now since 5 divides $5^{2} m$, then 5 divides $\sqrt{3}$ which is impossible as $v_{5}(\sqrt{3})=0$, this proves that $v_{\mathfrak{p}}\left(a_{m}\right)=v_{5}\left(a_{m}\right)=0$. Satisfying the conditions of Theorem 1.1, so the discriminant of L over K is given by

$$
D_{L / K}=5^{5} \mathfrak{b}_{m}^{4}
$$

where \mathfrak{b}_{m} is the ideal radical of $a_{m} R$.
Corollary 4.2. With previous conditions in Theorem 4.2. The discriminant $D_{L / \mathbb{Q}}$ is given by:

$$
D_{L / \mathbb{Q}}=5^{10} \cdot 2^{10} \cdot 3^{5} N_{K / \mathbb{Q}}\left(\mathfrak{p}_{m}\right)^{4}
$$

Proof. The proof follows immediately from the fact that Since $D_{K / \mathbb{Q}}=2^{2} .3$ and the discriminant tower formula (2.2).

Exemples 4.2. Assume that $m=2$, then $L=\mathbb{Q}(\sqrt{3}, \sqrt[5]{50+\sqrt{3}})$ Now using the facts that $N_{K / \mathbb{Q}}(50+$ $\sqrt{3})=11.277$ and $x^{2}-3 \equiv \bmod (x+5)(x+6) \bmod 11, x^{2}-3 \equiv \bmod (x+130)(x+147) \bmod 277$, we see that $(50+\sqrt{3}) O_{K}=\mathfrak{p}_{1} \mathfrak{p}_{2}$ where $\mathfrak{p}_{1} \in$ Fib $_{O_{K}}(11)$. and $\mathfrak{p}_{2} \in F i b_{O_{K}}(277)$. Hence by Theorem 4.2 we see that

$$
D_{L / K}=5^{5}\left(\mathfrak{p}_{1} \mathfrak{p}_{2}\right)^{4}
$$

Now using corollary 4.2 we see that the discriminant of L over \mathbb{Q} is given by

$$
D_{L / \mathbb{Q}}=5^{10} \cdot 2^{10} \cdot 3^{5} N_{K / \mathbb{Q}}\left(\mathfrak{p}_{1}\right)^{4} N_{K / \mathbb{Q}}\left(\mathfrak{p}_{2}\right)^{4}=5^{10} \cdot 2^{10} \cdot 3^{5} \cdot 11^{4} \cdot 277^{4}
$$

Acknowledgments

The author is very grateful to the anonymous referee for his careful checking.

References

1. Atiyah. M. F, Macdonald. I. G., Introduction to Commutative Algebra. Addison- Wesley, Massachusetts, (1969).
2. Cassels. J. W. S, Fröhlich. A., Algebraic Number Theory, Academic Press, London and New york, 1967.
3. M. E. Charkani, O. Lahlou, On Dedekind's criterion and monogenicity over Dedekind rings. Int. J. of Math. and Math. Sci. (2003) (7) (2003) 4455-4464. Zbl 1066.11046, https://doi.org/10.1155/S0161171203211534.
4. M. E. Charkani, A. Deajim, Generating a power basis over a Dedekind Ring. J. Number Theory 132, No. 10, 2267-2276, (2012).Zbl 1293.11101, https://doi.org/10.1016/j.jnt.2012.04.006.
5. M. E. Charkani, A. Deajim, Relative index extensions of Dedekind rings. JP J. Algebra, Number Theory and Appl 27, 73-84 (2012). Zbl 1368.11111.
6. M. Sahmoudi, M. E. Charkani, Relative monogenity of pure cyclic fields of degree an odd prime number. Mathematica Bohemica, pp. 1-12, (2022).
7. Cohen. H., A Course in Computational Algebraic Number Theory, GTM Vol. 138, Springer Verlag, Berlin, 1996.
8. I. Corso, L. Rossi, Normal integral bases for cyclic Kummer extensions. Journal of Pure and Applied Algebra, 214(2010) 385391. Zbl 1203.11074, https://doi.org/10.1016/j.jpaa.2009.06.019.
9. Fröhlich. A, Taylor. M. J., Algebraic Number Theory, Combridge Studies in Advenced Mathematics, 27, Cambridge University Press, (1993).
10. I.Gaál, Diphantine equations and power integral bases, Theory and algorithms. 2nd edition, Birkhäuser,2019.
11. A. Hameed, T. Nakahara, Integral bases and relative monogenity of pure octic fields. Bull. Math. Soc. Sci. Math. Roumanie Tome, 58(106) No. 4, 2015, 419-433. Zbl 1363.11094.
12. A. Jakhar, S. K. Khanduja, N.Sanagwan, On integral basis of pure number fields. Mathematika 67 (2021) 187-195.
13. A. Jakhar, N. Sangwan, Integral basis of pure prime degree number fields. Indian Journal of Pure andd Applied Mathematics, volume 50, pages 309-314 (2019). Zbl 1455.11141.
14. A. Jakhar, S. K. Khanduja, N. Sangwan, Discriminant of pure square free degree number fields. Acta Arith., 181, 2017, 287-296, DOI: 10.4064/aa170508-4-11.
15. Janusz.G.J., Algebric Number Fields, Academic Press, New York, Second Edition (1995).
16. M. Kumar, S. K. Khanduja, A Generalization of Dedekind criterion. Communication in Algebra, 35, 1479-1486 (2007). Zbl 1145.11078, https://doi.org/10.1080/00927870601168897.
17. Lang. S., Algebra, Second Edition, Addison-Wesley, (1984).
18. J. Montes, E. Nart, On a theorem of Ore. Journal of Algebra. Vol. 146, (1992) 318-334. Zbl 0762.11045
19. Neukirch.J., Algebraic Number theory. Springer Publication, (1999).
20. P. Schmid, On criteria by Dedekind and Ore for integral ring extensions. Arch. Math. 84 (2005) 304-310. Zbl 1072.13004.
21. H. Smith, The monogeneity of radical extensions. Acta Arithmetica, 198 (2021), 313-327.
22. B. K. Spearman, K. S. Williams, Relative integral bases for quartic fields over quadratic subfields. Acta Math. Hungar., 70 ,185-192, (1996). Zbl 0864.11051.
23. A. Soullami, M. Sahmoudi, O. Boughaleb, On relative power integral basis of a family of numbers fields. Rocky Mountain J. Math. 51(4): 1443-1452 (2021). Zbl 1469.11414, DOI: 10.1216/rmj.2021.51.1443.
24. S.-L. Tan, D.-Q. Zhang, The determination of integral closures and geometric applications, Adv. in Math. 185 (2004) 215-245, DOI:10.1016/S0001-8708(03)00210-X.
25. K. Uchida, When is $\mathbb{Z}[\alpha]$ the ring of the integers?, Osaka J. Math. 14 (1977), 155-157.
Omar Boughaleb,
Department of Mathematics,
Sidi Mohamed Ben Abdellah University,
Morocco.
E-mail address: boughaleb01omar@gmail.com
and
and

Mohammed. E. Charkani,
Department of Mathematics, Sidi Mohamed Ben Abdellah University, Morocco.
E-mail address: mcharkani@gmail.com

[^0]: 2010 Mathematics Subject Classification: 13B22, 11R04, 13F10.
 Submitted September 05, 2022. Published March 08, 2023

