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Well-Balanced Conservative Central Upwind Scheme for Solving the Dam-Break Flow

Problem Over Erodible Bed

S. Jelti, A. Serghini and A. El Hajaji

abstract: This work deals with the numerical solution of dam-break flow over an erodible bed. The
mathematical model is a combination of the shallow water, the transport diffusion and the bed morphology
change equations. The system is solved by a well-Balanced central upwind scheme with conservative property.
Several tests are illustrated in order to validate the accuracy and the performance of the model. A comparison
of central upwind scheme and Roe scheme is presented.

Key Words: Finite volume method, dam-break flow, sediment transport, erodible bed, central up-
wind scheme.
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1. Introduction

The scientific community continues to search the best possible solutions to develop the numerical
modeling of alluvial rivers, both for economic reasons (water reserve, hydropower generation, irrigation,
etc. ) and for security reasons (dam-break, flooding prediction, etc.).

The effects of sediment transport and bed changes on the flow have been neglected by the first math-
ematical models for studying the dam-break flow over movable beds [9,11,18,35]. However, it is obvious
that the flow of water play a very significant role in the erosion phenomenon, transport and deposition
of sediments; the water flow produces sediment transport and changes in the surface morphology, which
in return modify the flow. Therefore, researchers and engineers have been payed attention to the strong
interaction between the water flow and the bed morphology change. This concept has given rise to a
new mathematical model for a dam-break flow over movable bed [5,7,9], in which they consider two
layers simulated separately; the clear water in the upper layer and the mixture of sediment and water in
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lower layer. However, the applicability of this model is somehow limited because of the assumption of a
constant sediment concentration in the lower layer [10].

coupled model has been developed as new mathematical model In [5], which takes into account the
strong interaction between flow, sediment transport and morphological evolution of the bed. The coupled
model links all conservation equations and provides a synchronous resolution procedure, also, it treats
entrainment and deposition sediment as independent processes (this property is called noncapacity model)
[6,33].

In this work, we use an unidimensional noncapicity model for a dam-break flow, sediment transport
and mobile bed. The mathematical model consists of four equations; the mass and the momentum
conservation equation for the water-sediment mixture, the transport diffusion equation for sediment
particles and bed morphology change equation, together with empirical formulations for bed friction and
sediment exchange between the water column and the bed [33].

Central-upwind schemes were introduced at first in [20,21,22] for one dimensional hyperbolic systems
of conservation laws and its multidimensional extensions. The central-upwind schemes belong Godunov
central schemes family, therefore they enjoy the main advantages of central schemes for solving time-
dependent differential equations in different fields like robustness, simplicity and high-resolution. At
the same time, in central upwind a more careful estimate of the one-sided local speeds of propagation
and integration over Riemann fans with variable sizes is used (see [24], for instance). This decreases
the numerical dissipation and results in increased resolution of the computed solution. Central-upwind
schemes have been proposed for general hyperbolic system of conversation law in [24,25] and extended
to the shallow water equations and related models in [17,22,23,26].

The governing equations are solved numerically using central upwind scheme. The main goal is to
modify the classical central upwind scheme in order to introduce a new formulation to discretize the
source term which satisfies the C-property. The MUSCL method with generalized minmod limiter and
the Runge-Kutta are used to achieve a second order accuracy.

Particular attention is given to the evolution of the dam-break flow, sediment transport and bed
morphological development. Additional test problems are studied in order to validate the proposed
scheme. Many previously evolutionary behaviors of dam-break over erodible bed are addressed in [7],
[10], [6] and [15] and many unreported features are interpreted, such as the effect of the sediment size on
the free surface and bed mobility profiles. The result expected from this work is to warrant a satisfying
accuracy and synchronous solution by coupling all equations. Same works exist with many differences
including the numerical method of resolution, [6], [15], [19], [36] and [34].

This work is organized as follows. Section 2 presents the governing equations for a dam-break over
erodible sediment bed, as well as the empirical functions considered. In Section 3 the central upwind
scheme is introduced and its discretization is given. The treatment of the source term is introduced in
Section 3.4. Section 4 covers the tests and the numerical results. Finally a conclusion is given in Section
5.

2. The mathematical model

In this section, we define the mathematical model and the empirical functions used in this paper.
There are many mathematical models developed in the literature, in our study we will use the one
presented in [6] which has been used in some recent works like [2], [13], [15] and [30].

2.1. Gouverning Equations

In this step of study, attention is focused on one-dimensional flow in a channel with rectangular cross
section of constant width, over a mobile bed composed of uniform and noncohesive sediment particles.
This mathematical model can be extendable to natural rivers with complex geometries, nonuniform
sediments and multidimensional problems.

The mass and momentum conservation equations for the water-sediment mixture, the mass conser-
vation equation for the sediment and the mass conservation equation for the bed material are written as
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[2,6,15,30,33] :

∂h

∂t
+

∂(hu)

∂x
=

E − D

1 − p
(2.1)

∂(hu)

∂t
+

∂(hu2 + 1
2 gh2)

∂x
= B (2.2)

∂(hc)

∂t
+

∂(huc)

∂x
= E − D (2.3)

∂z

∂t
= −E − D

1 − p
(2.4)

where B is the source term defined by :

B = −gh
∂z

∂x
− ρs − ρw

2ρ
gh2 ∂c

∂x
− ghSf − ρ0 − ρ

ρ

E − D

1 − p
u (2.5)

t is the time, x the streamwise coordinate, h the flow depth, u the depth-averaged streamwise velocity, z

the bed elevation, c the flux-averaged volumetric sediment concentration, g the gravitational acceleration,
p the bed sediment porosity. D and E are the sediment deposition and entrainment fluxes across the bot-
tom boundary of flow, they represent the exchange between water column and bed. Sf is the friction slope,
ρ = ρw(1 − c) + ρsc is the density of water-sediment mixture,
ρ0 = ρwp + ρs(1 − p) is the density of the saturated bed, ρw and ρs are the densities of water and
sediment, respectively.

Equation (2.1) represents the mass conservation equation for the water-sediment mixture. It differs
from the conservation equation for clear water flows because of the right hand side term, which constitutes
the link between sediment, water and bed exchange [6,30]. Equation (2.2) represents the momentum
conservation equation for the water-sediment mixture. There are two additional terms on the right
hand side comparing with the momentum equation for clear water flows. The first one represents the
momentum transfer due to sediment exchange between the water column and the erodible bed boundary.
The second one indicates the effect of streamwise variable concentration. The mass conservation equation
for sediment is represented by Equation (2.3), in which suspended and bed load are considered in a single
mode indicated by the total sediment load. Equation (2.4) indicates the bed change rate.

2.2. Empirical functions

To complete the governing equations given above, formulations have to be chosen to determine the
friction slope and the sediment entrainment-deposition fluxes across the bottom boundary of the flow.
The conventional relation is used to determine the friction slope:

Sf =
n2

f u |u|
h

4
3

(2.6)

which involves the Manning roughness nf = 0.03.
In alluvial rivers, sediment exchange between the flow and the erodible bed involves two distinct

mechanisms, bed sediment entrainment due to turbulence and sediment deposition due to gravitational
action. These two mechanisms are dependant to the problem studied, entrainment in extreme events
such as dam-break problems can be more significant than simple fluvial processes, and responsible of
bed morphological change. There exists a variety of empirical formulations derived on various cases, we
follow those used in [2,4,6,30,33].

For deposition D, the relation used is:

D = ω(1 − ca)mca (2.7)

m is an exponent set to m = 2. ca is the local near-bed sediment concentration in volume, it is presumed
to be proportional to the depth-averaged concentration i.e., ca = αc, where α is an empirical coefficient
usually larger than unity [33]:

α = min

(

2,
1 − p

c

)
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ω is the settling velocity of sediment particle in tranquil water [32,33]:

ω = 1.1

√

(

ρs

ρ
− 1

)

g d

where d is the diameter of the sediment grain. In our case d is larger than 1mm.
For the entrainment, we use:

E =

{

ϕ
θ − θc

h

u

d 0.2
if θ ≥ θc

0 otherwise
(2.8)

where ϕ = 0.015 m1.2 is a coefficient to control erosion force, θc = 0.045 is the critical value of Shield’s
parameter for the initiation of sediment motion and θ is the Shield’s coefficient defined by [6,30]:

θ =
u2

∗

gd
√

ρs

ρw
− 1

u∗ is the friction velocity defined by :

u2
∗

=

√

f

8
. |u|

where f is the Darcy-Weisbach friction factor defined by [30] as

f =
8 g n2

f

h1/3

3. Numerical scheme

Equations (2.1-2.4) constitute a hyperbolic system, which is solved numerically using central-upwind
scheme [29]. In this study, Equation (2.4) is coupled to all other
equations, this makes the resolution more realistic, but the hyperbolicity of the system becomes more
strong [6].

3.1. Central-upwind scheme

It is well known that Godunov-type central schemes are Riemann-problem-solver-free and are robust,
simplenand high-resolution methods for solving time-dependent differential equations in different fields.
The central-upwind schemes belong Godunov central schemes family, where a more careful estimate of
the one-sided local speeds of propagation and integration over Riemann fans with variable sizes is used.
This decreases the numerical dissipation and results in increased resolution of the computed solution.
Another advantage of these schemes, as opposed to the earlier developed staggered central schemes, is
that they can be used for steady state computations. Central-upwind schemes have been proposed for
general hyperbolic system of conversation law in [24,25] and extended to the shallow water equations and
related models in [22,23,26].

Equations (2.1-2.4) can be arranged in the conservative form:

∂U

∂t
+

∂F (U)

∂x
= S + Q (3.1)

or non-conservative form:
∂U

∂t
+ A(U)

∂U

∂x
= Q (3.2)

where

U =









h

hu

hc

z









, F =









hu

hu2 + 1
2 gh2

huc

0









, S =











0

−gh ∂z
∂x − (ρs−ρw)

2ρ gh2 ∂c
∂x

0
0











,
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Q =













E−D
1−p

−ghSf − ρ0−ρ
ρ

E−D
1−p u

E − D

− E−D
1−p













the matrix A(U) is given by

A(U) =









0 1 0 0

gh − u2 − ρs−ρw

2ρ ghc 2u
ρs−ρw

2ρ gh gh

−uc c u 0
0 0 0 0









A(U) has the four following distinct real eigenvalues

λ1 = 0, λ2 = u, λ3 = u − √
gh, and λ4 = u +

√
gh

The spatial domain is discretized into finite volume cells Ci = [xi− 1
2
, xi+ 1

2
] with the same length ∆x.

The time interval is divided into subintervals [tn, tn+1] with uniform size ∆t. We suppose that at certain

time t, the solution is given in terms of its cell averages Ui =
1

∆x

∫

Ci
U(x, t)dx, which are given in time

according to the semi-discrete central-upwind scheme, see for instance [21,22] as follows

∂Ui

∂t
= −

Hi+ 1
2
(t) − Hi− 1

2
(t)

∆x
+ Si(t) + Qi(t), (3.3)

where Si(t) and Qi(t) are respectively the cell average of S(t) and Q(t) on Ci at the time t. The central-
upwind numerical flux Hi+ 1

2
(t) are given by

Hi+ 1
2
(t) =

a+
i+ 1

2

F −

i+ 1
2

(t) − a−

i+ 1
2

F +
i+ 1

2

(t)

a+
i+ 1

2

− a−

i+ 1
2

+
a+

i+ 1
2

a−

i+ 1
2

a+
i+ 1

2

− a−

i+ 1
2

(U+
i+ 1

2

(t) − U−

i+ 1
2

(t)). (3.4)

due to the hyperbolicity of the system of differential equations (3.2), the discontinuities appearing at the
reconstruction step at the interface points xi+1/2 propagate at finite speeds estimated by

a+
i+ 1

2

= max
(

0, u+
i+ 1

2

+
√

gh+
i+ 1

2

, u−

i+ 1
2

+
√

gh−

i+ 1
2

)

(3.5)

a−

i+ 1
2

= min
(

0, u+
i+ 1

2

−
√

gh+
i+ 1

2

, u−

i+ 1
2

−
√

gh−

i+ 1
2

)

(3.6)

3.2. Second order approximation in space

When U−

i+ 1
2

and U+
i+ 1

2

are approximated by Ui and Ui+1 respectively, the semi-discrete central-upwind

scheme is only first-order accurate in space. However, if we take them as the right and the left point
values of the piecewise linear reconstruction on the cell Ci, the scheme is second order in space. In our
study, we adopt the linear reconstruction given by [8] and then for each i we put

Ūi(x) = Ui +

(

∂U

∂x

)

i

(x − xi), ∀x ∈ [xi− 1
2
, xi+ 1

2
]

U+
i+ 1

2

and U−

i+ 1
2

are the right and left point values of the piecewise linear reconstruction at x = xi+ 1
2
,

then

U+
i+ 1

2

= Ui +
∆x

2

(

∂U

∂x

)

i

(3.7)

U+
i+ 1

2

= Ui+1 − ∆x

2

(

∂U

∂x

)

i+1

(3.8)
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The numerical derivatives (Ux)i are to be computed using a nonlinear limiter. In this paper the general-
ized minmod limiter in order to warrant the second order accuracy and a non-oscillatory nature of the
reconstruction is used :

(

∂U

∂x

)

i

= minmod

(

θ
Ui+1 − Ui

∆x
; θ

Ui − Ui−1

∆x
;

Ui+1 − Ui−1

2∆x

)

where the minmod function is defined by:

minmod(α1, α2, α3) =







min(α1, α2, α3) if αi > 0, ∀i

max(α1, α2, α3) if αi < 0, ∀i

0 otherwise
(3.9)

The central-upwind framework allows one to decrease a relatively large amount of numerical dissi-
pation present at the staggered central schemes. In [23], the authors present a modification of the one-
dimensional semi-discrete central-upwind scheme, in which the numerical dissipation is more reduced. In
this case the central-upwind numerical flux Hi+ 1

2
(t) is given by

Hi+ 1
2
(t) =

a+
i+ 1

2

F −

i+ 1
2

(t) − a−

i+ 1
2

F +
i+ 1

2

(t)

a+
i+ 1

2

− a−

i+ 1
2

+
a+

i+ 1
2

a−

i+ 1
2

a+
i+ 1

2

− a−

i+ 1
2

(U+
i+ 1

2

(t) − U−

i+ 1
2

(t)) − di+ 1
2
, (3.10)

where di+ 1
2

is called the correction term or built-in anti-diffusion term and is defined by

di+ 1
2

=
a+

i+ 1
2

a−

i+ 1
2

a+
i+ 1

2

− a−

i+ 1
2

minmod
(

U+
i+ 1

2

(t) − U∗

i+ 1
2

(t), U∗

i+ 1
2

(t) − U−

i+ 1
2

(t)
)

. (3.11)

The intermediate value U∗

i+ 1
2

(t) is given by

U∗

i+ 1
2

(t) =
a+

i+ 1
2

U+
i+ 1

2

(t) − a−

i+ 1
2

U−

i+ 1
2

(t) − (F +
i+ 1

2

(t) − F −

i+ 1
2

(t))

a+
i+ 1

2

− a−

i+ 1
2

. (3.12)

Consider the modified correction term defined as

Di+ 1
2

=









2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2









.di+ 1
2

(3.13)

and the modified central-upwind numerical flux Hi+ 1
2
(t) given by

Hi+ 1
2
(t) =

a+
i+ 1

2

F −

i+ 1
2

(t) − a−

i+ 1
2

F +
i+ 1

2

(t)

a+
i+ 1

2

− a−

i+ 1
2

+
a+

i+ 1
2

a−

i+ 1
2

a+
i+ 1

2

− a−

i+ 1
2

(U+
i+ 1

2

(t) − U−

i+ 1
2

(t)) − Di+ 1
2
. (3.14)

The goal of the modified correction term is to obtain a scheme satisfying the Conservation property. This
modification is obtained by multiplying the correction term corresponding to h and z by 2 and conserve
the one corresponding to hu and hc.

3.3. Second order approximation in time

To reach second order approximation in time, we rewrite relation (3.3) as:

∂Ui

∂t
= L(Ui) (3.15)

then we use the Runge-Kutta second order scheme [12,27]:






U∗ = Un + ∆t L(Un)
U∗∗ = U∗ + ∆t L(U∗)
Un+1 = 1

2 (Un + U∗∗)
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3.4. Discretization of the source term

The source term has a great effect on the resolution of the system. For this, we must work out a
discretization which satisfy a conservation property, knowing that a simple central discretization of the
source term does not hold this property and spurious numerical waves can appear. A scheme verifies the
C-property if the initial equilibrium is preserved when un = 0, for each n, i.e.,

E − D = 0, un
i = 0, hn

i + zn
i = C1, ρn

i = C2, zn
i = z(x), ∀n

C1 and C2 are constants. Consequently, the system (3.1) is reduced to

∂U

∂t
+

∂F

∂x
= S (3.16)

where

U =





h

0
z



 , F =





0
1
2 gh2

0



 , S =





0
−gh ∂z

∂x
0



 .

Note that the third equation in (3.1) is automatically satisfied at the equilibrium. The eigenvalues of the
system (3.16) are −√

gh,
√

gh and 0 and then, using (3.5) and (3.6), the values of a+
i+ 1

2

and a−

i+ 1
2

satisfy

the following relation
a+

i+ 1
2

= −a−

i+ 1
2

= σ. (3.17)

Using (3.12), we obtain

U
∗,n

i+ 1
2

=
1

2
(U+,n

i+ 1
2

+ U
−,n

i+ 1
2

) − 1

2σ
(F +,n

i+ 1
2

− F
−,n

i+ 1
2

),

then

U
∗,n

i+ 1
2

=
1

2









h
+,n

i+ 1
2

+ h
−,n

i+ 1
2

1
2σ g(h+,n

i+ 1
2

)2 − 1
2σ g(h−,n

i+ 1
2

)2

z
+,n

i+ 1
2

+ z
−,n

i+ 1
2









.

Therefore, from (3.11), we have

di+ 1
2

=
σ

4
minmod

















h
+,n

i+ 1
2

− h
−,n

i+ 1
2

− 1
2σ g(h+,n

i+ 1
2

)2 + 1
2σ g(h−,n

i+ 1
2

)2

z
+,n

i+ 1
2

− z
−,n

i+ 1
2









,









h
+,n

i+ 1
2

− h
−,n

i+ 1
2

1
2σ g(h+,n

i+ 1
2

)2 − 1
2σ g(h−,n

i+ 1
2

)2

z
+,n

i+ 1
2

− z
−,n

i+ 1
2

















=
σ

4









h
+,n

i+ 1
2

− h
−,n

i+ 1
2

0

z
+,n

i+ 1
2

− z
−,n

i+ 1
2









.

The modified correction term becomes

Di+ 1
2

=
σ

2









h
+,n

i+ 1
2

− h
−,n

i+ 1
2

0

z
+,n

i+ 1
2

− z
−,n

i+ 1
2









=
σ

2
(U+,n

i+ 1
2

− U
−,n

i+ 1
2

)

and the modified flux defined by (3.14) is given as follows

Hn
i+ 1

2

=
F

+,n

i+ 1
2

− F
−,n

i+ 1
2

2
+

σ

2
(U+,n

i+ 1
2

− U
−,n

i+ 1
2

) − Di+ 1
2

=









0

1
4 g(h+,n

i+ 1
2

)2 − 1
4 g(h−,n

i+ 1
2

)2

0









.
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Using the steady state assumption, we can write

Un+1
i = Un

i

From Equation 3.3, we get
Hn

i+ 1
2

− Hn
i− 1

2

∆x
= Si(t),

and then

1

4
g





0

(h+,n

i+ 1
2

)2 + (h−,n

i+ 1
2

)2 − (h+,n

i− 1
2

)2 − (h−,n

i− 1
2

)2

0



 = ∆x





0
−g

(

h ∂z
∂x

)

i
0





We can rearrange the second member as:

1

4

(

h
+,n

i+ 1
2

− h
+,n

i− 1
2

) (

h
+,n

i+ 1
2

+ h
+,n

i− 1
2

)

+
1

4

(

h
−,n

i+ 1
2

− h
−,n

i− 1
2

) (

h
−,n

i+ 1
2

+ h
−,n

i− 1
2

)

= −∆x

(

h
∂z

∂x

)

i

(3.18)

Knowing that for stationary solution h + z = constant, we obtain

hi+ 1
2

+ zi+ 1
2

= hi− 1
2

+ zi− 1
2

so, Equation (3.18) becomes

1

2





(z+,n

i+ 1
2

− z
+,n

i− 1
2

)

∆x
.

(hi+ 1
2

+,n + h
+,n

i− 1
2

)

2
+

(z−,n

i+ 1
2

− z
−,n

i− 1
2

)

∆x
.

(h−,n

i+ 1
2

+ h
−,n

i− 1
2

)

2



 =

(

h
∂z

∂x

)

i

(3.19)

This manner of discretization allow us to have a scheme which satisfy the conservation property. By
inspiration from (3.19), we propose the following decomposition and discretization of the source terms
given in Equation (3.1):
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Figure 1: h + z − 10 and u at t = 238000s for the modified central upwind scheme.

where E+,n, D+,n and S
+,n
f (respectively E−,n, D−,n and S

−,n
f ) are obtained by replacing h, u and c by

h
+,n

i+ 1
2

+ h
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i− 1
2

2
,
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+,n
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2
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2

2
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2

2
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c
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2
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2

2
)

in the expressions of En, Dn and Sn
f .

We will see in the applications below that the modified central upwind scheme proposed in this work
capture shocks well with hight accuracy and without producing any nonphysical oscillations.

4. Numerical results

In this part of the study, we resolve numerically the coupled model (Equations 2.1-2.2-2.3-2.4) by the
proposed modified central upwind scheme (MCUP) with the new discretization of the source term. We
present the results for three tests in order to illustrate the capability of the mathematical model and the
numerical performance of the schemes with our treatment of the source term.

The first test is made in order to verify the C-property [2,14]. The second one is a dam-break flow
over horizontal and frictionless bed in order to assess the accuracy of the numerical model [1,31]. The
last test will treat a dam-break flow over mobile bed [2,6,15,16,28,30].

4.1. Verification of the C-property

This test investigates the ability of the modified central upwind scheme to satisfy the exact C-property.
The channel length is 1000 m and the initial conditions are defined as:

z(x, 0) =

{

sin2( (x−300)π
200 ), if 300 ≤ x ≤ 500

0, elswhere

u(x, 0) = 0m/s, c(x, 0) = 0, h(x, 0) = 10m − z(x, 0)

The discretization uses 50 gridpoints. Table 1 presents the maximum values of |h + z − 10| and u at a
time t = 238000s and Figure 1 present the evolution of error h + z − 10 and u at the same time. We can
observe that The free surface profile remains constant during the simulation time which prove that the
proposed scheme with the new discretization of the source term satisfy the C-property.

Table 1: Maximum values of |h + z − 10| and u.

|h + z − 10| u

MCUP scheme 5.81 E-16 7.52 E-14
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Figure 2: Water free surface and velocity profiles at t = 0.04s (top) and at t = 0.1s (bottom).

4.2. Performance test

In order to ascertain the convergence of the proposed numerical models, we consider an idealized
dam-break flow over a horizontal frictionless and fixed bed, for which the exact solution is known [31].
The domain length is L = 1m and the initial conditions are given by:

h(x) =

{

1m, x ≤ 0.5m

0.5m, x > 0.5m
and u(x, 0) = 0m/s

Step size space is ∆x = 5 × 10−3m and ∆t is determined according to a specified value of the Courant
number CF L = 0.85. Figure 2 shows the computed and the exact free surfaces and velocity profiles at
t = 0.04s and t = 0.1s. As can be seen, the obtained solutions approximate very well the exact solutions.

4.3. Dam-break over mobile bed

In this subsection, the attention is focused on the behavior of the dam-break flow over a mobile bed
[2,30,6,15]. The channel length is 50, 000m, the dam is initially located at the middle of the channel
x = 25, 000m. The initial conditions are :

h(x) =

{

40m, x ≤ 25, 000m

2m, x > 25, 000m
, u(0, x) = 0m/s, c(0, x) = 0.001 (4.1)

Initially, the channel bed is considered horizontal and composed of noncohesive uniform sediments. Step
size space is ∆x = 10m and ∆t is computed according to a specified value of CF L number equal to 0.85.

4.3.1. Sediments size effect. In order to show the effect of sediment sizes, we resolve again the coupled
model by the the modified central upwind scheme with the proposed discretization in Section 3.4, using
different diameters d.

Figure 3 shows the water free surface and bed profiles with their corresponding concentrations at
several times. Figure 4 represents the evolution of the velocity profiles at the same times.

Sediment size acts in different ways according to the type of profile:
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• On the water free surface profiles, when the sediment size is great, the jump is more pronounced
than that of the small sediment size. The level of water free surface before the abrupt fall remains
stable longer when the sediment size is finer. This is in agreement with observations in [15,7,28].

• On the bed change profiles when the sediment size is smaller, the erosion is greater and vice versa,
wish is logical by the fact that small sediments are easier to be eroded. The same remark has been
reported in the simulation of Roe scheme with the new discretization of the source term in [15].

• On the concentration profiles, a heavily concentrated wavefront increases during the initial period
(see the concentration profiles at 2min), exceeding 0.5. As expected, more the sediment size is finer,
higher concentration is achieved. After this, the wavefront undergoes a lateral expansion (see the
concentration profiles at 14min) which is wider when the sediment is fine. This is realistic because
the fine particles tend to float while heavy particles tend to fall in the same hydraulic conditions.

• On the velocity profiles the highest value of velocities back to the coarse sediment which is obvious
in Figure 4, Also, we note that the wave front reaches a peak velocity (the highest value belongs to
the finer sediments), and therefore acquires a strong erosion capacity.

We conclude that the modified central upwind scheme models the dam-break problem by the same way
that Roe-scheme proposed in [15].

4.3.2. Comparison between Roe scheme and Modified central upwind. Figure 5 describes the evolution of
water free surface, bed profiles, the evolution of concentration and velocity profiles at times t = 2min

and t = 14min by the modified central upwind scheme and Roe scheme proposed in [15] using sediment
of diameter d = 0.8mm.

As can be seen in figure 5, the modified central upwind scheme agree strongly well with Roe scheme
developed in [15]. As well as, several observations can be made such as:

• We can observe a hydraulic jump located in the initial position of the dam, then the jump gradually
decreases and disappears as it propagates upstream.

• The bed deformation could not be ignored, it has a great influence on the free surface evolution;
the bed change must be definitely accounted in the mathematical model (Equations 1-4).

• The eroded sediment amount is closely the same for both schemes.

• The sediment concentration is superimposed except a very teen spade by Roe scheme.

• The velocity is the same for both schemes.

We conclude that the modified central upwind scheme and Roe scheme developed in [15] present the
same results and act by the same manner when resolving such physical problem.

5. Conclusion

This work deals with the numerical modeling of dam-break flow over an erodible bed. The mathemat-
ical model is a combination of the shallow water equations, the transport diffusion equation and the bed
morphology change equation. The system is solved by the finite volume central upwind scheme associated
with a special treatment of the source term satisfying the conservation property. In order to illustrate the
numerical performance of the method, different results of several tests problems are presented. Through
the given results, central upwind scheme with the proposed discretization of the source term evinces its
performance and capacity by giving accurate results for the water free surface flow and the bed evolution,
evenly the effects and interactions on each other. As well, the scheme has given a stable representation of
the free surface and bed profiles with a good resolution of the hydraulic jump. The developed modified
central upwind scheme agree strongly well with Roe scheme developed in [15] and they present the same
results and act by the same manner when resolving the presented physical problem.
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Figure 3: Water free surface and bed profiles with their corresponding concentrations for different sizes
of sediment.
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Figure 4: Velocity profiles at different times for different sizes of sediment.
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Figure 5: Comparison of Modified central upwind and Roe scheme of Water free surface, bed profiles,
concentration and velocity at t = 2min and t = 14min for d = 8mm.
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