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Some Characterization of L"-Henstock-Kurzweil Integrable Functions

Hemanta Kalita

ABSTRACT: In this article, we discuss few properties of L"-Henstock-Kurzweil (in short L"-HK) integrable
functions, introduced by Paul Musial in [8]. We re-defined L"-bounded variations. We demonstrated that
L"-Henstock-Kurzweil integrable functions are Denjoy integrable.

Key Words: L"-Henstock-Kurzweil integral, Absolute L"-Henstock-Kurzweil integral, Denjoy inte-
gral.

Contents
1 Introduction and Preliminaries 1
2 Bounded variation of L"-Henstock-Kurzweil integral 3
3 L"-Henstock-Kurzweil integral and properties 4
4 Bibliography 6

1. Introduction and Preliminaries

R. A. Gordon in [4] defined the Denjoy-Dunford, Denjoy-Pettis, and Denjoy-Bochner integrals which
are the extension of Dunford, Pettis, and Bochner integrals, respectively. Gordon established that a
Denjoy-Dunford (Denjoy-Bochner) integrable function on [a, ] is Dunford (Bochner) integrable in some
interval [a, b] and that for the spaces that do not contain copy cg, a Denjoy-Pettis integrable function on
[a, b] is Pettis integrable on some sub interval of [a, b]. Major and minor functions were first introduced by
de la Vallée Poussin in his study of the properties of the Lebesgue integral and those of functions additive
of a set (see [12]). Entirely equivalent notions (of “Ober'- and “Unterfunktionen") were introduced
independently by O. Perron [11], who based on them a new definition of integral, which does not require
the theory of measure. Calderén & Zygmund first gave the notion of derivation in L™ and unlike the
idea of the approximate derivative had proven to be quite effective in applications of Partial Differential
Equation, area of surfaces, etc. (see [2]). L.Gordon defined the notion of Dini derivatives in metric L"
(briefly L"-derivatives) also in his work Perron integral in L" was discussed (see [6]). Gordon proved
that AP-derivatives are equivalent to L" derivatives. Paul M. Musial and Yoram Sagher introduced the
L"- Henstock-Kurzweil integral in [8]. P. Musial and F. Tulone obtained a norm on the space of HK,
-integrable functions, as well as the dual and completion of this space (see [10]) . Paul M. Musial defined
the class of L"-variational integrable functions and show that it is equivalent to the class of L"- Henstock-
Kurzweil integrable functions. They also define the class of functions of L"-bounded variation (see [9]).
In this paper we charecterize properties of L"- Henstock-Kurzweil integrable functions define in [a, b].

To make our presentation reasonably self-contained we recalling a few definitions and results in this
section that we will use in our main section. Recalling a positive function ¢ : [a,b] — (0,00) is a gauge
(see [4]).

Definition 1.1. [4, Definition 9.3] A function f : [a,b] — R is said to be Henstock-Kurzweil integrable
on [a, b] if there exists A € R with the following property: given e > 0 there exists a gauge ¢ on [a, b] such
that
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for each d-fine P—partition {(Z;,€;)}, of [a,b]. We write A as H [, , f

Recalling I = [a,b] denote the family of all compact sub intervals J C I, a function F' : I — X is
additive if F(JU L) = F(J)+ F(L) for any non overlapping J, L € I such that JU L € I. Recalling the
space L™, 1 <r < oo, as

b -
L <[a,b]) = {f : (%/ [f(x) — P(x)|rdm> <€, 0 < h < oo, for some polynomial P(a:)}

For detailed of L", 1 < r < oo one can follow [2,8,14].

Definition 1.2. [8] Let f € L"(I) for 1 <r < oo and I = (a,b). For all x € I, r— Dini derivative. The
upper-right L" - derivative:

D f(a) :inf{a: <% /Oh[f(x—i—t) (@) —at]gdtf . o(h)}.

The lower-right L"™— derivate:

3=
2
>
~—"
—

1 h
Dy, f(z) = sup {a : (E /0 [flx+1t)— f(x)— at]ﬁdt) =
The upper-left L"- derivate:

D= f(a) = inf{a: <% /Oh[—f(x )+ ) — at]gdt)
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and the lower-left L"- derivate:

Dt =s{a: (5 [ " fa - )+ f(x) atr_dt)% — )

Remark 1.3. D; f(z) = inf {a : foh (M — a> dt = o(h)}, with similar results for the other
+
r-Dini derivatives.

Definition 1.4. [§] For 1 < oo, a real valued function f is L"- Henstock-Kurzweil integrable (in short
HEK,- integrable) if there exists a function F € L"[a,b] so that for any € > 0 there exists a gauge function
0 so that for all finite collections P = {(x;,[ci,d;])} of non overlapping tagged intervals in [a,b] with

P < 4, we have:
n 1 d;
; (di — ¢ /c
=1 i

K3

1

Tdy) T <e. (1.1)

Fy) = F(ai) — f(zi)(y — i)

The function f is said to be L"-Henstock-Kurzweil integrable on the set E C [a, b] if the function fyp
is L"-Henstock-Kurzweil integrable on [a, b]. We write

@ -m [ fw=-w-m| s

Recalling that a gauge 0 is H K,-appropriate for € and for f if (1.1) holds for any J-fine tagged partition
P. If f is HK,-integrable on [a, b], the following function is well defined for all x € [a, ] :

Fz) = (HKT)/f(t)dt. (1.2)
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Let f € HK,[a,b]. The HK, norm of f as follows:

AW, = [1E 1],

where F' is the indefinite H K, integral of f as defined in (1.2). The concept of absolute continuity which
characterizes indefinite H K, -integrals as follows:

Definition 1.5. [8, Definition 11] Let 1 < r < co. We say that F € AC,(E) if for all € > 0 there

exists v > 0 and a gauge function §(x) defined on E so that for all P = {(z;,[c;,d;])} < dp such that
L, (di — ¢;) < v we have
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i=1

di—ci
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2. Bounded variation of L"-Henstock-Kurzweil integral

Paul Musial in [9] gave the definition of L"- bounded variation. They missed the coherent concept of
L"[a,b].

Definition 2.1. [9] Let 1 <r < o0, let f : [a,b] — R and let E be a measurable subset of [a,b]. We say
that f is L"— bounded variational on E(f € BV,[E]) if there exists M > 0 and a gauge ¢ > 0 defined on
E so that if P = {(a;, [c;, d;])}, is a finite collection of §— fine tagged sub-intervals of [a, b] having tags
in E, then

L1
Z(di_ci

i=1

d;
/|Hw—ﬂmW@ﬁ<M.

We re-write the definition of L"-bounded variational as follows:

Definition 2.2. Let 1 <r < oo, let f : [a,b] = R and let E be a measurable subset of [a,b]. We say that
f s L"- bounded variational on E(f € BV,[E)) if there exists a function F € L"([a,b]) so that for any
M > 0 and a gauge § > 0 defined on E so that if P = {(x;,[ci, di])}1 is a finite collection of d- fine
tagged sub-intervals of [a,b] having tags in E, then

> =3 d IF(y) - F(xi)rczy)% <

i=1

Paul Musial in [9] mentioned the sketch of proof of the following Theorem. We have given the full
proof here so that we can use this Theorem in our results.

Theorem 2.3. [9, Theorem 2] If f € BV, (E), then we can find {E;};>1 so that E = |J;°, E; and
f € BV(E;) for all 1.

Proof. Let f € BV,(E) then for a function F € L"([a, b]) there exists M > 0 and a gauge § > 0 defined
on E so that P = {(z;, [¢;, d;])}, is a finite collection of §—fine tagged sub intervals of [a, b] having tags
in ' then

n

>

i=1

1
dl'—Ci

d;
L/|ﬂm—Fumww%<M. (2.1)

i

Assume F € BV,[a,b] and let ¢ > 0, then for a gauge function ¢ defined on [a,b] so that if P =
{(x4,[ci, d;])} < 0 such that the equation(2.1) holds.

The function F' is L"—continuous and so clearly approximately continuous, using the [8, Theorem 5]
there exists fPl = {(33‘1'7]‘, [Ci7j7 dl,j])} < 5, where [CLJ" d@j] g [Ci, dl] for all 7 and j, so that
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n

1 dij
S [ -y = 4P@) - Pl

i=1 bd T T ey
Since P = (JI_, P, is sub-ordinates to §, we have

n

So, F' € BV (E;). Hence we can find f € BV (E;). O

3. L"-Henstock-Kurzweil integral and properties

In this section we discuss few properties of L"-Henstock-Kurzweil integrals in real space R. The
collection of all function that are L"-Henstock integrable on I = [a, b], will be denoted by HK,.(I). In the
beggining of the section, we discuss few properties of BV, [a,b].

Proposition 3.1. 1. Let F' € BV,[a,b] then F is bounded variation on every sub interval of [a,b] and
BV,.(F,a,b])) = BV,.(F,[a,c]) + BV,(F,|[c,b])
for each ¢ € (a,b).
2. If F is in BV;]a,c] and F is in BV, [c,b] then F is in BV,|a,b].
Theorem 3.2. The function F € AC,[a,b] is in BV,[a,b].

Proof. Let F' € AC,[a,b] and let € > 0. There exists ¥ > 0 and a gauge function ¢ defined on [a, b] so
that if P = {(zn, [cn,dn])} < 0 and
q
>

n=1

q d,
then Zl dnicn L. F(y) = Fzn)|dy < e O

n—=

Theorem 3.3. For1 <r < oo, BV,[a,b] = BV|a,b].

Proof. Let us assume F' € BV [a,b]. If {[c;,d;]} is a finite collection of non overlapping intervals that have
end points in E, there exists M > 0 such that

supz |F(dj) — F(c;)| < M.
This implies that for any v > 0 if > ‘:1(dj —¢j) < v then

q
Z ax Fx — min F(z)) < M.
le Ie[cjvdj]

For any choice of x; € [¢j,d,],

q d;
1 /J

F(y xT; dy < sup max F(z)— min F(x

;(dj—cj y [F(y) — F(z;)]" 22: L Ldpin, (x))

< M for any gauge function 9.
So, BV[a,b] C BV,[a,b]. also from the Theorem(2.3) BV, [a,b] C BV[a,b]. Hence BV, [a,b] = BV[a,b]. O
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Theorem 3.4. If f : I = [a,b] — R are L"-Henstock-Kurzweil integrable on I. If f > 0 a.e. on I then
(L"—H) [, f>0.

Proof. Let f be L"-Henstock-Kurzweil integrable on I = [a, b] then there exists a function F' € L"[I] such
that for any e > 0 there exists a gauge function ¢ such that for all finite collection P = {(z;, [¢;,d;])} of
non-overlapping tagged intervals in I with P < § implies

n

1 di B
Z(dv — G / [F(y) = F(zi) = f(zi)(y — z)["dy)™ <e.
i=1 v
That is,
n 1 d; ) .
S| IFy—a) - SULPIdy)* <e.
i=1 vUc
Now by the [8, Theorem 21}, f € Lt[a,b]. From the fact of Lebesgue integral we get the proof. O

Remark 3.5. The linearity of L"-Henstock-Kurzweil integral (see [9]) and the Theorem 5.4, gives if
f>gae onlthen (L"—H) [, f>(L"—H) [, 9.

Lemma 3.6. For 1 <r < oo, ACG,a,b] = ACG|a,].

Proof. Let E C [a,b]. From the known fact that ACG,[a,b] = |JAC,[E,] where E = |J E,. Also
n=1
AC,|E,]) = AC[E,]. Therefore,

ACG,[a,b] =| JAC[E,]
= ACGIE].
Consequently, ACG\[a,b] = ACGJa,]. O
We can find from the known fact that HK,(I) is contained in L'(I), then any function in HK,(I) is
Denjoy integrable. That is:

Theorem 3.7. Let f : I = [a,b] = R. For 1 <r < oo, if f is L"-Henstock-Kurzweil integrable function
is Denjoy integrable.

Theorem 3.8. Let f: I — R be L"-Henstock-Kurzweil integrable on I. Then |f| € HK,.(I) if and only
if the indefinite integral F(x) = [ f has BV,(I).

Proof. The proof is immediate. Since f is in HK,(I), then f is in L'(I). Therefore, F(z) is of bounded
variation, which tell us that f is in BV,.(I). See [1, Theorem 7.5]. O
Corollary 3.9. Let f : [a,b] — R be L"-Henstock-Kurzweil integrable function on [a,b]. L"-Henstock-
Kurzweil integrable function are absolutely integrable function on [a,b)].

Theorem 3.10. The function f: I = [a,b] — R.

1. If f is L"-Henstock- Kurzweil integrable then f is measurable.

2. If f is L"-Henstock-Kurzweil integrable on [a,b] and f > 0 a.e then f is Lebesgue integrable on
[a,b].
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Proof. For (1) Let f be L"-Henstock-Kurzweil integrable on I = [a, b] and F' is the L"-Henstock-Kurzweil
integral of f, then [8, Theorem 14] there exists ' € ACG,[a,b] so that F| = f a.e. so that I is the
sum of a sequence {E,} of closed sets on each of which F' is L"—AC. Again [8, Theorem 15] gives F' is
AC. [13, Lemma 4.1 of Ch VII] there exists for each n a function E,, of bounded variation on I, which
coincides with F' on E,. We therefore have a.e. on E, the relation f(z) = F/(x) = F/(x) where F!(z)
is L"- derivative of F' and since the derivative of a function is bounded variation is measurable and a.e.
finite, it follows that f is measurable and a.e. finite on each F,, and consequently on the whole interval
I=la,b.

For (2), follows [8, Theorem 21]. O

Corollary 3.11. If f : [a,b] = R be L"-Henstock-Kurzweil integrable on [a,b]. The following are holds:

a) If f is bounded on [a,b] then f is clearly Lebesgue integrable on [a,b].

b) If f > 0 a.e. is L"—Henstock integrable on every measurable subset of [a,b] then f is Lebesgue
integrable on [a, b].

Theorem 3.12. Let f : [a,b] — R. If f is L"-Henstock-Kurzweil integrable on [a,b] then every perfect
set in [a,b] contains a portion on which f is Lebesgue integrable.

Proof. Let f be L"-Henstock-Kurzweil integrable on [a, b] then the Theorem(3.7), f is Denjoy integrable
on [a, b]. Using [4, Theorem 12(c)], we found every perfect set in [a,b] a portion on which f is Lebesgue
integrable. O
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