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Second Order Discrete Boundary Value Problem With the (p1(k); p2(k))-Laplacian

Mohammed Barghouthe, Mohammed Berrajaa and Abdesslem Ayoujil

abstract: In this paper we investigate existence and non-existence of solutions for a
Dirichlet boundary value problem involving the (p1(k), p2(k))-Laplacian operator when variational methods
are applied to obtain the results.
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1. Introduction

Let T ≥ 2 be a positive integer and [1, T ]N be the discrete interval given by [1, T ]N := {1, 2, . . . , T }.
We consider the discrete anisotropic problem with the Dirichlet type boundary condition as follows:























−∆

(

2
∑

i=1

(| ∆u(k − 1) |pi(k−1)−2 ∆u(k − 1)

)

= f(k, u(k)) , k ∈ [1, T ]N,

u(0) = u(T + 1) = 0,

(1.1)

where ∆ denotes the forward difference operator defined by ∆u(k) = u(k + 1) − u(k).
f : [0, T ]×R → R is a continuous function, i.e., for any fixed k ∈ [0, T ]N, the function f(k, .) is continuous
and p1, p2 : [0, T + 1]N → [2; +∞) are given functions.

In the recent mathematical leterature a great deal of work has been devoted to the study of discrete
boundary value problems because it was an interesting topic and it has been a very active area of research
recently.

Problem (1.1) or similar may be seen as discretization of mathematical models arising in the study
of elastic mechanics [24], electrorheological fluids [16], or image restoration [6]. Variational continuous
anisotropic problems have been started by Fan and Zhang in [8] and later considered by many methods
and authors (see [10]).

However, to the best of our knowledge, discrete problems like (1.1) involving anisotropic exponents
have been discussed for the first time by Mihàilescu, Ràdulescu and Tersian [15] and for the second time
by Kone and Ouaro [11], where known tools from the critical point theory are applied in order to get
the existence of solutions. There are some related papers in the area of discrete problems. Paper [4]
treats the discrete p-Laplacian problem and intervals for a nonlinear parameter are derived for which the
existence and multiplicity are obtained. Let us also mention, far from being exhaustive, the following
recent papers on discrete boundary value problems investigated via variational techniques and critical
point theory [1], [5], [13], [18,24] and references therein.

In the present paper we are inspired by the results in [3] where authors are studying existence and
muliplicity of a continuous problem by means of critical point theorems with Cerami condition and the
theory of the variable exponent Sobolev spaces, by the way, we are trying to prove some of this results
in discrete case, of course with necessary modifications.

2010 Mathematics Subject Classification: 39A10, 35P30, 34L05, 35J15.
Submitted October 24, 2022. Published April 10, 2023

1
Typeset by B

S
P
M

style.

© Soc. Paran. de Mat.

www.spm.uem.br/bspm
http://dx.doi.org/10.5269/bspm.65521


2 M. Barghouthe, M. Berrajaa and A. Ayoujil

The rest of this article is arranged as folows, in section 2, we introduce some basic properties of the
investigated space of solutions and provide several inequalities useful in our approach. After variational
framework in section 3, we state and prove the main results.

Put
p+

i = max
k=1,..,T

pi(k) , p−
i = min

k=1,..,T
pi(k), where i = 1, 2.

p+
M = max

i=1,2.
p+

i , p−
m = min

i=1,2.
p−

i .

Throughout the paper, we introduce the following assumptions:

(H0) f ∈ C ([0, T ]N × R;R)

(H1) There exist c > 0 and q(k) > p+
M for all k ∈ [0, T ]N such that

| f(k, x) |≤ c(1+ | x |q(k)−1) for all (k, x) ∈ [0, T ]N × R.

(H2) lim
x→0

f(k, x)

| x |p
+

M
−1

= 0, uniformly for all k ∈ [0, T ]N.

(H3) There exist constants µ > p+
M , C1 and C2 such that

F (k, x) ≥ C1 | x |µ −C2, for all (k, x) ∈ [0, T ]N × R.

(H4) f(k, −t) = −f(k, t), for all (k, t) ∈ [0, T ]N × R.

(H5) lim
|x|→∞

f(k, x)x

| x |p
+

M

= +∞, uniformly for all k ∈ [0, T ]N.

2. Preliminaries

Solutions to (1.1) will be investigated in a space E with

E =
{

u : [0, T + 1]N → R | u(0) = u(T + 1) = 0
}

,

which is a T-dimensional Hilbert space, with the inner product

< u, v >=

T
∑

k=0

∆u(k − 1)∆v(k − 1),

the associated norm is defined by

‖ u ‖=

(

T
∑

k=0

| ∆u(k − 1) |2

)

1
2

.

Also, it is useful to introduce other norms on E,

| u |m=

(

T +1
∑

k=1

| u(k) |m

)

1
m

, ∀u ∈ E and m ≥ 2. (2.1)

It can be verified that (see [5])

T
2−m
2m | u |2≤| u |m≤ T

1
m | u |2, ∀u ∈ E and m ≥ 2. (2.2)
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Morever, we introduce the Luxemburg norm on E, defined by

‖ u ‖p(.)= inf
{

λ > 0;

T +1
∑

k=0

|
∆u(k − 1)

λ
|p(k−1)≤ 1

}

. (2.3)

All norms on E are equivalent because it is a finit dimensional space.

Now we recall some auxiliary inequalities which we use later on (see [9]).

Proposition 2.1. For every u ∈ E, we have:

(A.1)-

T +1
∑

k=1

| ∆u(k − 1) |p(k−1)≥ T
p+

−2

2 ‖ u ‖p+

, with ‖ u ‖< 1.

(A.2)-

T +1
∑

k=1

| ∆u(k − 1) |p(k−1)≤ 2m

T
∑

k=1

| u(k) |m , ∀m ≥ 2.

(A.3)- max
k∈[1,T ]N

| u(k) |≤ (1 + T )
1
q

(

T +1
∑

k=1

| ∆u(k − 1) |p

)

1
p

, ∀ p, q > 1 such that 1
P

+ 1
q

= 1.

(A.4)-

T +1
∑

k=1

| u(k) |m≤ T (T + 1)m−1
T +1
∑

k=1

| ∆u(k − 1) |m , ∀m ≥ 2.

(A.5)-
T +1
∑

k=1

| ∆u(k − 1) |m≤ (T + 1) ‖ u ‖m, ∀m ≥ 2.

(A.6)- (T + 1)
2−m

2 ‖ u ‖m≤

T +1
∑

k=1

| ∆u(k − 1) |m, ∀m ≥ 2.

(A.7)-

T +1
∑

k=1

| ∆u(k − 1) |p(k−1)≥ T
2−p−

2 ‖ u ‖p−

−(T + 1), with ‖ u ‖> 1.

(A.8)-

T +1
∑

k=1

| ∆u(k − 1) |p(k−1)≤ (T + 1) ‖ u ‖p+

+(T + 1).

Proposition 2.2. (see [7]) Set ρ(u) =

T +1
∑

k=1

| ∆(u(k−1) |p(k−1), then for all u ∈ E and (uk) ⊂ E, we have:

(1) ‖ u ‖< 1 (respectively = 1, > 1) if and only if ρ(u) < 1 (respectively = 1, > 1);

(2) for u 6= 0, ‖ u ‖= λ if and only if ρ(u
λ

) = 1;

(3) if ‖ u ‖> 1, then ‖ u ‖p−

≤ ρ(u) ≤‖ u ‖p+

;

(4) if ‖ u ‖< 1, then ‖ u ‖p+

≤ ρ(u) ≤‖ u ‖p−

;

(5) ‖ uk ‖→ 0 (resp → ∞) if and only if ρ(uk) → 0 (resp → ∞) .

Definition 2.3. Let (X, ‖ . ‖) be a Banach space and J ∈ C1(X,R), we say that J satisfies the Palais-
Smale condition (we denote (P S) condition), if any sequence (un) ⊂ X such that {J(un)} bounded and
J ′(un) −→ 0, the sequence (un) has a convergent subsequence.
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Proposition 2.4. (Mountain Pass Lemma [2]). Let (X, ‖.‖) be a Banach space and J ∈ C1(X,R)
satisfies (P S) condition with

(1) J(0) = 0;

(2) there exist ρ, α > 0 such that J(u) ≥ α for all u ∈ E with ‖u‖ = ρ;

(3) there exists u1 ∈ E with ‖u1‖ > ρ such that J(u1) < α.

Then J possesses a critical value c ≥ α with

c = inf
g∈Γ

max
t∈[0,1]

J(g(t)),

where
Γ :=

{

g ∈ C ([0, 1], X) | g(0) = 0, g(1) = u1

}

.

We also introduce the Fountain Theorem which is a variant of [20], [25] .

Proposition 2.5. Let X be a reflexive and separable Banach space.
Then, from [22] there are {ei} ⊂ X and {e∗

i } ⊂ X∗ such that

X = < ei , i ∈ N∗ >, X∗ = < e∗
i , i ∈ N∗ >, < ei, e∗

i >= δij ,

where δij denotes the Kroneker symbol. For k ∈ N
∗ >, put

Xk = Rek, Yk = ⊕k
i=1Xi, Zk = ⊕∞

i=kXi

Lemma 2.6. ( [14]) Let q > 1 . Define βk = sup
{

| u |q | ‖ u ‖= 1, u ∈ Zk

}

, then lim
k→+∞

βk = 0.

Proposition 2.7. ( [12] ) Let (X, ‖.‖) be a reflexive and separable Banach space and J is an even
functional and satisfies (PS) condition. For each k=1, 2, .... there exist ρk > rk > 0 such that:

(F1) bk = inf
{

J(u) , u ∈ Zk, ‖ u ‖= rk

}

→ +∞ as k → +∞,

(F2) ak = max
{

J(u) , u ∈ Yk, ‖ u ‖= ρk

}

≤ 0 as k → +∞ .

Then J has a sequence of critical values which tends to +∞.

Variational framework

We have the following lemma.

Proposition 2.8. Let E a finite dimensional Banach space, let J ∈ C1(E,R) an anti-coercive functional.
Then J satisfies (PS) condition.

Proof. Suppose to the contrary, i.e., suppose that J does not satisfy (P S) condition. Then there exists
an unbounded sequence (un) in E such that J ′(un) → 0 as n → ∞ and the sequence J(un) is bounded.
There exists a subsequence (unk

) such that unk
→ +∞ as k → ∞ (because (un) is unbounded) and by

anti-coercivity of J we get J(unk
) → −∞, we obtain the contradiction.

The functional associated to problem (1.1) is defined by J : E → R

J(u) = Φ(u) −

T
∑

k=1

F (k, u(k)), (2.4)

with

Φ(u) =

2
∑

i=1

T +1
∑

k=1

1

pi(k − 1)
| ∆u(k − 1) |pi(k−1),
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and

F (k, x) =

∫ x

0

f(k, s)ds, for all k ∈ [0, T ]N.

Under the assumption (H0) the functional is well defined, of class C1 and its Gâteaux derivative is
given by:

(J ′(u), v) =

2
∑

i=1

T +1
∑

k=1

|∆u(k − 1)|pi(k−1)−2∆u(k − 1)∆v(k − 1) −

T
∑

k=1

f(k, u(k))v(k), (2.5)

for all u, v ∈ E.

Lemma 2.9. Assume that (H0) holds, then u ∈ E is a critical point of J if and only if u is a solution
of problem (1.1).

Proof.( [17]) Let us fix u, h ∈ E. We consider a function Ψ : R → R defined by

Ψ(ǫ) = J(u + ǫh)

=

2
∑

i=1

T +1
∑

k=1

1

pi(k − 1)
| ∆(u(k − 1) + ǫh(k − 1) |pi(k−1) −

T
∑

k=1

F (k; u(k) + ǫh(k))

Recalling that h(0) = h(T + 1) = 0 we deduce by summation by parts that :

Ψ′(0) =

2
∑

i=1

T +1
∑

k=1

| ∆(u(k − 1) |pi(k−1)−2 ∆u(k − 1).∆h(k − 1) −

T
∑

k=1

f(k, u(k))h(k)

=

2
∑

i=1

(

| ∆u(T ) |pi(T )−2 ∆u(T )∆h(T ) +

T
∑

k=1

| ∆(u(k − 1) |pi(k−1)−2 ∆u(k − 1).∆h(k − 1)

)

−

T
∑

k=1

f(k, u(k))h(k)

=

2
∑

i=1

{

| ∆u(T ) |pi(T )−2 ∆u(T )∆h(T ) +
[

| ∆u(k − 1) |pi(k−1)−2 ∆u(k − 1).h(k − 1)
]k=T +1

k=1

−
T
∑

k=1

∆
(

| ∆(u(k − 1) |pi(k−1)−2 .∆u(k − 1)
)

h(k)
}

−
T
∑

k=1

f(k, u(k))h(k)

=
T
∑

k=1

(

−∆

(

2
∑

i=1

| ∆(u(k − 1) |pi(k−1)−2 ∆u(k − 1)

)

− f(k, u(k))

)

.h(k)

Since h was arbitrarily fixed, we arrive to the assertion.

Throughout the sequel, the letters c, c̃, ci, i = 1, 2, ... denote positive constants which may vary from
line to line.

3. Main results and their proofs

We state our main result as follows.

Lemma 3.1. Assume that (H0) and (H3) hold. Then the fonctionnal J satisfies (P S) condition.
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In fact, by (H3), (A.8), (A.2) and (A.6) we obtain for any u ∈ E,

J(u) =

2
∑

i=1

T +1
∑

k=1

1

pi(k − 1)
| ∆(u(k − 1)) |pi(k−1) −

T
∑

k=1

F (k, u(k))

≤

2
∑

i=1

1

p−
i

T +1
∑

k=1

| ∆(u(k − 1)) |pi(k−1) −

T
∑

k=1

(C1 | u(k) |µ −C2)

≤

2
∑

i=1

1

p−
i

(T + 1) ‖ u ‖p
+

i +
1

p−
i

(T + 1) − C1

T
∑

k=1

| u(k) |µ +C2T

≤
2

p−
m

(T + 1) ‖ u ‖p
+

M −
c1

2µ
(T + 1)

2−µ

µ ‖ u ‖µ +
1

p−
i

(T + 1) + C2T.

Since µ > p+
M , then J(u) → −∞ as ‖u‖ −→ +∞.

By lemma (2.8), it follows that J satisfaies (PS) condition.

Theorem 3.2. Suppose that condition H(0)−H(3) are hold, then the problem has at least one non-trivial
solution.

Proof. We shall show that the functionnal J as defined above satisfies the assumptions of a Mountain
Pass Lemma wich is proved by A. Ambrosetti and H. Rabinowitz (see [2]).

From Lemma (3.1) we are proving that J holds the (P S) condition.
By (H2), For any ε > 0 there exists δ > 0 such that for all | x |≤ δ we have

| f(k, x) |≤ ε | x |p
+

M
−1 ∀k ∈ [1, T ]N

for 0 < x ≤ δ we obtain

| F (k, x) | = |

∫ x

0

f(k, s)ds | ≤

∫ x

0

| f(k, s) | ds

∫ x

0

ε | s |p
+

M
−1 ds = ε

∫ x

0

sp
+

M
−1ds = [ε

sp
+

M

p+
M

]x0 = ε
xp

+

M

p+
M

= ε
| x |p

+

M

p+
M

.

And for −δ < x ≤ 0 we observe that

| F (k, x) | = |

∫ x

0

f(k, s)ds | ≤ |

∫ 0

x

−f(k, s)ds |

∫ 0

x

ε | s |p
+

M
−1 ds = ε

∫ 0

x

(−s)p
+

M
−1ds = [−ε

(−s)p
+

M

p+
M

]0x = ε
| x |p

+

M

p+
M

.

We choose ε such that 0 < ε <
(T +1)

2−p
+

M
2

T (T +1)
p

+

M

.

So, there exists δ > 0 such that for all | x |≤ δ we have

| F (k, x) |≤ ε
| x |p

+

M

p+
M

, ∀k ∈ [1, T ]N. (3.1)

Let u ∈ E with ‖u‖ ≤ 1, then | ∆u(k − 1) |≤ 1, ∀k ∈ [1, T ]N.

By (A.6) we obtain

T +1
∑

k=1

| ∆u(k − 1) |pi(k−1)≥

T +1
∑

k=1

| ∆u(k − 1) |p
+

M ≥ (T + 1)
2−p

+

M
2 ‖u‖p

+

M . (3.2)
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So,
2
∑

i=1

T +1
∑

k=1

| ∆u(k − 1) |pi(k−1)≥ 2(T + 1)
2−p

+

M
2 ‖ u ‖p

+

M

Put η = min
(

2δ(T + 1)
1
2 , 1

)

.

For u ∈ E with ‖ u ‖≤ η, by (3.1), (3.2), (A.4) and (A.5) it follows that :

J(u) =
2
∑

i=1

T +1
∑

k=1

1

pi(k − 1)
| ∆(u(k − 1) |pi(k−1) −

T
∑

k=1

F (k, u(k))

≥
1

p+
M

2
∑

i=1

T +1
∑

k=1

| ∆(u(k − 1) |pi(k−1) −ε
1

p+
M

T
∑

k=1

| u(k) |p
+

M

≥
1

p+
M

2(T + 1)
2−p

+

M
2 ‖ u ‖p

+

M −ε
1

p+
M

T (T + 1)p
+

M ‖ u ‖p
+

M

=
‖ u ‖p

+

M

p+
M

(

2(T + 1)
2−p

+

M
2 − εT (T + 1)p

+

M

)

.

So, there exist positive numbers 0 < ρ < η and α =
ρp

+

M

p+
M

(

2(T + 1)
2−p

+

M
2 − εT (T + 1)p

+

M

)

we obtain J(u) ≥ α for all u ∈ E with ‖ u ‖= ρ. It is obvious that J(0) = 0.
Since J is anti-coercive, there exists u1 which satisfied condition three from the proposition2.4, therefor

the fuctionnal J has a critical value c > 0 i.e., there exists ũ ∈ E such that J(ũ) = c and J ′(ũ) = 0. It is
clear that ũ 6= 0, because J(0) = 0.

The critical value c can be caracterized by

c = J(ũ) = inf
g∈Γ

max
t∈[0,1]

J(g(t)). (3.3)

Where

Γ = {g ∈ C([0, 1], E) | g(0) = 0, g(1) = u1}.

then we have shown the existence of at least one solution to problem (1.1). �

Theorem 3.3. Assume that assumptions (H0), (H1), (H3) − (H5) are hold, then the problem has a
sequence of solutions.

Proof. In this proof, we will use the Fountain Theorem. According to Lemma (3.1) and (H4), J is an
even functional satisfies (P S) condition.
We will prove that if k is large enough, then there exist ρk > rk > 0 such that:

(F1) bk = inf
{

J(u) | u ∈ Zk, ‖u‖ = rk

}

−→ +∞ as k → +∞

(F2) ak = max
{

J(u) | u ∈ Yk, ‖u‖ = ρk

}

≤ 0 as k → +∞

For (F1): For any u ∈ Zk such that ‖u‖ = rk is big enough to ensure that ‖u‖p1(.) ≥ 1 and ‖u‖p2(.) ≥ 1
(rk will specified bellow). By condition (H1) we have

J(u) =

2
∑

i=1

T +1
∑

k=1

1

pi(k − 1)
| ∆(u(k − 1) |pi(k−1) −

T
∑

k=1

F (k, u(k)) (3.4)

≥
1

p+
M

(‖ u ‖
p

−

1

p1(.) + ‖ u ‖
p

−

2

p2(.)) − c7

T
∑

k=1

| u |q(k) −c8
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≥ c̃

p
+

M

‖ u ‖p−

m −c7 − c9 if | u |q≤ 1 ,

≥ c̃

p
+

M

‖ u ‖p−

m −c7(βk ‖ u ‖)q+

− c9 if | u |q≥ 1 ,
(3.5)

≥
c̃

p+
M

‖ u ‖p−

m −c7(βk ‖ u ‖)q+

− c10

= c̃

(

1

p+
M

‖ u ‖p−

m −c11β
q+

k ‖ u ‖q+

)

− c10.

We choose rk as follows

rk =
(

c11β
q+

k ‖ u ‖q+
)

1

p
−

m−q+

.

Then

J(u) ≥ c̃

(

p−
m

p+
M

(

c11β
q+

k ‖ u ‖q+
)

1

p
−

m−q+

− c11β
q+

k ‖ u ‖q+

)

− c10

≥ c̃r
p−

m

k

(

1

q+

)

− c10.

From the lemma (2.6) we know that βk → 0, then since 1 < p−
m < p+

M < q+, it follows that
rk → 0 as k → +∞, then J(u) → +∞ as ‖ u ‖→ +∞ with u ∈ Zk. The assertion (F1) is valid.

For (F2): Let u ∈ Yk such that ‖ u ‖ is big enough to ensure that ‖ u ‖p1(.)≥ 1 and ‖ u ‖p2(.)≥ 1, we
have

Φ(u) =

2
∑

i=1

T +1
∑

k=1

1

pi(k − 1)
| ∆(u(k − 1) |pi(k−1)

≤
1

p−
m

(‖ u ‖
p

+

1

p1(.) + ‖ u ‖
p

+

2

p2(.))

≤
c1

p−
m

‖ u ‖p
+

1 +
c2

p−
m

‖ u ‖p
+

2 )

≤
max(c1, c2)

p−
m

‖ u ‖p
+

M ≤ dk | u |
p

+

M

p
+

M

. (3.6)

All the norms are equivalent, so there exists a constant dk such that

‖ u ‖≤ c3 | u |p+

M
.

Then

Φ(u) ≤ dk | u |
p

+

M

p
+

M

with dk = c3
max (c1 , c2)

p−
m

.

From (H5), there exists Rk > 0 such that for all | s |≥ Rk, we have

F (k, s) ≥ 2dk | s |p
+

M .

From (H1), there exists a positive constant Mk such that

F (k, s) ≤ Mk for all (k, s) ∈ [1, T ]N × [−Rk, Rk].

Then for all (k, s) ∈ [1, T ]N × [−Rk, Rk] we have

F (k, s) ≥ 2dk | s |p
+

M −Mk. (3.7)
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Combining (3.6) and (3.7), for all u ∈ Yk such that ‖ u ‖= ρk > rk we have

J(u) = Φ(u) −

T
∑

k=1

F (k, u(k))

≤ −dk | u |
p

+

M

p
+

M

+MkT.

Therefore, for ρk large enough (ρk > rk) we get from the above that (F2) is satisfied
i.e.,

ak = max
{

J(u) | u ∈ Yk, ‖u‖ = ρk

}

≤ 0 as k → +∞

Finally we apply the Fountain Theorem to acheive the proof of Theorem 3.3. �

Theorem 3.4. Suppose that condition (H0) holds, if

xf(k, x) < 0 for all (k, x) ∈ [0, T ]N × R
∗. (3.8)

Then the problem has no nontrivial solution.

Proof. Assume that the problem (1.1) has a nonzero solution. Then J has a non trivial critical point ũ,
by (2.5) and lemma (2.9) we have

0 = (J ′(ũ), ũ) =

2
∑

i=1

T +1
∑

k=1

|∆ũ(k − 1)|pi(k−1) −

T
∑

k=1

f (k, ũ(k)) ũ(k),

since the assumptions bellow we have

0 >

T
∑

k=1

f (k, ũ(k)) ũ(k) =
2
∑

i=1

T +1
∑

k=1

|∆ũ(k − 1)|pi(k−1) ≥ 0.

It is impossible, so the problem (1.1) has no nonzero solution. �
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