(3s.) **v. 2024 (42)** : 1–9. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.62383

Generalizations of 2-absorbing Primal Ideals in Commutative Rings

Ameer Jaber and Rania Shaqbou'a

ABSTRACT: Let R be a commutative ring with unity $(1 \neq 0)$. A proper ideal of R is an ideal I of R such that $I \neq R$. Let $\phi: \Im(R) \to \Im(R) \cup \{\emptyset\}$ be any function, where $\Im(R)$ denotes the set of all proper ideals of R. In this paper we introduce the concept of a ϕ -2-absorbing primal ideal which is a generalization of a ϕ -primal ideal. An element $a \in R$ is defined to be ϕ -2-absorbing prime to I if for any $r, s, t \in R$ with $rsta \in I \setminus \phi(I)$, then $rs \in I$ or $rt \in I$ or $st \in I$. An element $a \in R$ is not ϕ -2-absorbing prime to I if there exist $r, s, t \in R$, with $rsta \in I \setminus \phi(I)$, such that $rs, rt, st \in R \setminus I$. We denote by $\nu_{\phi}(I)$ the set of all elements in R that are not ϕ -2-absorbing prime to I. We define a proper ideal I of R to be a ϕ -2-absorbing primal if the set $\nu_{\phi}(I) \cup \phi(I)$ forms an ideal of R. Many results concerning ϕ -2-absorbing primal ideals and examples of ϕ -2-absorbing primal ideals are given.

Key Words: ϕ -2-absorbing ideal, ϕ -primal ideal.

Contents

1	Introduction	1
2	ϕ -2-Absorbing Primal ideals	2
3	More Properties of ϕ -2-Absorbing Primal ideals	5
4	Bibliography	8

1. Introduction

In this paper, we study ϕ -2-absorbing primal ideals in commutative rings with unity, which are generalization of ϕ -primal ideals. Many authors gave a generalization of primal ideals for example in [6] A. Y. Darani defined that if R is a commutative ring with unity and I is a proper ideal from R, then $a \in R$ is ϕ -prime to I if $ra \in I \setminus \phi(I)$, for some $r \in R$, then $r \in I$. Also he defined that $a \in R$ is not ϕ -prime to I if there exists $r \in R \setminus I$ such that $ra \in I \setminus \phi(I)$. Let $S_{\phi}(I)$ be the set of all elements a in R that are not ϕ -prime to I. In [6] A. Y. Darani defined I to be a ϕ -primal ideal in R if $S_{\phi}(I) \cup \phi(I)$ forms an ideal in R. The concept of 2-absorbing ideals, which is a generalization of the concept prime ideals, was introduced by Badawi in [3] and studied in [1] and [10]. Also the concept of 2-absorbing primary ideals was introduced by Badawi, Tekir and Yetkin in [5] and the concept of the generalizations of 2-absorbing primary ideals was introduced by Badawi, Tekir, Ugurlu, Ulucak and Celikel in [4]. Moreover the concept of 2-absorbing primal ideals was introduced by A. Jaber and H. Obiedat in [9] and the concept of weakly 2-absorbing primal ideals was introduced by A. Jaber in [8].

Let I be a proper ideal of R, an element $a \in R$ is defined to be 2-absorbing prime (weakly 2-absorbing prime) to I if for any $r, s, t \in R$ with $rsta \in I$ ($0 \neq rsta \in I$), then $rs \in I$ or $rt \in I$ or $st \in I$. An element $a \in R$ is not 2-absorbing prime (not weakly 2-absorbing prime) to I if there exist $r, s, t \in R$, with $rsta \in I$ ($0 \neq rsta \in I$), such that $rs, rt, st \in R \setminus I$. Recall from [9,8] that I is a 2-absorbing primal ideal (a weakly 2-absorbing primal ideal) of R if $\nu(I)$ ($\nu_0(I) \cup \{0\}$) forms an ideal of R, where $\nu(I)$ ($\nu_0(I)$) is denoted by the set of all elements in R that are not 2-absorbing prime (not weakly 2-absorbing prime) to I. Let $\phi: \Im(R) \to \Im(R) \cup \{\emptyset\}$ be any function, where $\Im(R)$ denotes the set of all proper ideals of R. An element $a \in R$ is defined to be ϕ -2-absorbing prime to I if for any $r, s, t \in R$ with $rsta \in I \setminus \phi(I)$, then $rs \in I$ or $rt \in I$ or $st \in I$. In this paper we generalize the idea of weakly 2-absorbing primal ideals to the idea of ϕ -2-absorbing primal ideals as follows: an element $a \in R$ is not ϕ -2-absorbing prime to I if there exist $r, s, t \in R$, with $rsta \in I \setminus \phi(I)$, such that $rs, rt, st \in R \setminus I$. We denote by $\nu_{\phi}(I)$ the set of

2010 Mathematics Subject Classification: 13A15, 13C05. Submitted February 06, 2022. Published September 17, 2022 all elements in R that are not ϕ -2-absorbing prime to I. In this paper we define a proper ideal I of R to be a ϕ -2-absorbing primal if the set $\nu_{\phi}(I) \cup \phi(I)$ forms an ideal of R.

In this paper some basic properties of ϕ -2-absorbing primal ideals are studied and classified, and some examples are given. Also the relation between 2-absorbing primal ideals and ϕ -2-absorbing primal ideals are studied.

2. ϕ -2-Absorbing Primal ideals

Let R be a commutative ring with unity $(1 \neq 0)$. Recall that if $\psi_1, \psi_2 : \mathfrak{J}(R) \to \mathfrak{J}(R) \cup \{\emptyset\}$ are functions of ideals of R, we define $\psi_1 \leq \psi_2$ if $\psi_1(I) \subseteq \psi_2(I)$ for each $I \in \mathfrak{J}(R)$. In the next example we give some famous functions of ideals $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ and their corresponding ϕ -2-absorbing primal ideals.

Example 2.1.

```
\begin{array}{lll} \phi_{\emptyset} & \phi_{\emptyset}(I) = \emptyset & \forall \ I \in \Im(R) & \text{defines a 2-absorbing primal ideal.} \\ \phi_{0} & \phi_{0}(I) = \{0\} & \forall \ I \in \Im(R) & \text{defines a weakly 2-absorbing primal ideal.} \\ \phi_{2} & \phi_{2}(I) = I^{2} & \forall \ I \in \Im(R) & \text{defines an almost 2-absorbing primal ideal.} \\ \phi_{n} & \phi_{n}(I) = I^{n} & \forall \ I \in \Im(R) & \text{defines an $n$-almost 2-absorbing primal ideal.} \\ \phi_{\omega} & \phi_{\omega}(I) = \bigcap_{n=1}^{\infty} I^{n} & \forall \ I \in \Im(R) & \text{defines an $\omega$-2-absorbing primal ideal.} \\ \phi_{1} & \phi_{1}(I) = I & \forall \ I \in \Im(R) & \text{defines any ideal.} \\ \text{Observe that} & \phi_{\emptyset} \leq \phi_{0} \leq \phi_{\omega} \leq \cdots \leq \phi_{n+1} \leq \phi_{n} \leq \cdots \leq \phi_{2} \leq \phi_{1}. \end{array}
```

Let R be a commutative ring with unity $(1 \neq 0)$ and let I be a proper ideal of R. Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, where $\mathfrak{I}(R)$ denotes the set of all proper ideals of R. An element $a \in R$ is ϕ -2-absorbing prime to I if for any $r, s, t \in R$ with $rsta \in I \setminus \phi(I)$, then rs or rt or st is in I. An element $a \in R$ is not ϕ -2-absorbing prime to I if there exist $r, s, t \in R$, with $rsta \in I \setminus \phi(I)$, such that rs, rt and st are in $R \setminus I$. We denote by $\nu_{\phi}(I)$ the set of all elements in R that are not ϕ -2-absorbing prime to I. It is clear that every ϕ -primal ideal of a ring R is a ϕ -2-absorbing primal ideal of R. If $R = \mathbb{Z}_{16}$, $I = \{0, 8\}$ and $\phi = \phi_0$. Then one can easily see that $\nu_0(I) \cup \{0\} = \mathbb{Z}_{16}$ since $2.2.2 \neq 0 \in I$ and $4 \notin I$. So I is a ϕ_0 -2-absorbing primal ideal of \mathbb{Z}_{16} with $\nu_0(I) \cup \{0\} = \mathbb{Z}_{16}$. Also one can easily see that $S_0(I) \cup \{0\} = 2\mathbb{Z}_{16} \neq \nu_0(I) \cup \{0\}$. Therefore, $I = \{0, 8\}$ is a ϕ_0 -primal and ϕ_0 -2-absorbing primal ideal of \mathbb{Z}_{16} with $S_0(I) \neq \nu_0(I)$. The following are two examples of nonzero ϕ_0 -2-absorbing primal ideals that are not ϕ_0 -primal ideals.

Example 2.2. (1) Let $R = \mathbb{Z}$ and let $I = 30\mathbb{Z}$. Then I is a $\phi_0 - 2$ -absorbing primal ideal of \mathbb{Z} with $\nu_0(I) \cup \{0\} = \mathbb{Z}$, since $(2)(3)(5) = 30 \in I$ and $(2)(3) = 6 \notin I$, $(2)(5) = 10 \notin I$ and $(3)(5) = 15 \notin I$. On the other hand I is not a ϕ_0 -primal ideal in \mathbb{Z} , because $2, 3 \in S_0(I)$ but $1 \notin S_0(I)$. Note that if $1 \in S_0(I)$, then there exists $r \notin I$ with $1.r = r \in I$, a contradiction.

(2) Let $R = \mathbb{Z}[x, y, z]$ and let I = xyzR. Then I is a proper ideal of R and since $xyz \neq 0 \in I$ with xy, xz, and yz are in $R \setminus I$, $\nu_0(I) \cup \{0\} = R$. That is I is a $\phi_0 - 2$ -absorbing primal ideal of R.

On the other hand, since $xyz \neq 0 \in I$ and $yz \in R \setminus I$, $x \in S_0(I)$. Similarly, $y \in S_0(I)$. We show that x + y can't be in $S_0(I)$. If there exists $f(x, y, z) \in \mathbb{Z}[x, y, z]$ with $(x + y)f(x, y, z) \neq 0 \in I$, then xyz divides (x + y)f(x, y, z) and since x divides xyz, x divides (x + y)f(x, y, z) but x does not divide x + y, so x must divide f(x, y, z). Similarly, y divides f(x, y, z) and z divides f(x, y, z). Therefore, xyz divides f(x, y, z) which implies that $f(x, y, z) \in I$, so $x + y \notin S_0(I)$ and hence I is not a ϕ_0 -primal ideal of R.

Theorem 2.3. Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function and let I be a proper ideal of R such that I is a ϕ -2-absorbing primal ideal of R with $\nu_{\phi}(I) \cup \phi(I) \neq R$. Then $\nu_{\phi}(I) \cup \phi(I)$ is a ϕ -prime ideal of R

Proof. Since $\phi(I) \subseteq \phi(\nu_{\phi}(I) \cup \phi(I))$, then it is easy to check that

$$\nu_{\phi}(I) \cup \phi(I) - \phi(\nu_{\phi}(I) \cup \phi(I)) \subset \nu_{\phi}(I) \cup \phi(I) - \phi(I) = \nu_{\phi}(I).$$

Now, let $a,b \in R$ such that $ab \in \nu_{\phi}(I) \cup \phi(I) - \phi(\nu_{\phi}(I) \cup \phi(I))$, then $ab \in \nu_{\phi}(I)$. Hence there exist $r,s,t \in R$ with $rst(ab) \in I \setminus \phi(I)$ such that $rs,rt,st \in R \setminus I$. Assume that $a \notin \nu_{\phi}(I) \cup \phi(I)$. We must show that $b \in \nu_{\phi}(I) \cup \phi(I)$. Since $r(sb)ta \in I \setminus \phi(I)$ and $a \notin \nu_{\phi}(I)$, $rsb \in I$ or $rt \in I$ or $sbt \in I$. But

 $rt \in R \setminus I$, so we must have that $rsb \in I$ or $sbt \in I$. If $rsb \in I$, then $rsb \in I \setminus \phi(I)$, since $rsb \notin \phi(I)$, hence $b \in \nu_{\phi}(I) \subseteq \nu_{\phi}(I) \cup \phi(I)$. Similarly, if $stb \in I$, then $b \in \nu_{\phi}(I) \subseteq \nu_{\phi}(I) \cup \phi(I)$. Therefore, $\nu_{\phi}(I) \cup \phi(I)$ is a ϕ -prime ideal of R.

For example for $\phi = \phi_0$. Let $I = 4\mathbb{Z}$ be a proper ideal of \mathbb{Z} with $\nu_{\phi_0}(I) \cup \phi_0(I) = 2\mathbb{Z}$. Then I is a ϕ_0 -2-absorbing primal ideal of \mathbb{Z} and $\nu_{\phi}(I) \cup \phi(I) = 2\mathbb{Z}$ is ϕ_0 -prime ideal of \mathbb{Z} . But if $I = 6\mathbb{Z}$, then I is not a ϕ_0 -2-absorbing primal ideal of \mathbb{Z} , since $(2)(3) \in I \setminus \phi_0(I)$ and $2, 3 \notin I$, $2, 3 \in \nu_{\phi_0}(I)$. Therefore, if $\nu_{\phi_0}(I) \cup \phi_0(I)$ is an ideal of \mathbb{Z} , then $1 \in \nu_{\phi_0}(I)$ which implies that there exist $r, s, t \in \mathbb{Z} \setminus 6\mathbb{Z}$ such that $rst \in 6\mathbb{Z} \setminus \phi_0(6\mathbb{Z})$ with $rs, rt, st \notin 6\mathbb{Z}$, but since 6 divides rst, 2 must divide r or s or t and 3 must divide r or s or t. So 6 must divide rs or s or s

Definition 2.4. Let R be a commutative ring with unity $(1 \neq 0)$ and let $\phi: \Im(R) \to \Im(R) \cup \{\emptyset\}$ be any function. Suppose that I is a proper ideal of R such that I is a ϕ -2-absorbing primal ideal of R. Let $r, s, t \in R$, then (r, s, t) is called a ϕ -triple of I if $rst \in \phi(I)$ with $rs, rt, st \in R \setminus I$.

The following five results on ϕ -2-absorbing primal ideals over R are generalizations to the results on weakly 2-absorbing primal ideals of R proved in [8].

Theorem 2.5. Let R be a commutative ring with unity $(1 \neq 0)$ and let I be a proper ideal of R. Suppose that I is a ϕ -2-absorbing primal ideal of R with $1 \notin \nu_{\phi}(I)$. If (r, s, t) is a ϕ -triple of I, then

- (1) $rsI \subseteq \phi(I)$, $rtI \subseteq \phi(I)$ and $stI \subseteq \phi(I)$;
- (2) $rI^2 \subseteq \phi(I)$, $sI^2 \subseteq \phi(I)$ and $tI^2 \subseteq \phi(I)$.

Proof. (1) If $rsI \not\subseteq \phi(I)$, then there exists $a \in I$ such that $rsa \in I \setminus \phi(I)$. So, $rs(t+a) = rst + rsa \in I \setminus \phi(I)$ with $rs, r(t+a), s(t+a) \in R \setminus I$ implies that $1 \in \nu_{\phi}(I)$, a contradiction. Therefore, $rsI \subseteq \phi(I)$. Similarly, $rtI \subseteq \phi(I)$ and $stI \subseteq \phi(I)$.

(2) Suppose $rI^2 \not\subseteq \phi(I)$. Then there exist $a, b \in I$ such that $rab \not\in \phi(I)$. So, $r(s+a)(t+b) = rst + rsb + rat + rab \in I \setminus \phi(I)$, since $rst, rsb, rat \in \phi(I)$, with $r(s+a), r(t+b), (s+a)(t+b) \in R \setminus I$ implies that $1 \in \nu_{\phi}(I)$, a contradiction. Therefore, $rI^2 \subseteq \phi(I)$. Similarly, $sI^2 \subseteq \phi(I)$ and $tI^2 \subseteq \phi(I)$. \square

Let I be a proper ideal of R such that I is a ϕ -2-absorbing primal ideal of R with $1 \notin \nu_{\phi}(I)$. If I is a 2-absorbing primal ideal of R with $\nu(I) = R$. Then by using Theorem 2.5, we have the following result.

Theorem 2.6. Let R be a commutative ring with unity $(1 \neq 0)$ and let I be a proper ideal of R. Suppose that I is a ϕ -2-absorbing primal ideal of R with $1 \notin \nu_{\phi}(I)$ such that $\nu(I) = R$. Then $I^3 \subseteq \phi(I)$.

Proof. Since $\nu(I) = R$, $1 \in \nu(I)$. Hence there exist $r, s, t \in R$ with $rst \in \phi(I)$ such that $rs, rt, st \in R \setminus I$. Thus, (r, s, t) is a ϕ -triple of I, since if $rst \in I \setminus \phi(I)$, then $1 \in \nu_{\phi}(I)$, a contradiction. Suppose that $I^3 \not\subseteq \phi(I)$. Then there exist $a, b, c \in I$ such that $abc \not\in \phi(I)$. Since, by Theorem 2.5, $rst, rsc, rbt, rbc, ast, asc, abt \in \phi(I), (r+a)(s+b)(t+c) = rst + rsc + rbt + rbc + ast + asc + abt + abc \in I \setminus \phi(I)$, and since $1 \notin \nu_{\phi}(I)$, $(r+a)(s+b) \in I$ or $(r+a)(t+c) \in I$ or $(s+b)(t+c) \in I$. Hence we have either $rs \in I$ or $rt \in I$ or $st \in I$, a contradiction. Therefore, $I^3 \subseteq \phi(I)$.

We recall that the radical of an ideal I in a commutative ring R, denoted by Rad(I), is defined as

$$\operatorname{Rad}(I) = \{r \in R \ : \ r^n \in I \text{ for some positive integer } n\}.$$

By Theorem 2.6 we have the following result.

Corollary 2.7. Let R be a commutative ring with unity $(1 \neq 0)$ and let I be a proper ideal of R. Suppose that I is a ϕ -2-absorbing primal ideal of R with $1 \notin \nu_{\phi}(I)$. If $\nu(I) = R$, then $I \subseteq \text{Rad}(\phi(I))$.

Theorem 2.8. Let I be a proper ideal of R. Suppose that I is a ϕ -2-absorbing primal ideal of R with $1 \notin \nu_{\phi}(I)$ such that $\nu(I) = R$. Then

- (1) If $a \in \text{Rad}(\phi(I))$, then either $a^2 \in I$ or $a^2I \subseteq \phi(I)$ and $aI^2 \subseteq \phi(I)$;
- (2) $(\operatorname{Rad}(\phi(I)))^2 I^2 \subseteq \phi(I)$.

Proof. (1) Let $a \in \operatorname{Rad}(\phi(I))$. First, we show that if $a^2I \not\subseteq \phi(I)$, then $a^2 \in I$. Now assume that $a^2I \not\subseteq \phi(I)$. Let $i \in I$ such that $a^2i \not\in \phi(I)$ and suppose that n > 0 is the smallest positive integer such that $a^n \in \phi(I)$. Then $n \geq 3$ and we have $a^2(i + a^{n-2}) \in I \setminus \phi(I)$, since $1 \not\in \nu_{\phi}(I)$, $a^2 \in I$ or $a^{n-1} \in I$. If $a^2 \in I$, then done. If $a^{n-1} \in I$, then $a^2a^{n-3} \in I \setminus \phi(I)$ again since $1 \not\in \nu_{\phi}(I)$, $a^{n-2} \in I$. Continuing this procedure to arrive at $a^2 \in I$. Therefore for each $a \in \operatorname{Rad}(\phi(I))$ we have either $a^2 \in I$ or $a^2I \subseteq \phi(I)$. Now assume that $b^2 \not\in I$ for some $b \in \operatorname{Rad}(\phi(I))$. Then $b^2I \subseteq \phi(I)$. We show that $bI^2 \subseteq \phi(I)$. If $bI^2 \not\subseteq \phi(I)$, then there exist $i_1, i_2 \in I$ such that $bi_1i_2 \not\in \phi(I)$. Let m > 0 be the smallest positive integer such that $b^m \in \phi(I)$, then $m \geq 3$ since $b^2 \not\in I$. Hence $b(b+i_1)(b^{m-2}+i_2) = b^m + b^2i_2 + b^{m-1}i_1 + bi_1i_2 \in I \setminus \phi(I)$ and since $1 \not\in \nu_{\phi}(I)$, $b(b+i_1) \in I$ which implies that $b^2 \in I$ (a contradiction) or $b(b^{m-2}+i_2) \in I$ which implies that $b^{m-1} \in I$ (a contradiction). Therefore, $bI^2 \subseteq \phi(I)$.

(2) Let $r, s \in \operatorname{Rad}(\phi(I))$. If $r^2 \not\in I$ or $s^2 \not\in I$, then, by (1), $(rs)I^2 \subseteq \phi(I)$. Therefore we may assume that $r^2 \in I$ and $s^2 \in I$. So, $rs(r+s) \in I$. If (r, s, r+s) is a ϕ -triple of I, then, by Theorem 2.5(1).

(2) Let $r, s \in \text{Rad}(\phi(I))$. If $r^2 \notin I$ or $s^2 \notin I$, then, by (1), $(rs)I^2 \subseteq \phi(I)$. Therefore we may assume that $r^2 \in I$ and $s^2 \in I$. So, $rs(r+s) \in I$. If (r, s, r+s) is a ϕ -triple of I, then, by Theorem 2.5(1), $(rs)I \subseteq \phi(I)$ and hence $(rs)I^2 \subseteq \phi(I)$. If $rs(r+s) \in I \setminus \phi(I)$, then $rs \in I$ since $1 \notin \nu_{\phi}(I)$. So, by Theorem 2.6, $(rs)I^2 \subseteq I^3 \subseteq \phi(I)$.

Corollary 2.9. Let R be a commutative ring with unity $(1 \neq 0)$ and let A, B, C be proper ideals of R. Suppose that A, B, C are ϕ -2-absorbing primal ideals of R with $1 \notin \nu_{\phi}(A) \cup \nu_{\phi}(B) \cup \nu_{\phi}(C)$ such that $\nu(A) = \nu(B) = \nu(C) = R$. If $\text{Rad}(\phi(B)) \subseteq \text{Rad}(\phi(A))$ and $\text{Rad}(\phi(C)) \subseteq \text{Rad}(\phi(A))$, then $A^2BC \subseteq \phi(A)$ and $A^2B^2 \subseteq \phi(A)$ and $A^2C^2 \subseteq \phi(A)$.

Proof. By Corollary 2.7, $B \subseteq \operatorname{Rad}(\phi(B))$ and $C \subseteq \operatorname{Rad}(\phi(C))$. Therefore,

$$A^2BC \subseteq A^2(\operatorname{Rad}(\phi(B)))(\operatorname{Rad}(\phi(C))) \subseteq A^2(\operatorname{Rad}(\phi(A)))^2$$

and by Theorem 2.8(2), $A^2(\operatorname{Rad}(\phi(A)))^2 \subseteq \phi(A)$. Also, $A^2B^2 \subseteq A^2(\operatorname{Rad}(\phi(B)))^2 \subseteq A^2(\operatorname{Rad}(\phi(A)))^2$, so again by Theorem 2.8(2), $A^2B^2 \subseteq \phi(A)$. Similarly, $A^2C^2 \subseteq \phi(A)$.

In the next result we give a condition on a ϕ -2-absorbing primal ideal of R to be 2-absorbing primal ideal of R.

Theorem 2.10. Let R be a commutative ring with unity $(1 \neq 0)$ and let I be a proper ideal of R. If I is a ϕ -2-absorbing primal ideal of R with $I^2 \not\subseteq \phi(I)$, then I is a 2-absorbing primal ideal of R

Proof. If $1 \in \nu(I)$, then $\nu(I) = R$ which implies that I is a 2-absorbing primal ideal of R. Therefore we may assume that $1 \not\in \nu(I)$. One can easily get that $\nu_{\phi}(I) \cup \phi(I)$ is an ideal of R, we show that $\nu(I)$ is an ideal of R by proving that $\nu(I) = \nu_{\phi}(I) \cup \phi(I)$. It is clear that $\nu_{\phi}(I) \cup \phi(I) \subseteq \nu(I)$. Conversely, let $a \in \nu(I)$, then there exist $r, s, t \in R$ with $rs, rt, st \in R \setminus I$ such that $(rst)a \in I$. If $(rst)a \not\in \phi(I)$, then $a \in \nu_{\phi}(I)$. So we may assume that $rsta \in \phi(I)$. If $(rst)I \not\subseteq \phi(I)$, then there exists $c \in I$ such that $rstc \not\in \phi(I)$. Therefore, $(rst)(a+c) \in I \setminus \phi(I)$ which implies that $a+c \in \nu_{\phi}(I)$ and hence $a \in \nu_{\phi}(I)$, since $c \in \nu_{\phi}(I)$. Therefore we may assume that $(rst)I \subseteq \phi(I)$. If $rst \in I$, then $1 \in \nu(I)$ which is a contradiction. Therefore we may assume that $rst \not\in I$. Since $I^2 \not\subseteq \phi(I)$, there exist $x, y \in I$ such that $xy \not\in \phi(I)$. Hence, $(a+y)(trs+x) = atrs + ax + ytrs + xy \in I$ with $atrs, ytrs \in \phi(I)$. If $ax + xy \in I \setminus \phi(I)$, and since $trs + x \not\in I$, then $a + y \in \nu_{\phi}(I)$ which implies that $a \in \nu_{\phi}(I)$, since $y \in \nu_{\phi}(I)$. But, if $ax + xy \in \phi(I)$, then $ax \in I \setminus \phi(I)$ which implies that $a(x + trs) = ax + atrs \in I \setminus \phi(I)$, so $a \in \nu_{\phi}(I)$, since $trs + x \not\in I$. Thus, $\nu(I) = \nu_{\phi}(I) \cup \phi(I)$.

We have to remark that if a proper ideal I of R is a ϕ -2-absorbing primal ideal of R with $I^2 \nsubseteq \phi(I)$, and $1 \notin \nu(I)$, then $\nu_{\phi}(I) \cup \phi(I)$ is a prime ideal of R since, by Theorem 2.10, $\nu(I) = \nu_{\phi}(I) \cup \phi(I)$.

We recall that if R and S are are commutative rings with unities and P, Q are ϕ -primal ideals of R, S (respectively), then $P \times S$ and $R \times Q$ are ϕ -primal ideals of $R \times S$.

Theorem 2.11. Let $R \times S$ be a commutative ring with unity, where R, S are commutative rings with unities. Let $\phi = \psi_1 \times \psi_2 : \Im(R \times S) \to \Im(R \times S) \cup \{\emptyset\}$ be any function, where $\psi_1 : \Im(R) \to \Im(R) \cup \{\emptyset\}$, $\psi_2 : \Im(S) \to \Im(S) \cup \{\emptyset\}$ are any functions such that $\psi_2(S) = S$. Let I be a proper ideal of R with

 $I \times S \not\subseteq \operatorname{Rad}(\phi(R \times S))$. Then the following statements are equivalent.

- (1) $I \times S$ is a ϕ -2-absorbing primal ideal of $R \times S$;
- (2) $I \times S$ is a 2-absorbing primal ideal of $R \times S$;
- (3) I is a 2-absorbing primal ideal of R.

Proof. $(1 \to 2)$ Since $I \times S \not\subseteq \operatorname{Rad}(\phi(R \times S))$, by Corollary 2.7 $\nu(I \times S) \neq R \times S$. To prove that $I \times S$ is a 2-absorbing primal ideal of $R \times S$ we must show that $\nu(I) = \nu_{\psi_1}(I) \cup \psi_1(I)$. It is clear that $\nu_{\psi_1}(I) \cup \psi_1(I) \subseteq \nu(I)$. Conversely, let $a \in \nu(I)$ and let $(rst)a \in I$ for some $r, s, t \in R$ with $rs, rt, st \in R \setminus I$. Since $1 \notin \nu(I)$ and $rs \notin I$, $rta \in I$ or $sta \in I$. If $rta \in I$, then $ra \in I$ or $ta \in I$ since $1 \notin \nu(I)$ and $rt \notin I$. If $ra \in I$, then $a \in I$ since $r \notin I$ and $1 \notin \nu(I)$. Similarly, if $ta \in I$, then $a \in I$. Also, if $sta \in I$, then $a \in I$. If $a \in \psi_1(I)$, then $a \in \nu_{\psi_1}(I) \cup \psi_1(I)$. But, if $a \in I - \psi_1(I)$ then $a \in \nu_{\psi_1}(I) \cup \psi_1(I)$, since $I - \psi_1(I) \subseteq \nu_{\psi_1}(I)$. Therefore, $\nu(I) = \nu_{\psi_1}(I) \cup \psi_1(I)$ and hence $\nu(I \times S) = \nu(I) \times S$ is an ideal of $R \times S$ which implies that $I \times S$ is a 2-absorbing primal ideal of $R \times S$.

 $(2 \to 3)$ Since $\nu(I \times S) = \nu(I) \times S$ is a prime ideal of $R \times S$, $\nu(I)$ is a prime ideal of R. So I is a 2-absorbing primal ideal of R.

 $(3 \to 1)$ Because I is a 2-absorbing primal ideal of R, $I \times S$ is a 2-absorbing primal ideal of $R \times S$. As a result, using the same approach as in proof $(1 \to 2)$ above, one can easily demonstrate that $\nu(I) = \nu_{\psi_1}(I) \cup \psi_1(I)$. Therefore, $\nu(I \times S) = \nu_{\phi}(I \times S) \cup \phi(I \times S)$, since $\psi_2(S) = S$. Consequently, $I \times S$ is a ϕ -2-absorbing primal ideal of $R \times S$.

Theorem 2.12. Let $R \times S$ be a commutative ring with unity, where R, S are commutative rings with unities. Let $\phi = \psi_1 \times \psi_2 : \Im(R \times S) \to \Im(R \times S) \cup \{\emptyset\}$ be any function, where $\psi_1 : \Im(R) \to \Im(R) \cup \{\emptyset\}$, $\psi_2 : \Im(S) \to \Im(S) \cup \{\emptyset\}$ are any functions. Let $I \neq \psi_1(I)$ be a proper ideal of R and $I \neq \psi_2(I)$ an ideal of $I \times I \not\subseteq \operatorname{Rad}(\phi(R \times S))$. Then the following statements are equivalent.

- (1) $I \times J$ is a ϕ -2-absorbing primal ideal of $R \times S$;
- (2) J = S and I is a 2-absorbing primal ideal of R;
- (3) $I \times J$ is a 2-absorbing primal ideal of $R \times S$.

Proof. $(1 \to 2)$ Suppose $I \times J$ is a ϕ -2-absorbing primal ideal of $R \times S$. Since $I \times J \not\subseteq \operatorname{Rad}(\phi(R \times S))$ and since J = S, I is a 2-absorbing primal ideal of R by Theorem 2.11. We show that the case $J \neq S$ can not be happened. Suppose $J \neq S$, we show that J is a prime ideal in S and I is a prime ideal of R. Since $I \times J \not\subseteq \operatorname{Rad}(\phi(R \times S))$, by Corollary 2.7 $\nu(I \times J) \neq R \times S$. Let $a, b \in S$ such that $ab \in J$ and let $i \in I \setminus \psi_1(I)$. Then $(i,1)(1,a)(1,b) = (i,ab) \in I \times J \setminus \phi(I \times J)$, since $(1,ab) \notin I \times J$ and since $(1,1) \notin \nu_{\phi}(I \times J)$, $(i,a) \in I \times J$ or $(i,b) \in I \times J$ so $a \in J$ or $b \in J$. Thus J is a prime ideal of S. Similarly, let $c,d \in R$ such that $cd \in I$, and let $j \in J \setminus \psi_2(J)$. Then $(c,1)(d,1)(1,j) = (cd,j) \in I \times J \setminus \phi(I \times J)$, since $(cd,1) \notin I \times J$ and since $(1,1) \notin \nu_{\phi}(I \times J)$, $(c,j) \in I \times J$ or $(d,j) \in I \times J$ so $c \in I$ or $d \in I$. Hence I is a prime ideal of R. In this case we show that $(1,1) \in \nu(I \times J)$, which is a contradiction to Corollary 2.7. Now, $(1,0)(0,1) \in I \times J$ and $(1,0) \notin I \times J$, $(0,1) \notin I \times J$, so $(1,0), (0,1) \in \nu(I \times J)$. Therefore, if $\nu(I \times J)$ is an ideal in $R \times S$, then $(1,1) = (1,0) + (0,1) \in \nu(I \times J)$. Therefore the only case of part (2) is that J = S and I is a 2-absorbing primal ideal of R.

 $(2 \to 3)$ If J = S and I is a 2-absorbing primal ideal of R, then $I \times J$ is a 2-absorbing primal ideal of $R \times S$ by Theorem 2.11(2).

 $(3 \rightarrow 1)$ Clear from Theorem 2.11

3. More Properties of ϕ -2-Absorbing Primal ideals

For a commutative ring R, let $\mathcal{J}(R)$ denotes the intersection of all maximal ideals of R.

Lemma 3.1. Let R be a commutative ring and $a, b \in \mathcal{J}(R)$. Then the ideal I = abR, where $1 \notin \nu_{\phi}(I)$, is a ϕ -2-absorbing primal ideal of R if and only if $ab \in \phi(I)$.

Proof. If $ab \in \phi(I)$, then $I = \phi(I)$ is a ϕ -2-absorbing primal ideal of R by definition. If $ab \notin \phi(I)$ with $a, b \notin I$, then $1 \in \nu_{\phi}(I)$, a contradiction. Therefore, $a \in I$ or $b \in I$. If $a \in I$, then a = abk for some $k \in R$. So, a(1 - bk) = 0 and since $bk \in \mathcal{J}(R)$, 1 - bk is a unit in R. Thus, a(1 - bk) = 0 implies that a = 0 and hence $ab = 0 \in \phi(I)$, a contradiction. Therefore, $I = \phi(I)$.

We recall that R is defined to be quasi-local ring if R has a unique maximal ideal. If (R, M) is a quasi-local ring, where M is the unique maximal ideal of R, then we have the following two results about a ϕ -2-absorbing primal ideal I of R with $1 \notin \nu_{\phi}(I)$.

Theorem 3.2. Let (R, M) be a quasi-local ring with $\nu_{\phi}(I) \neq R$ for all proper ideals I of R. Then every proper ideal I of R is a ϕ -2-absorbing primal if and only if $M^2 \subseteq \phi(I)$.

Proof. Let $a,b \in M$, then I = abR is a ϕ -2-absorbing primal ideal of R with $1 \notin \nu_{\phi}(I)$, hence, by Lemma 3.1, $M^2 \subseteq \phi(I)$. Conversely, let I be a proper ideal of R with $M^2 \subseteq \phi(I)$. Let $a \in \nu_{\phi}(I)$. If a is a unit in R, then $1 \in \nu_{\phi}(I)$, a contradiction. So we may assume that a is not a unit in R. Let $r, s, t, \in R$ with $rsta \in I \setminus \phi(I)$ such that $rs, rt, st \notin I$. If $rst \in I \setminus \phi(I)$, then r or s or t is a unit in R which implies that rs or s or s

Corollary 3.3. Let (R, M) be a quasi-local ring with $\nu_{\phi}(I) \neq R$ for all proper ideals I of R. Then every proper ideal I of R with $M^2 \subseteq \phi(I)$, is a 2-absorbing primal ideal of R.

Proof. Let I be a proper ideal of R with $M^2 \subseteq \phi(I)$, then, by Theorem 3.2, I is a ϕ -2-absorbing primal ideal of R. We show that $\nu(I)$ is an ideal in R. Let a,b be nonzero elements in $\nu(I)$. Then there exist $r,s,t\in R$ with $rs,rt,st\in R\setminus I$ such that $rsta\in I$. If $rsta\in I\setminus \phi(I)$, then, by Theorem 3.2, $a\in I\subseteq M$. Since $rs\not\in I$, r or s is a unit in R. Therefore, if $rsta\in \phi(I)$, then $(st)a\in \phi(I)$ or $(rt)a\in \phi(I)$. Say $(st)a\in \phi(I)$ again since $st\not\in I$, s or t is a unit in R which implies that $sa\in \phi(I)$ or $ta\in \phi(I)$. Say $ta\in \phi(I)$, hence t is not a unit in R, since $a\in I\setminus \phi(I)$. Therefore if $ta\in \phi(I)\subseteq I\subseteq M$ and $ta\in A$ is a unit in $ta\in A$ is a unit in $ta\in A$. If $ta\in A$ is a unit in $ta\in A$, so $ta\in A$ is a unit in $ta\in A$, and hence $ta\in A$ is a unit in $ta\in A$. If $ta\in A$ is a unit in $ta\in A$ is a unit in $ta\in A$. If $ta\in A$ is a unit in $ta\in A$ is a unit in $ta\in A$. If $ta\in A$ is a unit in $ta\in A$ is a unit in $ta\in A$. If $ta\in A$ is a unit in $ta\in A$ is a unit in $ta\in A$ is a unit in $ta\in A$. If $ta\in A$ is a unit in $ta\in A$ is a unit in $ta\in A$. Hence $ta\in A$ is an ideal of $ta\in A$.

Let R be a commutative ring with unity and let J be a proper ideal of R. Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function. Following of [2], we define $\phi_J: \mathfrak{I}(R/J) \to \mathfrak{I}(R/J) \cup \{\emptyset\}$ by $\phi_J(I/J) = (\phi(I) + J)/J$ for every ideal $I \in \mathfrak{I}(R)$ with $J \subseteq I$ (and $\phi_J(I/J) = \emptyset$ if $\phi = \phi_\emptyset$).

In the next result we give the condition on a proper ideal I of R such that I/J is a ϕ_J -2-absorbing primal ideal of R/J where J is a proper ideal of R subset of I.

Theorem 3.4. Let I, J be proper ideals of R with $J \subseteq I$. If I is a ϕ -2-absorbing primal ideal of R with $\nu_{\phi}(J) \subseteq I$. Then I/J is a ϕ_J -2-absorbing primal ideal of R/J.

Proof. To prove this result we must show that $\nu_{\phi_J}(I/J) \cup \phi_J(I/J) = [\nu_{\phi}(I) \cup J]/J$. Let $a+J \in \nu_{\phi_J}(I/J)$. Then there exist r+J, s+J, $t+J \in R/J$ with $rsta+J \in (I/J) \setminus \phi_J(I/J)$ such that rs+J, rt+J, $st+J \notin I/J$. So $rsta \in I \setminus \phi(I)$, since $rsta \notin J$, with rs, rt, $st \notin I$ hence $a \in \nu_{\phi}(I)$, therefore, $a+J \in [\nu_{\phi}(I) \cup J]/J$. Conversely, let $a+J \in [\nu_{\phi}(I) \cup J]/J$ such that $a+J \notin \phi_J(I/J)$. Then $a \in \nu_{\phi}(I)-J$. If $a \in I$, then $a+J \in \nu_{\phi_J}(I/J)$. So we may assume that $a \notin I$. Then there exist $r,s,t \in R$ with $rsta \in I \setminus \phi(I)$ such that $rs,rt,st \notin I$. If $rsta \in J \setminus \phi(J)$, then $a \in \nu_{\phi}(J)$, a contradiction, since $\nu_{\phi}(J) \subseteq I$ and $a \notin I$. Therefore, r+J, s+J, $t+J \in R/J$ with $rsta+J=(rst+J)(a+J) \in I/J \setminus \phi_J(I/J)$ such that rs+J, rt+J, $st+J \notin I/J$, so $a+J \in \nu_{\phi_J}(I/J)$. Hence $\nu_{\phi_J}(I/J) \cup \phi_J(I/J) = [\nu_{\phi}(I) \cup J]/J$ which implies that I/J is a ϕ_J -2-absorbing primal ideal of R/J.

Corollary 3.5. Let R_0 be a subring of R with unity. If I is a ϕ -2-absorbing primal ideal of R, then $I \cap R_0$ is a $\overline{\phi}$ -2-absorbing primal ideal of R_0 , where $\overline{\phi}(I \cap R_0) = \phi(I) \cap R_0$.

Proof. Clear.

Let R be a commutative ring with unity $(1 \neq 0)$ and let S be a multiplicative closed proper subset of R with $1 \in S$. We recall that if R is a commutative ring with unity, then $R_S = \{\frac{a}{s} : a \in R, s \in S\}$ is a commutative ring with unity. Also if I is an ideal in R, then I_S is an ideal of R_S , where $I_S = \{\frac{a}{s} : a \in I, s \in S\}$. Moreover, if I is an ideal of I is an ideal I if I is an ideal I is an ideal I is an ideal I if I is an ideal I is an ideal I if I if I is an ideal I if I if I is an ideal I if I if I if I is an ideal I if I if I if I is an ideal I if I if I is an ideal I if I is an ideal I if I i

Now let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, we define $\phi_S: \mathfrak{I}(R_S) \to \mathfrak{I}(R_S) \cup \{\emptyset\}$ by $\phi_S(J) = (\phi(J \cap R))_S$ for every $J \in \mathfrak{I}(R_S)$. Note that $\phi_S(J) \subseteq J$. Since for $J \in \mathfrak{I}(R_S)$, $\phi(J \cap R) \subseteq J \cap R$ implies $\phi_S(J) \subseteq (J \cap R)_S \subseteq J$.

Lemma 3.6. Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, and let I be a ϕ -2-absorbing primal ideal of R with $P = \nu_{\phi}(I) \cup \phi(I)$. Suppose $P \cap S = \emptyset$. If $\frac{a}{s} \in I_S - (\phi(I))_S$, then $a \in I$. Moreover, if $(\phi(I))_S \cap R \subseteq I$, then $I = I_S \cap R$.

Proof. Let $\frac{a}{s} \in I_S - (\phi(I))_S$, so $\frac{a}{s} = \frac{b}{t}$ for some $b \in I$ and $t \in S$. In this case $uta = usb \in I$ for some $u \in S$. If $uta \in \phi(I)$, then $\frac{a}{s} = \frac{uta}{uts} \in (\phi(I))_S$, a contradiction. So, $uta \in I - \phi(I)$. If $a \notin I$, then ut is not a ϕ -2-absorbing prime to I; so $ut \in P \cap S$ which contradicts the hypothesis. Therefore $a \in I$. For the last part, it is clear that $I \subseteq I_S \cap R$. Now let a be an element in $I_S \cap R$. Then $as \in I$ for some $s \in S$. If $as \notin \phi(I)$ and $a \notin I$, then s is not ϕ -2-absorbing prime to I, so $s \in P \cap S$ a contradiction. Therefore, a must be in I. If $as \in \phi(I)$, then $\frac{a}{1} = \frac{as}{s} \in (\phi(I))_S$, and so $a \in (\phi(I))_S \cap R$. Thus, $I_S \cap R = I \cup ((\phi(I))_S \cap R) = I$, since $(\phi(I))_S \cap R \subseteq I$. Hence $I = I_S \cap R$.

Lemma 3.7. Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, and let I be a ϕ -2-absorbing primal ideal of R with $P \cap S = \emptyset$, where $P = \nu_{\phi}(I) \cup \phi(I)$. Then $[I_S \cap R] - [\phi_S(I_S) \cap R] \subseteq I - \phi(I)$.

Proof. Let $a \in I_S \cap R$ such that $a \notin (\phi_S(I_S) \cap R)$, then $\frac{a}{1} \in I_S - \phi_S(I_S) \subseteq I_S - (\phi(I))_S$ and by Lemma 3.6, $a \in I$. If $a \in \phi(I)$, then $\frac{a}{1} \in (\phi(I))_S \subseteq \phi_S(I_S)$ implies that $a \in \phi_S(I_S) \cap R$ a contradiction. Therefore, $a \in I - \phi(I)$.

Let R be a commutative ring with unity and M an R-module. An element $a \in R$ is called a zero-divisor on M if am = 0 for some $m \in M$. We denote by $\mathbf{Z}_R(M)$ the set all zero-divisors of R on M.

Corollary 3.8. Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, and let I be a ϕ -2-absorbing primal ideal of R with $P \cap S = \emptyset$, where $P = \nu_{\phi}(I) \cup \phi(I)$. Suppose $S \cap \mathbf{Z}_{R}(R/\phi(I)) = \emptyset$. If $(\phi(I))_{S} \cap R \subseteq I$, then $(\nu_{\phi}(I))_{S} - \phi_{S}(I_{S}) \subseteq \nu_{\phi_{S}}(I_{S})$.

Proof. By Lemma 3.6, if $((\phi(I))_S \cap R) \subseteq I$, then $I_S \cap R = I$. Let $\frac{x}{s}$ be an element in $(\nu_\phi(I))_S - \phi_S(I_S)$, then $\frac{x}{s} = \frac{y}{t}$, where $y \in \nu_\phi(I)$. If $y \in I$, then $\frac{y}{t} = \frac{x}{s} \in I_S - \phi_S(I_S) \subseteq \nu_{\phi_S}(I_S)$. Therefore we may assume that $y \notin I$. If $\frac{y}{1} \in I_S$, then $\frac{y}{t} = \frac{x}{s} \in I_S - \phi_S(I_S) \subseteq \nu_{\phi_S}(I_S)$. Therefore we may assume that $\frac{y}{1} \notin I_S$. So, $\frac{y}{1}$ is an element in $(\nu_\phi(I))_S - I_S$ and therefore $uy \in \nu_\phi(I)$ for some $u \in S$ and $uy \notin I$. So there exist $r, s, t \in R - I$ such that $rstuy \in I - \phi(I)$. If $rsty \notin I$, then $u \in \nu_\phi(I) \subseteq P$ a contradiction. Therefore, $rsty \in I - \phi(I)$. So $\frac{r}{1} \cdot \frac{s}{1} \cdot \frac{t}{1} \cdot \frac{y}{1} \in I_S$. If $\frac{r}{1} \cdot \frac{s}{1} \cdot \frac{t}{1} \cdot \frac{y}{1} \in \phi_S(I_S)$, then there exists $v \in S$ with $rstvy \in \phi(I_S \cap R) = \phi(I)$, so $v \in S \cap \mathbf{Z}_R(R/\phi(I))$ a contradiction. Thus $\frac{r}{1} \cdot \frac{s}{1} \cdot \frac{t}{1} \cdot \frac{y}{1} \in I_S$ and $\frac{r}{1} \cdot \frac{s}{1} \in I_S$, $\frac{r}{1} \cdot \frac{t}{1} \notin I_S$ and $\frac{t}{1} \cdot \frac{s}{1} \in I_S$. So, $\frac{y}{1} \in \nu_{\phi_S}(I_S)$. Hence $\frac{x}{s} = \frac{y}{t} \in \nu_{\phi_S}(I_S)$.

We recall that if I is a proper ideal in R, then $I \subseteq I_S \cap R$, therefore we may assume that $(\phi(I))_S \subseteq \phi_S(I_S)$.

Under the condition that $(\phi(I))_S \cap R \subseteq I$ for all proper ideals I of R, we have the following Propositions

Proposition 3.9. Let S be a multiplicative closed subset of R with $1 \in S$. Let $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, and let I be a ϕ -2-absorbing primal ideal of R with $P \cap S = \emptyset$, where $P = \nu_{\phi}(I) \cup \phi(I)$. Suppose $S \cap \mathbf{Z}_R(R/\phi(I)) = \emptyset$. Then I_S is a ϕ_S -2-absorbing primal ideal of R_S .

Proof. It is well known that if P is a prime ideal in R, then P_S is a ϕ_S -prime ideal of R_S .

To show that I_S is a ϕ_S -2-absorbing primal ideal of R_S , we must prove that $P_S = \nu_{\phi_S}(I_S) \cup \phi_S(I_S)$. Clearly, $\phi_S(I_S) \subseteq P_S$, let $\frac{a}{v}$ be an element in $\nu_{\phi_S}(I_S)$. Then there exists $\frac{r}{u_1}$, $\frac{s}{u_2}$, $\frac{t}{u_3}$ $\in R_S - I_S$ such that $\frac{r}{u_1} \frac{s}{u_2} \notin I_S$, and $\frac{s}{u_2} \frac{t}{u_3} \notin I_S$ and with $(\frac{r}{u_1}) \cdot (\frac{s}{u_2}) \cdot (\frac{t}{u_3}) \cdot (\frac{s}{u_3}) \in I_S - \phi_S(I_S) \subseteq I_S - (\phi(I))_S$. So $rsta \notin \phi(I)$ and, by Lemma 3.6, $rsta \in I$. Hence, $rsta \in I - \phi(I)$ and $rs \notin I$, $rt \notin I$, and $st \notin I$. Thus $a \in \nu_{\phi}(I) \subseteq P$ and hence $\frac{a}{s} \in P_S$.

Conversely, let $\frac{a}{s} \in P_S$ such that $\frac{a}{s} \notin \phi_S(I_S)$. Then $a \in P_S \cap R = P$. If $\frac{a}{s} \in I_S$, then $(\frac{1}{1})(\frac{a}{s}) \in I_S - \phi_S(I_S)$, $(\frac{1}{1}) \notin I_S$, so $\frac{a}{s}$ is not ϕ_S -prime to I_S , thus $\frac{a}{s} \in \nu_{\phi_S}(I_S)$. Therefore, we may assume that $\frac{a}{s} \notin I_S$, that is $ta \notin I$ for every $t \in S$. So, $a \notin I$. Therefore, $a \in P - I \subseteq \nu_{\phi}(I)$. Thus, $\frac{a}{s} \in (\nu_{\phi}(I))_S - \phi_S(I_S)$. Since, by Corollary 3.8, $(\nu_{\phi}(I))_S - \phi_S(I_S) \subseteq \nu_{\phi_S}(I_S)$, $\frac{a}{s} \in \nu_{\phi_S}(I_S)$.

Proposition 3.10. Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function, and let J be a ϕ_S -2-absorbing primal ideal of R_S with $Q = \nu_{\phi_S}(J) \cup \phi_S(J)$. Then $Q \cap R$ is a ϕ -prime ideal of R and $J \cap R$ is a ϕ -2-absorbing primal ideal of R with $Q \cap R = \nu_{\phi}(J \cap R) \cup \phi(J \cap R)$, and with $(Q \cap R) \cap S = \emptyset$, $S \cap \mathbf{Z}_R(R/\phi(J \cap R)) = \emptyset$. Moreover, $J = (J \cap R)_S$.

Proof. To show that $Q \cap R$ is a ϕ -prime ideal of R, it is enough to prove that $J \cap R$ is a ϕ -2-absorbing primal ideal of R with $Q \cap R = \nu_{\phi}(J \cap R) \cup \phi(J \cap R)$. Then, by using Theorem 2.3, $Q \cap R$ will be a ϕ -prime ideal of R.

Now, to prove that $J \cap R$ is a ϕ -2-absorbing primal ideal of R we must show that $Q \cap R = \nu_{\phi}(J \cap R) \cup \phi(J \cap R)$. But $\phi(J \cap R) \subseteq J \cap R \subseteq Q \cap R$. Let a be an element in $\nu_{\phi}(J \cap R)$ with $a \notin \phi(J \cap R)$. Then $\frac{a}{1} \in (\nu_{\phi}(J \cap R))_S - \phi_S(J)$, since $S \cap \mathbf{Z}_R(R/\phi(I)) = \emptyset$ and, by Corollary 3.8, $(\nu_{\phi}(J \cap R))_S - \phi_S(J) \subseteq \nu_{\phi_S}(J)$. Thus, $\frac{a}{1} \in \nu_{\phi_S}(J) \subseteq Q$ and hence $a \in Q \cap R$.

Conversely, let a be an element in $Q \cap R$. Then $\frac{a}{1}$ in Q. We may assume that $a \notin \phi(J \cap R)$, since $S \cap \mathbf{Z}_R(R/\phi(J \cap R)) = \emptyset$, $\frac{a}{1} \notin \phi_S(J)$. If $\frac{a}{1} \in J$, then $(\frac{a}{1}) \in J - \phi_S(J)$ and since $\phi(J \cap R) \subseteq \phi_S(J) \cap R$, $a \in (J \cap R) - (\phi_S(J) \cap R) \subseteq (J \cap R) - \phi(J \cap R)$, but $1 \notin J \cap R$, so $a \in \nu_\phi(J \cap R)$. If $\frac{a}{1} \notin J$, then $\frac{a}{1} \in Q - J$ and so $\frac{a}{1} \in \nu_{\phi_S}(J)$. Let $\frac{x}{s}, \frac{y}{r}, \frac{z}{t} \in R_S$ such that $(\frac{x}{s})(\frac{y}{r}) \notin J$, $(\frac{x}{s})(\frac{z}{t}) \notin J$ and $(\frac{y}{r})(\frac{z}{t}) \notin J$, with $(\frac{a}{1})(\frac{x}{s})(\frac{y}{r})(\frac{z}{t}) \in J - \phi_S(J)$. Then $axyz \in (J \cap R) - (\phi_S(J) \cap R) \subseteq (J \cap R) - \phi(J \cap R)$, since $\frac{axyz}{1} \in J$ and $\frac{axyz}{1} \notin \phi_S(J)$, for if $\frac{axyz}{1} \in \phi_S(J)$, then $\frac{axyz}{s} \in \phi_S(J)$, a contradiction. Thus we have $axyz \in (J \cap R) - \phi(J \cap R)$ and $xy, xz, yz \notin J \cap R$, since $(\frac{x}{s})(\frac{y}{r}) \notin J$, $(\frac{x}{s})(\frac{z}{t}) \notin J$ and $(\frac{y}{r})(\frac{z}{t}) \notin J$. Therefore, $a \in \nu_\phi(J \cap R)$ and so $J \cap R$ is a ϕ -2-absorbing primal ideal of R with $Q \cap R = \nu_\phi(J \cap R) \cup \phi(J \cap R)$. Finally, we show that $J = (J \cap R)_S$. Clearly, $J \subseteq (J \cap R)_S$. Conversely, let $\frac{x}{s}$ be an element in $(J \cap R)_S$. Then $xt \in J \cap R$ for some $t \in S$. Thus, $\frac{xt}{1} \in J$, and hence $(\frac{xt}{1})(\frac{1}{st}) = \frac{x}{s} \in J$. Therefore, $J = (J \cap R)_S$. \square

Under the condition that $(\phi(I))_S \cap R \subseteq I$ for all proper ideals I of R and by using Propositions 3.9 and 3.10 we have the following main result.

Corollary 3.11. Let R be a commutative ring with unity. Let S be a multiplicative closed subset of R such that $1 \in S$. Let $\phi: \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be any function. Then there is one-to-one correspondence between the ϕ -2-absorbing primal ideals I of R and ϕ_S -2-absorbing primal ideals I_S of R_S with $S \cap \mathbf{Z}_R(R/\phi(I)) = \emptyset$, $P \cap S = \emptyset$ where $P = \nu_\phi(I) \cup \phi(I)$.

Acknowledgments

We thank the referee for his valuable suggestions.

4. Bibliography

References

- 1. D. Anderson, A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39, 1646-1672, (2011).
- 2. D. Anderson, M. Bataineh, Generalizations of prime ideals, Comm. in Algebra 36, 686-696, (2008).
- 3. A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75, 417-429, (2007).
- 4. A. Badawi, U. Tekir, E. A. Ugurlu, G. Ulucak, E. Y. Celikel, Generalizations of 2-absorbing primary ideals of commutative rings, Turkish J. of Math., 40, 703-717, (2016).

- 5. A. Badawi, U. Tekir, E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., 51(4), 1163-1173, (2014).
- 6. Y. Darani, Generalizations of primal ideals in commutative rings, MATEMATIQKI VESNIK, 64(1), 25-31, (2012).
- 7. L. Fuchs, On primal ideals, Amer. Math. Soc. 1, 1-6, (1950).
- 8. A. Jaber, Properties of weakly 2-absorbing primal ideals, Italian Journal of pure and applied mathematics, 47, 609-619, (2022).
- 9. A. Jaber, H. Obiedat, On 2-absorbing primal ideals, Far East Journal of Mathematical Sciences, 103(1), 53-66, (2018).
- 10. S. Payrovi and S. Babaei, On the 2-absorbing ideals, Int. Math. Forum, 7(6), 265-271, (2012).

 $Ameer\ Jaber,$

Department of Mathematics, Faculty of Science, The Hashemite University, Zarqa, Jordan. E-mail address: ameerj@hu.edu.jo

and

Rania Shaqbou'a, Department of Mathematics, Faculty of Science, The Hashemite University, Zarqa, Jordan. E-mail address: Rania.Shaqboua@hu.edu.jo