(3s.) v. 2024 (42) : 1-9.

Generalizations of 2-absorbing Primal Ideals in Commutative Rings

Ameer Jaber and Rania Shaqbou'a

Abstract

Let R be a commutative ring with unity $(1 \neq 0)$. A proper ideal of R is an ideal I of R such that $I \neq R$. Let $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$ be any function, where $\Im(R)$ denotes the set of all proper ideals of R. In this paper we introduce the concept of a ϕ-2-absorbing primal ideal which is a generalization of a ϕ-primal ideal. An element $a \in R$ is defined to be ϕ-2-absorbing prime to I if for any $r, s, t \in R$ with r sta $\in I \backslash \phi(I)$, then $r s \in I$ or $r t \in I$ or $s t \in I$. An element $a \in R$ is not ϕ-2-absorbing prime to I if there exist $r, s, t \in R$, with r sta $\in I \backslash \phi(I)$, such that $r s, r t, s t \in R \backslash I$. We denote by $\nu_{\phi}(I)$ the set of all elements in R that are not ϕ-2-absorbing prime to I. We define a proper ideal I of R to be a ϕ-2-absorbing primal if the set $\nu_{\phi}(I) \cup \phi(I)$ forms an ideal of R. Many results concerning ϕ-2-absorbing primal ideals and examples of ϕ-2-absorbing primal ideals are given.

Key Words: ϕ-2-absorbing ideal, ϕ-primal ideal.

Contents

1 Introduction 1
2ϕ-2-Absorbing Primal ideals 2
3 More Properties of ϕ-2-Absorbing Primal ideals 5
4 Bibliography 8

1. Introduction

In this paper, we study ϕ-2-absorbing primal ideals in commutative rings with unity, which are generalization of ϕ-primal ideals. Many authors gave a generalization of primal ideals for example in [6] A. Y. Darani defined that if R is a commutative ring with unity and I is a proper ideal from R, then $a \in R$ is ϕ-prime to I if $r a \in I \backslash \phi(I)$, for some $r \in R$, then $r \in I$. Also he defined that $a \in R$ is not ϕ-prime to I if there exists $r \in R \backslash I$ such that $r a \in I \backslash \phi(I)$. Let $S_{\phi}(I)$ be the set of all elements a in R that are not ϕ-prime to I. In [6] A. Y. Darani defined I to be a ϕ-primal ideal in R if $S_{\phi}(I) \cup \phi(I)$ forms an ideal in R. The concept of 2-absorbing ideals, which is a generalization of the concept prime ideals, was introduced by Badawi in [3] and studied in [1] and [10]. Also the concept of 2-absorbing primary ideals was introduced by Badawi, Tekir and Yetkin in [5] and the concept of the generalizations of 2-absorbing primary ideals was introduced by Badawi, Tekir, Ugurlu, Ulucak and Celikel in [4]. Moreover the concept of 2- absorbing primal ideals was introduced by A. Jaber and H. Obiedat in [9] and the concept of weakly 2-absorbing primal ideals was introduced by A. Jaber in [8].

Let I be a proper ideal of R, an element $a \in R$ is defined to be 2-absorbing prime (weakly 2-absorbing prime) to I if for any $r, s, t \in R$ with r sta $\in I(0 \neq r s t a \in I)$, then $r s \in I$ or $r t \in I$ or st $\in I$. An element $a \in R$ is not 2 -absorbing prime (not weakly 2 -absorbing prime) to I if there exist $r, s, t \in R$, with $r s t a \in I(0 \neq r s t a \in I)$, such that $r s, r t, s t \in R \backslash I$. Recall from $[9,8]$ that I is a 2 -absorbing primal ideal (a weakly 2-absorbing primal ideal) of R if $\nu(I)\left(\nu_{0}(I) \cup\{0\}\right)$ forms an ideal of R, where $\nu(I)\left(\nu_{0}(I)\right)$ is denoted by the set of all elements in R that are not 2 -absorbing prime (not weakly 2 -absorbing prime) to I. Let $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$ be any function, where $\Im(R)$ denotes the set of all proper ideals of R. An element $a \in R$ is defined to be ϕ-2-absorbing prime to I if for any $r, s, t \in R$ with rsta $\in I \backslash \phi(I)$, then $r s \in I$ or $r t \in I$ or $s t \in I$. In this paper we generalize the idea of weakly 2 -absorbing primal ideals to the idea of ϕ-2-absorbing primal ideals as follows: an element $a \in R$ is not ϕ-2-absorbing prime to I if there exist $r, s, t \in R$, with $r s t a \in I \backslash \phi(I)$, such that $r s, r t$, st $\in R \backslash I$. We denote by $\nu_{\phi}(I)$ the set of

[^0]all elements in R that are not ϕ-2-absorbing prime to I. In this paper we define a proper ideal I of R to be a ϕ-2-absorbing primal if the set $\nu_{\phi}(I) \cup \phi(I)$ forms an ideal of R.
In this paper some basic properties of ϕ-2-absorbing primal ideals are studied and classified, and some examples are given. Also the relation between 2 -absorbing primal ideals and ϕ-2-absorbing primal ideals are studied.

2. ϕ-2-Absorbing Primal ideals

Let R be a commutative ring with unity $(1 \neq 0)$. Recall that if $\psi_{1}, \psi_{2}: \mathfrak{J}(R) \rightarrow \mathfrak{J}(R) \cup\{\emptyset\}$ are functions of ideals of R, we define $\psi_{1} \leq \psi_{2}$ if $\psi_{1}(I) \subseteq \psi_{2}(I)$ for each $I \in \mathfrak{J}(R)$. In the next example we give some famous functions of ideals $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$ and their corresponding ϕ-2-absorbing primal ideals.

Example 2.1.

$\phi_{\emptyset} \quad \phi_{\emptyset}(I)=\emptyset \quad \forall I \in \Im(R)$
$\phi_{0} \quad \phi_{0}(I)=\{0\} \quad \forall I \in \mathfrak{I}(R)$
defines a 2-absorbing primal ideal.
$\phi_{2} \quad \phi_{2}(I)=I^{2} \quad \forall I \in \Im(R) \quad$ defines an almost 2-absorbing primal ideal.
$\phi_{n} \quad \phi_{n}(I)=I^{n} \quad \forall I \in \Im(R) \quad$ defines an n-almost 2-absorbing primal ideal.
$\phi_{\omega} \quad \phi_{\omega}(I)=\cap_{n=1}^{\infty} I^{n} \quad \forall I \in \mathfrak{I}(R) \quad$ defines an ω-2-absorbing primal ideal.
$\phi_{1} \quad \phi_{1}(I)=I \quad \forall I \in \Im(R) \quad$ defines any ideal.
Observe that $\phi_{\emptyset} \leq \phi_{0} \leq \phi_{\omega} \leq \cdots \leq \phi_{n+1} \leq \phi_{n} \leq \cdots \leq \phi_{2} \leq \phi_{1}$.
Let R be a commutative ring with unity $(1 \neq 0)$ and let I be a proper ideal of R. Let $\phi: \mathfrak{I}(R) \rightarrow$ $\mathfrak{I}(R) \cup\{\emptyset\}$ be any function, where $\mathfrak{I}(R)$ denotes the set of all proper ideals of R. An element $a \in R$ is ϕ-2-absorbing prime to I if for any $r, s, t \in R$ with $r s t a \in I \backslash \phi(I)$, then $r s$ or $r t$ or $s t$ is in I. An element $a \in R$ is not ϕ-2-absorbing prime to I if there exist $r, s, t \in R$, with $r s t a \in I \backslash \phi(I)$, such that $r s$, rt and st are in $R \backslash I$. We denote by $\nu_{\phi}(I)$ the set of all elements in R that are not ϕ-2-absorbing prime to I. It is clear that every ϕ-primal ideal of a ring R is a ϕ-2-absorbing primal ideal of R. If $R=\mathbb{Z}_{16}$, $I=\{0,8\}$ and $\phi=\phi_{0}$. Then one can easily see that $\nu_{0}(I) \cup\{0\}=\mathbb{Z}_{16}$ since 2.2.2 $\neq 0 \in I$ and $4 \notin I$. So I is a ϕ_{0}-2-absorbing primal ideal of \mathbb{Z}_{16} with $\nu_{0}(I) \cup\{0\}=\mathbb{Z}_{16}$. Also one can easily see that $S_{0}(I) \cup\{0\}=2 \mathbb{Z}_{16} \neq \nu_{0}(I) \cup\{0\}$. Therefore, $I=\{0,8\}$ is a ϕ_{0}-primal and ϕ_{0}-2-absorbing primal ideal of \mathbb{Z}_{16} with $S_{0}(I) \neq \nu_{0}(I)$. The following are two examples of nonzero ϕ_{0}-2-absorbing primal ideals that are not ϕ_{0}-primal ideals.

Example 2.2. (1) Let $R=\mathbb{Z}$ and let $I=30 \mathbb{Z}$. Then I is a $\phi_{0}-2$-absorbing primal ideal of \mathbb{Z} with $\nu_{0}(I) \cup\{0\}=\mathbb{Z}$, since $(2)(3)(5)=30 \in I$ and $(2)(3)=6 \notin I,(2)(5)=10 \notin I$ and $(3)(5)=15 \notin I$. On the other hand I is not a ϕ_{0}-primal ideal in \mathbb{Z}, because $2,3 \in S_{0}(I)$ but $1 \notin S_{0}(I)$. Note that if $1 \in S_{0}(I)$, then there exists $r \notin I$ with 1. $r=r \in I$, a contradiction.
(2) Let $R=\mathbb{Z}[x, y, z]$ and let $I=x y z R$. Then I is a proper ideal of R and since $x y z \neq 0 \in I$ with $x y$, $x z$, and $y z$ are in $R \backslash I, \nu_{0}(I) \cup\{0\}=R$. That is I is a $\phi_{0}-2$-absorbing primal ideal of R.
On the other hand, since $x y z \neq 0 \in I$ and $y z \in R \backslash I, x \in S_{0}(I)$. Similarly, $y \in S_{0}(I)$. We show that $x+y$ can't be in $S_{0}(I)$. If there exists $f(x, y, z) \in \mathbb{Z}[x, y, z]$ with $(x+y) f(x, y, z) \neq 0 \in I$, then $x y z$ divides $(x+y) f(x, y, z)$ and since x divides $x y z, x$ divides $(x+y) f(x, y, z)$ but x does not divide $x+y$, so x must divide $f(x, y, z)$. Similarly, y divides $f(x, y, z)$ and z divides $f(x, y, z)$. Therefore, $x y z$ divides $f(x, y, z)$ which implies that $f(x, y, z) \in I$, so $x+y \notin S_{0}(I)$ and hence I is not a ϕ_{0}-primal ideal of R.

Theorem 2.3. Let $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$ be any function and let I be a proper ideal of R such that I is a ϕ-2-absorbing primal ideal of R with $\nu_{\phi}(I) \cup \phi(I) \neq R$. Then $\nu_{\phi}(I) \cup \phi(I)$ is a ϕ-prime ideal of R

Proof. Since $\phi(I) \subseteq \phi\left(\nu_{\phi}(I) \cup \phi(I)\right)$, then it is easy to check that

$$
\nu_{\phi}(I) \cup \phi(I)-\phi\left(\nu_{\phi}(I) \cup \phi(I)\right) \subseteq \nu_{\phi}(I) \cup \phi(I)-\phi(I)=\nu_{\phi}(I)
$$

Now, let $a, b \in R$ such that $a b \in \nu_{\phi}(I) \cup \phi(I)-\phi\left(\nu_{\phi}(I) \cup \phi(I)\right)$, then $a b \in \nu_{\phi}(I)$. Hence there exist $r, s, t \in R$ with $r s t(a b) \in I \backslash \phi(I)$ such that $r s, r t, s t \in R \backslash I$. Assume that $a \notin \nu_{\phi}(I) \cup \phi(I)$. We must show that $b \in \nu_{\phi}(I) \cup \phi(I)$. Since $r(s b) t a \in I \backslash \phi(I)$ and $a \notin \nu_{\phi}(I), r s b \in I$ or $r t \in I$ or $s b t \in I$. But
$r t \in R \backslash I$, so we must have that $r s b \in I$ or $s b t \in I$. If $r s b \in I$, then $r s b \in I \backslash \phi(I)$, since $r s b \notin \phi(I)$, hence $b \in \nu_{\phi}(I) \subseteq \nu_{\phi}(I) \cup \phi(I)$. Similarly, if $s t b \in I$, then $b \in \nu_{\phi}(I) \subseteq \nu_{\phi}(I) \cup \phi(I)$. Therefore, $\nu_{\phi}(I) \cup \phi(I)$ is a ϕ-prime ideal of R.

For example for $\phi=\phi_{0}$. Let $I=4 \mathbb{Z}$ be a proper ideal of \mathbb{Z} with $\nu_{\phi_{0}}(I) \cup \phi_{0}(I)=2 \mathbb{Z}$. Then I is a ϕ_{0}-2-absorbing primal ideal of \mathbb{Z} and $\nu_{\phi}(I) \cup \phi(I)=2 \mathbb{Z}$ is ϕ_{0}-prime ideal of \mathbb{Z}. But if $I=6 \mathbb{Z}$, then I is not a ϕ_{0}-2-absorbing primal ideal of \mathbb{Z}, since $(2)(3) \in I \backslash \phi_{0}(I)$ and $2,3 \notin I, 2,3 \in \nu_{\phi_{0}}(I)$. Therefore, if $\nu_{\phi_{0}}(I) \cup \phi_{0}(I)$ is an ideal of \mathbb{Z}, then $1 \in \nu_{\phi_{0}}(I)$ which implies that there exist $r, s, t \in \mathbb{Z} \backslash 6 \mathbb{Z}$ such that $r s t \in 6 \mathbb{Z} \backslash \phi_{0}(6 \mathbb{Z})$ with $r s, r t$, st $\notin 6 \mathbb{Z}$, but since 6 divides $r s t, 2$ must divide r or s or t and 3 must divide r or s or t. So 6 must divide $r s$ or $s t$ or $r t$ which is a contradiction.

Definition 2.4. Let R be a commutative ring with unity $(1 \neq 0)$ and let $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$ be any function. Suppose that I is a proper ideal of R such that I is a ϕ-2-absorbing primal ideal of R. Let $r, s, t \in R$, then (r, s, t) is called a ϕ-triple of I if $r s t \in \phi(I)$ with $r s, r t, s t \in R \backslash I$.

The following five results on ϕ-2-absorbing primal ideals over R are generalizations to the results on weakly 2 -absorbing primal ideals of R proved in [8].

Theorem 2.5. Let R be a commutative ring with unity $(1 \neq 0)$ and let I be a proper ideal of R. Suppose that I is a ϕ-2-absorbing primal ideal of R with $1 \notin \nu_{\phi}(I)$. If (r, s, t) is a ϕ-triple of I, then
(1) $r s I \subseteq \phi(I), r t I \subseteq \phi(I)$ and $s t I \subseteq \phi(I)$;
(2) $r I^{2} \subseteq \phi(I), s I^{2} \subseteq \phi(I)$ and $t I^{2} \subseteq \phi(I)$.

Proof. (1) If $r s I \nsubseteq \phi(I)$, then there exists $a \in I$ such that $r s a \in I \backslash \phi(I)$. So, $r s(t+a)=r s t+r s a \in I \backslash \phi(I)$ with $r s, r(t+a), s(t+a) \in R \backslash I$ implies that $1 \in \nu_{\phi}(I)$, a contradiction. Therefore, $r s I \subseteq \phi(I)$. Similarly, $r t I \subseteq \phi(I)$ and $s t I \subseteq \phi(I)$.
(2) Suppose $r I^{2} \nsubseteq \phi(I)$. Then there exist $a, b \in I$ such that $r a b \notin \phi(I)$. So, $r(s+a)(t+b)=$ $r s t+r s b+r a t+r a b \in I \backslash \phi(I)$, since $r s t, r s b, r a t \in \phi(I)$, with $r(s+a), r(t+b),(s+a)(t+b) \in R \backslash I$ implies that $1 \in \nu_{\phi}(I)$, a contradiction. Therefore, $r I^{2} \subseteq \phi(I)$. Similarly, $s I^{2} \subseteq \phi(I)$ and $t I^{2} \subseteq \phi(I)$.

Let I be a proper ideal of R such that I is a ϕ-2-absorbing primal ideal of R with $1 \notin \nu_{\phi}(I)$. If I is a 2 -absorbing primal ideal of R with $\nu(I)=R$. Then by using Theorem 2.5, we have the following result.

Theorem 2.6. Let R be a commutative ring with unity $(1 \neq 0)$ and let I be a proper ideal of R. Suppose that I is a ϕ-2-absorbing primal ideal of R with $1 \notin \nu_{\phi}(I)$ such that $\nu(I)=R$. Then $I^{3} \subseteq \phi(I)$.

Proof. Since $\nu(I)=R, 1 \in \nu(I)$. Hence there exist $r, s, t \in R$ with $r s t \in \phi(I)$ such that $r s, r t, s t \in$ $R \backslash I$. Thus, (r, s, t) is a ϕ-triple of I, since if $r s t \in I \backslash \phi(I)$, then $1 \in \nu_{\phi}(I)$, a contradiction. Suppose that $I^{3} \nsubseteq \phi(I)$. Then there exist $a, b, c \in I$ such that $a b c \notin \phi(I)$. Since, by Theorem 2.5, $r s t, r s c, r b t, r b c, a s t, a s c, a b t \in \phi(I),(r+a)(s+b)(t+c)=r s t+r s c+r b t+r b c+a s t+a s c+a b t+a b c \in I \backslash \phi(I)$, and since $1 \notin \nu_{\phi}(I),(r+a)(s+b) \in I$ or $(r+a)(t+c) \in I$ or $(s+b)(t+c) \in I$. Hence we have either $r s \in I$ or $r t \in I$ or $s t \in I$, a contradiction. Therefore, $I^{3} \subseteq \phi(I)$.

We recall that the radical of an ideal I in a commutative ring R, denoted by $\operatorname{Rad}(I)$, is defined as

$$
\operatorname{Rad}(I)=\left\{r \in R: r^{n} \in I \text { for some positive integer } n\right\}
$$

By Theorem 2.6 we have the following result.
Corollary 2.7. Let R be a commutative ring with unity $(1 \neq 0)$ and let I be a proper ideal of R. Suppose that I is a ϕ-2-absorbing primal ideal of R with $1 \notin \nu_{\phi}(I)$. If $\nu(I)=R$, then $I \subseteq \operatorname{Rad}(\phi(I))$.

Theorem 2.8. Let I be a proper ideal of R. Suppose that I is a ϕ-2-absorbing primal ideal of R with $1 \notin \nu_{\phi}(I)$ such that $\nu(I)=R$. Then
(1) If $a \in \operatorname{Rad}(\phi(I))$, then either $a^{2} \in I$ or $a^{2} I \subseteq \phi(I)$ and $a I^{2} \subseteq \phi(I)$;
(2) $(\operatorname{Rad}(\phi(I)))^{2} I^{2} \subseteq \phi(I)$.

Proof. (1) Let $a \in \operatorname{Rad}(\phi(I))$. First, we show that if $a^{2} I \nsubseteq \phi(I)$, then $a^{2} \in I$. Now assume that $a^{2} I \nsubseteq \phi(I)$. Let $i \in I$ such that $a^{2} i \notin \phi(I)$ and suppose that $n>0$ is the smallest positive integer such that $a^{n} \in \phi(I)$. Then $n \geq 3$ and we have $a^{2}\left(i+a^{n-2}\right) \in I \backslash \phi(I)$, since $1 \notin \nu_{\phi}(I), a^{2} \in I$ or $a^{n-1} \in I$. If $a^{2} \in I$, then done. If $a^{n-1} \in I$, then $a^{2} a^{n-3} \in I \backslash \phi(I)$ again since $1 \notin \nu_{\phi}(I), a^{n-2} \in I$. Continuing this procedure to arrive at $a^{2} \in I$. Therefore for each $a \in \operatorname{Rad}(\phi(I))$ we have either $a^{2} \in I$ or $a^{2} I \subseteq \phi(I)$. Now assume that $b^{2} \notin I$ for some $b \in \operatorname{Rad}(\phi(I))$. Then $b^{2} I \subseteq \phi(I)$. We show that $b I^{2} \subseteq \phi(I)$. If $b I^{2} \nsubseteq \phi(I)$, then there exist $i_{1}, i_{2} \in I$ such that $b i_{1} i_{2} \notin \phi(I)$. Let $m>0$ be the smallest positive integer such that $b^{m} \in \phi(I)$, then $m \geq 3$ since $b^{2} \notin I$. Hence $b\left(b+i_{1}\right)\left(b^{m-2}+i_{2}\right)=b^{m}+b^{2} i_{2}+b^{m-1} i_{1}+b i_{1} i_{2} \in I \backslash \phi(I)$ and since $1 \notin \nu_{\phi}(I), b\left(b+i_{1}\right) \in I$ which implies that $b^{2} \in I$ (a contradiction) or $b\left(b^{m-2}+i_{2}\right) \in I$ which implies that $b^{m-1} \in I$ (a contradiction). Therefore, $b I^{2} \subseteq \phi(I)$.
(2) Let $r, s \in \operatorname{Rad}(\phi(I))$. If $r^{2} \notin I$ or $s^{2} \notin I$, then, by (1), $(r s) I^{2} \subseteq \phi(I)$. Therefore we may assume that $r^{2} \in I$ and $s^{2} \in I$. So, $r s(r+s) \in I$. If $(r, s, r+s)$ is a ϕ-triple of I, then, by Theorem 2.5(1), $(r s) I \subseteq \phi(I)$ and hence $(r s) I^{2} \subseteq \phi(I)$. If $r s(r+s) \in I \backslash \phi(I)$, then $r s \in I$ since $1 \notin \nu_{\phi}(I)$. So, by Theorem 2.6, (rs) $I^{2} \subseteq I^{3} \subseteq \phi(I)$.

Corollary 2.9. Let R be a commutative ring with unity $(1 \neq 0)$ and let A, B, C be proper ideals of R. Suppose that A, B, C are ϕ-2-absorbing primal ideals of R with $1 \notin \nu_{\phi}(A) \cup \nu_{\phi}(B) \cup \nu_{\phi}(C)$ such that $\nu(A)=\nu(B)=\nu(C)=R$. If $\operatorname{Rad}(\phi(B)) \subseteq \operatorname{Rad}(\phi(A))$ and $\operatorname{Rad}(\phi(C)) \subseteq \operatorname{Rad}(\phi(A))$, then $A^{2} B C \subseteq \phi(A)$ and $A^{2} B^{2} \subseteq \phi(A)$ and $A^{2} C^{2} \subseteq \phi(A)$.
Proof. By Corollary 2.7, $B \subseteq \operatorname{Rad}(\phi(B))$ and $C \subseteq \operatorname{Rad}(\phi(C))$. Therefore,

$$
A^{2} B C \subseteq A^{2}(\operatorname{Rad}(\phi(B)))(\operatorname{Rad}(\phi(C))) \subseteq A^{2}(\operatorname{Rad}(\phi(A)))^{2}
$$

and by Theorem 2.8(2), $A^{2}(\operatorname{Rad}(\phi(A)))^{2} \subseteq \phi(A)$. Also, $A^{2} B^{2} \subseteq A^{2}(\operatorname{Rad}(\phi(B)))^{2} \subseteq A^{2}(\operatorname{Rad}(\phi(A)))^{2}$, so again by Theorem 2.8(2), $A^{2} B^{2} \subseteq \phi(A)$. Similarly, $A^{2} C^{2} \subseteq \phi(A)$.

In the next result we give a condition on a ϕ-2-absorbing primal ideal of R to be 2 -absorbing primal ideal of R.

Theorem 2.10. Let R be a commutative ring with unity $(1 \neq 0)$ and let I be a proper ideal of R. If I is a ϕ-2-absorbing primal ideal of R with $I^{2} \nsubseteq \phi(I)$, then I is a 2-absorbing primal ideal of R

Proof. If $1 \in \nu(I)$, then $\nu(I)=R$ which implies that I is a 2 -absorbing primal ideal of R. Therefore we may assume that $1 \notin \nu(I)$. One can easily get that $\nu_{\phi}(I) \cup \phi(I)$ is an ideal of R, we show that $\nu(I)$ is an ideal of R by proving that $\nu(I)=\nu_{\phi}(I) \cup \phi(I)$. It is clear that $\nu_{\phi}(I) \cup \phi(I) \subseteq \nu(I)$. Conversely, let $a \in \nu(I)$, then there exist $r, s, t \in R$ with $r s, r t, s t \in R \backslash I$ such that $(r s t) a \in I$. If (rst) $a \notin \phi(I)$, then $a \in \nu_{\phi}(I)$. So we may assume that $r s t a \in \phi(I)$. If $(r s t) I \nsubseteq \phi(I)$, then there exists $c \in I$ such that $r s t c \notin \phi(I)$. Therefore, $(r s t)(a+c) \in I \backslash \phi(I)$ which implies that $a+c \in \nu_{\phi}(I)$ and hence $a \in \nu_{\phi}(I)$, since $c \in \nu_{\phi}(I)$. Therefore we may assume that $(r s t) I \subseteq \phi(I)$. If $r s t \in I$, then $1 \in \nu(I)$ which is a contradiction. Therefore we may assume that $r s t \notin I$. Since $I^{2} \nsubseteq \phi(I)$, there exist $x, y \in I$ such that $x y \notin \phi(I)$. Hence, $(a+y)(\operatorname{trs}+x)=$ atrs $+a x+y \operatorname{trs}+x y \in I$ with atrs, ytrs $\in \phi(I)$. If $a x+x y \in I \backslash \phi(I)$, and since trs $+x \notin I$, then $a+y \in \nu_{\phi}(I)$ which implies that $a \in \nu_{\phi}(I)$, since $y \in \nu_{\phi}(I)$. But, if $a x+x y \in \phi(I)$, then $a x \in I \backslash \phi(I)$ which implies that $a(x+\operatorname{trs})=a x+a t r s \in I \backslash \phi(I)$, so $a \in \nu_{\phi}(I)$, since trs $+x \notin I$. Thus, $\nu(I)=\nu_{\phi}(I) \cup \phi(I)$.

We have to remark that if a proper ideal I of R is a ϕ-2-absorbing primal ideal of R with $I^{2} \nsubseteq \phi(I)$, and $1 \notin \nu(I)$, then $\nu_{\phi}(I) \cup \phi(I)$ i a prime ideal of R since, by Theorem $2.10, \nu(I)=\nu_{\phi}(I) \cup \phi(I)$.

We recall that if R and S are are commutative rings with unities and P, Q are ϕ-primal ideals of R, S (respectively), then $P \times S$ and $R \times Q$ are ϕ-primal ideals of $R \times S$.

Theorem 2.11. Let $R \times S$ be a commutative ring with unity, where R, S are commutative rings with unities. Let $\phi=\psi_{1} \times \psi_{2}: \Im(R \times S) \rightarrow \Im(R \times S) \cup\{\emptyset\}$ be any function, where $\psi_{1}: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$, $\psi_{2}: \Im(S) \rightarrow \Im(S) \cup\{\emptyset\}$ are any functions such that $\psi_{2}(S)=S$. Let I be a proper ideal of R with
$I \times S \nsubseteq \operatorname{Rad}(\phi(R \times S))$. Then the following statements are equivalent.
(1) $I \times S$ is a ϕ-2-absorbing primal ideal of $R \times S$;
(2) $I \times S$ is a 2-absorbing primal ideal of $R \times S$;
(3) I is a 2 -absorbing primal ideal of R.

Proof. ($1 \rightarrow 2$) Since $I \times S \nsubseteq \operatorname{Rad}(\phi(R \times S)$), by Corollary $2.7 \nu(I \times S) \neq R \times S$. To prove that $I \times S$ is a 2-absorbing primal ideal of $R \times S$ we must show that $\nu(I)=\nu_{\psi_{1}}(I) \cup \psi_{1}(I)$. It is clear that $\nu_{\psi_{1}}(I) \cup \psi_{1}(I) \subseteq \nu(I)$. Conversely, let $a \in \nu(I)$ and let $(r s t) a \in I$ for some $r, s, t \in R$ with $r s, r t, s t \in R \backslash I$. Since $1 \notin \nu(I)$ and $r s \notin I, r t a \in I$ or $s t a \in I$. If $r t a \in I$, then $r a \in I$ or $t a \in I$ since $1 \notin \nu(I)$ and $r t \notin I$. If $r a \in I$, then $a \in I$ since $r \notin I$ and $1 \notin \nu(I)$. Similarly, if $t a \in I$, then $a \in I$. Also, if sta $a I$, then $a \in I$. If $a \in \psi_{1}(I)$, then $a \in \nu_{\psi_{1}}(I) \cup \psi_{1}(I)$. But, if $a \in I-\psi_{1}(I)$ then $a \in \nu_{\psi_{1}}(I) \subseteq \nu_{\psi_{1}}(I) \cup \psi_{1}(I)$, since $I-\psi_{1}(I) \subseteq \nu_{\psi_{1}}(I)$. Therefore, $\nu(I)=\nu_{\psi_{1}}(I) \cup \psi_{1}(I)$ and hence $\nu(I \times S)=\nu(I) \times S$ is an ideal of $R \times S$ which implies that $I \times S$ is a 2 -absorbing primal ideal of $R \times S$.
$(2 \rightarrow 3)$ Since $\nu(I \times S)=\nu(I) \times S$ is a prime ideal of $R \times S, \nu(I)$ is a prime ideal of R. So I is a 2-absorbing primal ideal of R.
($3 \rightarrow 1$) Because I is a 2-absorbing primal ideal of $R, I \times S$ is a 2-absorbing primal ideal of $R \times S$. As a result, using the same approach as in proof ($1 \rightarrow 2$) above, one can easily demonstrate that $\nu(I)=\nu_{\psi_{1}}(I) \cup \psi_{1}(I)$. Therefore, $\nu(I \times S)=\nu_{\phi}(I \times S) \cup \phi(I \times S)$, since $\psi_{2}(S)=S$. Consequently, $I \times S$ is a ϕ-2-absorbing primal ideal of $R \times S$.

Theorem 2.12. Let $R \times S$ be a commutative ring with unity, where R, S are commutative rings with unities. Let $\phi=\psi_{1} \times \psi_{2}: \Im(R \times S) \rightarrow \Im(R \times S) \cup\{\emptyset\}$ be any function, where $\psi_{1}: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$, $\psi_{2}: \Im(S) \rightarrow \Im(S) \cup\{\emptyset\}$ are any functions. Let $I \neq \psi_{1}(I)$ be a proper ideal of R and $J \neq \psi_{2}(J)$ an ideal of S with $I \times J \nsubseteq \operatorname{Rad}(\phi(R \times S))$. Then the following statements are equivalent.
(1) $I \times J$ is a $\phi-2$-absorbing primal ideal of $R \times S$;
(2) $J=S$ and I is a 2-absorbing primal ideal of R;
(3) $I \times J$ is a 2-absorbing primal ideal of $R \times S$.

Proof. $(1 \rightarrow 2)$ Suppose $I \times J$ is a ϕ-2-absorbing primal ideal of $R \times S$. Since $I \times J \nsubseteq \operatorname{Rad}(\phi(R \times S))$ and since $J=S, I$ is a 2 -absorbing primal ideal of R by Theorem 2.11. We show that the case $J \neq S$ can not be happened. Suppose $J \neq S$, we show that J is a prime ideal in S and I is a prime ideal of R. Since $I \times J \nsubseteq \operatorname{Rad}(\phi(R \times S))$, by Corollary $2.7 \nu(I \times J) \neq R \times S$. Let $a, b \in S$ such that $a b \in J$ and let $i \in I \backslash \psi_{1}(I)$. Then $(i, 1)(1, a)(1, b)=(i, a b) \in I \times J \backslash \phi(I \times J)$, since $(1, a b) \notin I \times J$ and since $(1,1) \notin \nu_{\phi}(I \times J),(i, a) \in I \times J$ or $(i, b) \in I \times J$ so $a \in J$ or $b \in J$. Thus J is a prime ideal of S. Similarly, let $c, d \in R$ such that $c d \in I$, and let $j \in J \backslash \psi_{2}(J)$. Then $(c, 1)(d, 1)(1, j)=(c d, j) \in I \times J \backslash \phi(I \times J)$, since $(c d, 1) \notin I \times J$ and since $(1,1) \notin \nu_{\phi}(I \times J),(c, j) \in I \times J$ or $(d, j) \in I \times J$ so $c \in I$ or $d \in I$. Hence I is a prime ideal of R. In this case we show that $(1,1) \in \nu(I \times J)$, which is a contradiction to Corollary 2.7. Now, $(1,0)(0,1) \in I \times J$ and $(1,0) \notin I \times J,(0,1) \notin I \times J$, so $(1,0),(0,1) \in \nu(I \times J)$. Therefore, if $\nu(I \times J)$ is an ideal in $R \times S$, then $(1,1)=(1,0)+(0,1) \in \nu(I \times J)$. Therefore the only case of part (2) is that $J=S$ and I is a 2 -absorbing primal ideal of R.
$(2 \rightarrow 3)$ If $J=S$ and I is a 2-absorbing primal ideal of R, then $I \times J$ is a 2-absorbing primal ideal of $R \times S$ by Theorem 2.11(2).
$(3 \rightarrow 1)$ Clear from Theorem 2.11

3. More Properties of ϕ-2-Absorbing Primal ideals

For a commutative ring R, let $\mathcal{J}(R)$ denotes the intersection of all maximal ideals of R.
Lemma 3.1. Let R be a commutative ring and $a, b \in \mathcal{J}(R)$. Then the ideal $I=a b R$, where $1 \notin \nu_{\phi}(I)$, is a ϕ-2-absorbing primal ideal of R if and only if $a b \in \phi(I)$.

Proof. If $a b \in \phi(I)$, then $I=\phi(I)$ is a ϕ-2-absorbing primal ideal of R by definition. If $a b \notin \phi(I)$ with $a, b \notin I$, then $1 \in \nu_{\phi}(I)$, a contradiction. Therefore, $a \in I$ or $b \in I$. If $a \in I$, then $a=a b k$ for some $k \in R$. So, $a(1-b k)=0$ and since $b k \in \mathcal{J}(R), 1-b k$ is a unit in R. Thus, $a(1-b k)=0$ implies that $a=0$ and hence $a b=0 \in \phi(I)$, a contradiction. Therefore, $I=\phi(I)$.

We recall that R is defined to be quasi-local ring if R has a unique maximal ideal. If (R, M) is a quasi-local ring, where M is the unique maximal ideal of R, then we have the following two results about a ϕ-2-absorbing primal ideal I of R with $1 \notin \nu_{\phi}(I)$.

Theorem 3.2. Let (R, M) be a quasi-local ring with $\nu_{\phi}(I) \neq R$ for all proper ideals I of R. Then every proper ideal I of R is a ϕ-2-absorbing primal if and only if $M^{2} \subseteq \phi(I)$.

Proof. Let $a, b \in M$, then $I=a b R$ is a ϕ-2-absorbing primal ideal of R with $1 \notin \nu_{\phi}(I)$, hence, by Lemma 3.1, $M^{2} \subseteq \phi(I)$. Conversely, let I be a proper ideal of R with $M^{2} \subseteq \phi(I)$. Let $a \in \nu_{\phi}(I)$. If a is a unit in R, then $1 \in \nu_{\phi}(I)$, a contradiction. So we may assume that a is not a unit in R. Let $r, s, t, \in R$ with r sta $\in I \backslash \phi(I)$ such that $r s, r t$, st $\notin I$. If $r s t \in I \backslash \phi(I)$, then r or s or t is a unit in R which implies that $r s$ or $s t$ or $r t$ is in I, a contradiction. Therefore, $r s t \notin I$ and since $r s t a \in I \backslash \phi(I)$ and a is not a unit, $r s t$ is a unit in R, so $a \in I \backslash \phi(I)$, hence $\nu_{\phi}(I) \cup \phi(I)=I$ which implies that I is a ϕ-2-absorbing primal ideal of R.

Corollary 3.3. Let (R, M) be a quasi-local ring with $\nu_{\phi}(I) \neq R$ for all proper ideals I of R. Then every proper ideal I of R with $M^{2} \subseteq \phi(I)$, is a 2-absorbing primal ideal of R.

Proof. Let I be a proper ideal of R with $M^{2} \subseteq \phi(I)$, then, by Theorem 3.2, I is a ϕ-2-absorbing primal ideal of R. We show that $\nu(I)$ is an ideal in R. Let a, b be nonzero elements in $\nu(I)$. Then there exist $r, s, t \in R$ with $r s, r t, s t \in R \backslash I$ such that $r s t a \in I$. If $r s t a \in I \backslash \phi(I)$, then, by Theorem $3.2, a \in I \subseteq M$. Since $r s \notin I, r$ or s is a unit in R. Therefore, if $r s t a \in \phi(I)$, then $(s t) a \in \phi(I)$ or $(r t) a \in \phi(I)$. Say $(s t) a \in \phi(I)$ again since $s t \notin I, s$ or t is a unit in R which implies that $s a \in \phi(I)$ or $t a \in \phi(I)$. Say $t a \in \phi(I)$, hence t is not a unit in R, since $a \in I \backslash \phi(I)$. Therefore if $t a \in \phi(I) \subseteq I \subseteq M$ and a is not a unit in R (if a is a unit in R, then $t \in \phi(I)$ a contradiction), then a must be in M, since M is a prime ideal. Similarly, $b \in M$, so $a+b \in M$. If $t(a+b) \notin \phi(I)$, then $t(a+b) \neq 0$ and hence t is a unit in R since $a+b \in M$, a contradiction. Therefore, $t(a+b) \in \phi(I)$ which implies that $a+b \in \nu(I)$ since $t \notin I$. Hence $\nu(I)$ is an ideal of R.

Let R be a commutative ring with unity and let J be a proper ideal of R. Let $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$ be any function. Following of [2], we define $\phi_{J}: \Im(R / J) \rightarrow \Im(R / J) \cup\{\emptyset\}$ by $\phi_{J}(I / J)=(\phi(I)+J) / J$ for every ideal $I \in \mathfrak{I}(R)$ with $J \subseteq I$ (and $\phi_{J}(I / J)=\emptyset$ if $\left.\phi=\phi_{\emptyset}\right)$.

In the next result we give the condition on a proper ideal I of R such that I / J is a ϕ_{J}-2-absorbing primal ideal of R / J where J is a proper ideal of R subset of I.

Theorem 3.4. Let I, J be proper ideals of R with $J \subseteq I$. If I is a ϕ-2-absorbing primal ideal of R with $\nu_{\phi}(J) \subseteq I$. Then I / J is a ϕ_{J}-2-absorbing primal ideal of R / J.

Proof. To prove this result we must show that $\nu_{\phi_{J}}(I / J) \cup \phi_{J}(I / J)=\left[\nu_{\phi}(I) \cup J\right] / J$. Let $a+J \in \nu_{\phi_{J}}(I / J)$. Then there exist $r+J, s+J, t+J \in R / J$ with $r s t a+J \in(I / J) \backslash \phi_{J}(I / J)$ such that $r s+J, r t+J, s t+J \notin I / J$. So rsta $\in I \backslash \phi(I)$, since r sta $\notin J$, with $r s, r t$, st $\notin I$ hence $a \in \nu_{\phi}(I)$, therefore, $a+J \in\left[\nu_{\phi}(I) \cup J\right] / J$. Conversely, let $a+J \in\left[\nu_{\phi}(I) \cup J\right] / J$ such that $a+J \notin \phi_{J}(I / J)$. Then $a \in \nu_{\phi}(I)-J$. If $a \in I$, then $a+J \in \nu_{\phi_{J}}(I / J)$. So we may assume that $a \notin I$. Then there exist $r, s, t \in R$ with rsta $\in I \backslash \phi(I)$ such that $r s, r t, s t \notin I$. If $r s t a \in J \backslash \phi(J)$, then $a \in \nu_{\phi}(J)$, a contradiction, since $\nu_{\phi}(J) \subseteq I$ and $a \notin I$. Therefore, $r+J, s+J, t+J \in R / J$ with rsta $+J=(r s t+J)(a+J) \in I / J \backslash \phi_{J}(I / J)$ such that $r s+J, r t+J, s t+J \notin I / J$, so $a+J \in \nu_{\phi_{J}}(I / J)$. Hence $\nu_{\phi_{J}}(I / J) \cup \phi_{J}(I / J)=\left[\nu_{\phi}(I) \cup J\right] / J$ which implies that I / J is a ϕ_{J}-2-absorbing primal ideal of R / J.

Corollary 3.5. Let R_{0} be a subring of R with unity. If I is a $\phi-2$-absorbing primal ideal of R, then $I \cap R_{0}$ is a $\bar{\phi}$-2-absorbing primal ideal of R_{0}, where $\bar{\phi}\left(I \cap R_{0}\right)=\phi(I) \cap R_{0}$.

Proof. Clear.

Let R be a commutative ring with unity $(1 \neq 0)$ and let S be a multiplicative closed proper subset of R with $1 \in S$. We recall that if R is a commutative ring with unity, then $R_{S}=\left\{\frac{a}{s}: a \in R, s \in S\right\}$ is a commutative ring with unity. Also if I is an ideal in R, then I_{S} is an ideal of R_{S}, where $I_{S}=\left\{\frac{a}{s}: a \in\right.$ $I, s \in S\}$. Moreover, if J is an ideal of R_{S}, then $J \cap R$ is an ideal R.

Now let $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$ be any function, we define $\phi_{S}: \Im\left(R_{S}\right) \rightarrow \Im\left(R_{S}\right) \cup\{\emptyset\}$ by $\phi_{S}(J)=$ $(\phi(J \cap R))_{S}$ for every $J \in \Im\left(R_{S}\right)$. Note that $\phi_{S}(J) \subseteq J$. Since for $J \in \Im\left(R_{S}\right), \phi(J \cap R) \subseteq J \cap R$ implies $\phi_{S}(J) \subseteq(J \cap R)_{S} \subseteq J$.

Lemma 3.6. Let $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$ be any function, and let I be a $\phi-2$-absorbing primal ideal of R with $P=\nu_{\phi}(I) \cup \phi(I)$. Suppose $P \cap S=\emptyset$. If $\frac{a}{s} \in I_{S}-(\phi(I))_{S}$, then $a \in I$. Moreover, if $(\phi(I))_{S} \cap R \subseteq I$, then $I=I_{S} \cap R$.
Proof. Let $\frac{a}{s} \in I_{S}-(\phi(I))_{S}$, so $\frac{a}{s}=\frac{b}{t}$ for some $b \in I$ and $t \in S$. In this case uta $=u s b \in I$ for some $u \in S$. If $u t a \in \phi(I)$, then $\frac{a}{s}=\frac{u t a}{u t s} \in(\phi(I))_{S}$, a contradiction. So, uta $\in I-\phi(I)$. If $a \notin I$, then $u t$ is not a ϕ-2-absorbing prime to I; so $u t \in P \cap S$ which contradicts the hypothesis. Therefore $a \in I$.
For the last part, it is clear that $I \subseteq I_{S} \cap R$. Now let a be an element in $I_{S} \cap R$. Then as $\in I$ for some $s \in S$. If $a s \notin \phi(I)$ and $a \notin I$, then s is not ϕ-2-absorbing prime to I, so $s \in P \cap S$ a contradiction. Therefore, a must be in I. If as $\in \phi(I)$, then $\frac{a}{1}=\frac{a s}{s} \in(\phi(I))_{S}$, and so $a \in(\phi(I))_{S} \cap R$. Thus, $I_{S} \cap R=I \cup\left((\phi(I))_{S} \cap R\right)=I$, since $(\phi(I))_{S} \cap R \subseteq I$. Hence $I=I_{S} \cap R$.

Lemma 3.7. Let $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$ be any function, and let I be a ϕ-2-absorbing primal ideal of R with $P \cap S=\emptyset$, where $P=\nu_{\phi}(I) \cup \phi(I)$. Then $\left[I_{S} \cap R\right]-\left[\phi_{S}\left(I_{S}\right) \cap R\right] \subseteq I-\phi(I)$.

Proof. Let $a \in I_{S} \cap R$ such that $a \notin\left(\phi_{S}\left(I_{S}\right) \cap R\right)$, then $\frac{a}{1} \in I_{S}-\phi_{S}\left(I_{S}\right) \subseteq I_{S}-(\phi(I))_{S}$ and by Lemma 3.6, $a \in I$. If $a \in \phi(I)$, then $\frac{a}{1} \in(\phi(I))_{S} \subseteq \phi_{S}\left(I_{S}\right)$ implies that $a \in \phi_{S}\left(I_{S}\right) \cap R$ a contradiction. Therefore, $a \in I-\phi(I)$.

Let R be a commutative ring with unity and M an R-module. An element $a \in R$ is called a zero-divisor on M if $a m=0$ for some $m \in M$. We denote by $\mathbf{Z}_{R}(M)$ the set all zero-divisors of R on M.

Corollary 3.8. Let $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$ be any function, and let I be a ϕ-2-absorbing primal ideal of R with $P \cap S=\emptyset$, where $P=\nu_{\phi}(I) \cup \phi(I)$. Suppose $S \cap \mathbf{Z}_{R}(R / \phi(I))=\emptyset$. If $(\phi(I))_{S} \cap R \subseteq I$, then $\left(\nu_{\phi}(I)\right)_{S}-\phi_{S}\left(I_{S}\right) \subseteq \nu_{\phi_{S}}\left(I_{S}\right)$.
Proof. By Lemma 3.6, if $\left((\phi(I))_{S} \cap R\right) \subseteq I$, then $I_{S} \cap R=I$. Let $\frac{x}{s}$ be an element in $\left(\nu_{\phi}(I)\right)_{S}-\phi_{S}\left(I_{S}\right)$, then $\frac{x}{s}=\frac{y}{t}$, where $y \in \nu_{\phi}(I)$. If $y \in I$, then $\frac{y}{t}=\frac{x}{s} \in I_{S}-\phi_{S}\left(I_{S}\right) \subseteq \nu_{\phi_{S}}\left(I_{S}\right)$. Therefore we may assume that $y \notin I$. If $\frac{y}{1} \in I_{S}$, then $\frac{y}{t}=\frac{x}{s} \in I_{S}-\phi_{S}\left(I_{S}\right) \subseteq \nu_{\phi_{S}}\left(I_{S}\right)$. Therefore we may assume that $\frac{y}{1} \notin I_{S}$. So, $\frac{y}{1}$ is an element in $\left(\nu_{\phi}(I)\right)_{S}-I_{S}$ and therefore $u y \in \nu_{\phi}(I)$ for some $u \in S$ and $u y \notin I$. So there exist $r, s, t \in R-I$ such that r stuy $\in I-\phi(I)$. If r sty $\notin I$, then $u \in \nu_{\phi}(I) \subseteq P$ a contradiction. Therefore, $r s t y \in I-\phi(I)$. So $\frac{r}{1} \frac{s}{1} \frac{t}{1} \frac{y}{1} \in I_{S}$. If $\frac{r}{1} \frac{s}{1} \frac{t}{1} \frac{y}{1} \in \phi_{S}\left(I_{S}\right)$, then there exists $v \in S$ with $r s t v y \in \phi\left(I_{S} \cap R\right)=\phi(I)$, so $v \in S \cap \mathbf{Z}_{R}(R / \phi(I))$ a contradiction. Thus $\frac{r}{1} \frac{s}{1} \frac{t}{1} \frac{y}{1} \in I_{S}-\phi_{S}\left(I_{S}\right)$ and $\frac{r}{1} \frac{s}{1} \notin I_{S}, \frac{r}{1} \frac{t}{1} \notin I_{S}$ and $\frac{t}{1} \frac{s}{1} \notin I_{S}$. So, $\frac{y}{1} \in \nu_{\phi_{S}}\left(I_{S}\right)$. Hence $\frac{x}{s}=\frac{y}{t} \in \nu_{\phi_{S}}\left(I_{S}\right)$.

We recall that if I is a proper ideal in R, then $I \subseteq I_{S} \cap R$, therefore we may assume that $(\phi(I))_{S} \subseteq$ $\phi_{S}\left(I_{S}\right)$.

Under the condition that $(\phi(I))_{S} \cap R \subseteq I$ for all proper ideals I of R, we have the following Propositions.
Proposition 3.9. Let S be a multiplicative closed subset of R with $1 \in S$. Let $\phi: \mathfrak{I}(R) \rightarrow \Im(R) \cup\{\emptyset\}$ be any function, and let I be a ϕ-2-absorbing primal ideal of R with $P \cap S=\emptyset$, where $P=\nu_{\phi}(I) \cup \phi(I)$. Suppose $S \cap \mathbf{Z}_{R}(R / \phi(I))=\emptyset$. Then I_{S} is a ϕ_{S}-2-absorbing primal ideal of R_{S}.

Proof. It is well known that if P is a prime ideal in R, then P_{S} is a ϕ_{S}-prime ideal of R_{S}.
To show that I_{S} is a $\phi_{S}-2$-absorbing primal ideal of R_{S}, we must prove that $P_{S}=\nu_{\phi_{S}}\left(I_{S}\right) \cup \phi_{S}\left(I_{S}\right)$. Clearly, $\phi_{S}\left(I_{S}\right) \subseteq P_{S}$, let $\frac{a}{v}$ be an element in $\nu_{\phi_{S}}\left(I_{S}\right)$. Then there exists $\frac{r}{u_{1}}, \frac{s}{u_{2}}, \frac{t}{u_{3}} \in R_{S}-I_{S}$ such that $\frac{r}{u_{1}} \frac{s}{u_{2}} \notin I_{S}, \frac{r}{u_{1}} \frac{t}{u_{3}} \notin I_{S}$ and $\frac{s}{u_{2}} \frac{t}{u_{3}} \notin I_{S}$ and with $\left(\frac{r}{u_{1}}\right) \cdot\left(\frac{s}{u_{2}}\right) \cdot\left(\frac{t}{u_{3}}\right) \cdot\left(\frac{a}{s}\right) \in I_{S}-\phi_{S}\left(I_{S}\right) \subseteq I_{S}-(\phi(I))_{S}$. So $r s t a \notin \phi(I)$ and, by Lemma 3.6, rsta $\in I$. Hence, rsta $\in I-\phi(I)$ and $r s \notin I$, rt $\notin I$, and st $\notin I$. Thus $a \in \nu_{\phi}(I) \subseteq P$ and hence $\frac{a}{s} \in P_{S}$.
Conversely, let $\frac{a}{s} \in P_{S}$ such that $\frac{a}{s} \notin \phi_{S}\left(I_{S}\right)$. Then $a \in P_{S} \cap R=P$. If $\frac{a}{s} \in I_{S}$, then $\left(\frac{1}{1}\right)\left(\frac{a}{s}\right) \in I_{S}-\phi_{S}\left(I_{S}\right)$, $\left(\frac{1}{1}\right) \notin I_{S}$, so $\frac{a}{s}$ is not ϕ_{S}-prime to I_{S}, thus $\frac{a}{s} \in \nu_{\phi_{S}}\left(I_{S}\right)$. Therefore, we may assume that $\frac{a}{s} \notin I_{S}$, that is $t a \notin I$ for every $t \in S$. So, $a \notin I$. Therefore, $a \in P-I \subseteq \nu_{\phi}(I)$. Thus, $\frac{a}{s} \in\left(\nu_{\phi}(I)\right)_{S}-\phi_{S}\left(I_{S}\right)$. Since, by Corollary 3.8, $\left(\nu_{\phi}(I)\right)_{S}-\phi_{S}\left(I_{S}\right) \subseteq \nu_{\phi_{S}}\left(I_{S}\right), \frac{a}{s} \in \nu_{\phi_{S}}\left(I_{S}\right)$.

Proposition 3.10. Let $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$ be any function, and let J be a $\phi_{S^{-}}$-2-absorbing primal ideal of R_{S} with $Q=\nu_{\phi_{S}}(J) \cup \phi_{S}(J)$. Then $Q \cap R$ is a ϕ-prime ideal of R and $J \cap R$ is a ϕ-2-absorbing primal ideal of R with $Q \cap R=\nu_{\phi}(J \cap R) \cup \phi(J \cap R)$, and with $(Q \cap R) \cap S=\emptyset, S \cap \mathbf{Z}_{R}(R / \phi(J \cap R))=\emptyset$. Moreover, $J=(J \cap R)_{S}$.

Proof. To show that $Q \cap R$ is a ϕ-prime ideal of R, it is enough to prove that $J \cap R$ is a ϕ-2-absorbing primal ideal of R with $Q \cap R=\nu_{\phi}(J \cap R) \cup \phi(J \cap R)$. Then, by using Theorem 2.3, $Q \cap R$ will be a ϕ-prime ideal of R.
Now, to prove that $J \cap R$ is a ϕ-2-absorbing primal ideal of R we must show that $Q \cap R=\nu_{\phi}(J \cap R) \cup$ $\phi(J \cap R)$. But $\phi(J \cap R) \subseteq J \cap R \subseteq Q \cap R$. Let a be an element in $\nu_{\phi}(J \cap R)$ with $a \notin \phi(J \cap R)$. Then $\frac{a}{1} \in\left(\nu_{\phi}(J \cap R)\right)_{S}-\phi_{S}(J)$, since $S \cap \mathbf{Z}_{R}(R / \phi(I))=\emptyset$ and, by Corollary $3.8,\left(\nu_{\phi}(J \cap R)\right)_{S}-\phi_{S}(J) \subseteq \nu_{\phi_{S}}(J)$. Thus, $\frac{a}{1} \in \nu_{\phi_{S}}(J) \subseteq Q$ and hence $a \in Q \cap R$.
Conversely, let a be an element in $Q \cap R$. Then $\frac{a}{1}$ in Q. We may assume that $a \notin \phi(J \cap R)$, since $S \cap \mathbf{Z}_{R}(R / \phi(J \cap R))=\emptyset, \frac{a}{1} \notin \phi_{S}(J)$. If $\frac{a}{1} \in J$, then $\left(\frac{a}{1}\right) \in J-\phi_{S}(J)$ and since $\phi(J \cap R) \subseteq \phi_{S}(J) \cap R$, $a \in(J \cap R)-\left(\phi_{S}(J) \cap R\right) \subseteq(J \cap R)-\phi(J \cap R)$, but $1 \notin J \cap R$, so $a \in \nu_{\phi}(J \cap R)$. If $\frac{a}{1} \notin J$, then $\frac{a}{1} \in Q-J$ and so $\frac{a}{1} \in \nu_{\phi_{S}}(J)$. Let $\frac{x}{s}, \frac{y}{r}, \frac{z}{t} \in R_{S}$ such that $\left(\frac{x}{s}\right)\left(\frac{y}{r}\right) \notin J,\left(\frac{x}{s}\right)\left(\frac{z}{t}\right) \notin J$ and $\left(\frac{y}{r}\right)\left(\frac{z}{t}\right) \notin J$, with $\left(\frac{a}{1}\right)\left(\frac{x}{s}\right)\left(\frac{y}{r}\right)\left(\frac{z}{t}\right) \in J-\phi_{S}(J)$. Then $\operatorname{axyz} \in(J \cap R)-\left(\phi_{S}(J) \cap R\right) \subseteq(J \cap R)-\phi(J \cap R)$, since $\frac{a x y z}{1} \in J$ and $\frac{a x y z}{1} \notin \phi_{S}(J)$, for if $\frac{a x y z}{1} \in \phi_{S}(J)$, then $\frac{a x y z}{s} \in \phi_{S}(J)$, a contradiction. Thus we have axyz $\in(J \cap R)-\phi(J \cap R)$ and $x y, x z, y z \notin J \cap R$, since $\left(\frac{x}{s}\right)\left(\frac{y}{r}\right)^{s} \notin J,\left(\frac{x}{s}\right)\left(\frac{z}{t}\right) \notin J$ and $\left(\frac{y}{r}\right)\left(\frac{z}{t}\right) \notin J$. Therefore, $a \in \nu_{\phi}(J \cap R)$ and so $J \cap R$ is a ϕ-2-absorbing primal ideal of R with $Q \cap R=\nu_{\phi}(J \cap R) \cup \phi(J \cap R)$. Finally, we show that $J=(J \cap R)_{S}$. Clearly, $J \subseteq(J \cap R)_{S}$. Conversely, let $\frac{x}{s}$ be an element in $(J \cap R)_{S}$. Then $x t \in J \cap R$ for some $t \in S$. Thus, $\frac{x t}{1} \in J$, and hence $\left(\frac{x t}{1}\right)\left(\frac{1}{s t}\right)=\frac{x}{s} \in J$. Therefore, $J=(J \cap R)_{S}$.

Under the condition that $(\phi(I))_{S} \cap R \subseteq I$ for all proper ideals I of R and by using Propositions 3.9 and 3.10 we have the following main result.

Corollary 3.11. Let R be a commutative ring with unity. Let S be a multiplicative closed subset of R such that $1 \in S$. Let $\phi: \Im(R) \rightarrow \Im(R) \cup\{\emptyset\}$ be any function. Then there is one-to-one correspondence between the ϕ-2-absorbing primal ideals I of R and $\phi_{S^{-}}$-2-absorbing primal ideals I_{S} of R_{S} with $S \cap$ $\mathbf{Z}_{R}(R / \phi(I))=\emptyset, P \cap S=\emptyset$ where $P=\nu_{\phi}(I) \cup \phi(I)$.

Acknowledgments

We thank the referee for his valuable suggestions.

4. Bibliography

References

1. D. Anderson, A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39, 1646-1672, (2011).
2. D. Anderson, M. Bataineh, Generalizations of prime ideals, Comm. in Algebra 36, 686-696, (2008).
3. A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75, 417-429, (2007).
4. A. Badawi, U. Tekir, E. A. Ugurlu, G. Ulucak, E. Y. Celikel, Generalizations of 2-absorbing primary ideals of commutative rings, Turkish J. of Math., 40, 703-717, (2016).
5. A. Badawi, U. Tekir, E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., $51(4)$, 1163-1173, (2014).
6. Y. Darani, Generalizations of primal ideals in commutative rings, MATEMATIQKI VESNIK, 64(1), 25-31, (2012).
7. L. Fuchs, On primal ideals, Amer. Math. Soc. 1, 1-6, (1950).
8. A. Jaber, Properties of weakly 2-absorbing primal ideals, Italian Journal of pure and applied mathematics, 47, 609-619, (2022).
9. A. Jaber, H. Obiedat, On 2-absorbing primal ideals, Far East Journal of Mathematical Sciences, 103(1), 53-66, (2018).
10. S. Payrovi and S. Babaei, On the 2-absorbing ideals, Int. Math. Forum, 7(6), 265-271, (2012).

Ameer Jaber,

Department of Mathematics, Faculty of Science,
The Hashemite University, Zarqa, Jordan.
E-mail address: ameerj@hu.edu.jo
and
Rania Shaqbou'a,
Department of Mathematics, Faculty of Science,
The Hashemite University, Zarqa, Jordan.
E-mail address: Rania.Shaqboua@hu.edu.jo

[^0]: 2010 Mathematics Subject Classification: 13A15, 13C05.
 Submitted February 06, 2022. Published September 17, 2022

