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Some Characterization of Lr-Henstock-Kurzweil Integrable Functions
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abstract: In this article, we discuss few properties of Lr-Henstock-Kurzweil (in short Lr-HK) integrable
functions, introduced by Paul Musial in [8]. We re-defined Lr-bounded variations. We demonstrated that
Lr-Henstock-Kurzweil integrable functions are Denjoy integrable.
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1. Introduction and Preliminaries

R. A. Gordon in [4] defined the Denjoy-Dunford, Denjoy-Pettis, and Denjoy-Bochner integrals which
are the extension of Dunford, Pettis, and Bochner integrals, respectively. Gordon established that a
Denjoy-Dunford (Denjoy-Bochner) integrable function on [a, b] is Dunford (Bochner) integrable in some
interval [a, b] and that for the spaces that do not contain copy c0, a Denjoy-Pettis integrable function on
[a, b] is Pettis integrable on some sub interval of [a, b]. Major and minor functions were first introduced by
de la Vallée Poussin in his study of the properties of the Lebesgue integral and those of functions additive
of a set (see [12]). Entirely equivalent notions (of “Ober"- and “Unterfunktionen") were introduced
independently by O. Perron [11], who based on them a new definition of integral, which does not require
the theory of measure. Calderón & Zygmund first gave the notion of derivation in Lr and unlike the
idea of the approximate derivative had proven to be quite effective in applications of Partial Differential
Equation, area of surfaces, etc. (see [2]). L.Gordon defined the notion of Dini derivatives in metric Lr

(briefly Lr-derivatives) also in his work Perron integral in Lr was discussed (see [6]). Gordon proved
that AP-derivatives are equivalent to Lr derivatives. Paul M. Musial and Yoram Sagher introduced the
Lr- Henstock-Kurzweil integral in [8]. P. Musial and F. Tulone obtained a norm on the space of HKr

-integrable functions, as well as the dual and completion of this space (see [10]) . Paul M. Musial defined
the class of Lr-variational integrable functions and show that it is equivalent to the class of Lr- Henstock-
Kurzweil integrable functions. They also define the class of functions of Lr-bounded variation (see [9]).
In this paper we charecterize properties of Lr- Henstock-Kurzweil integrable functions define in [a, b].

To make our presentation reasonably self-contained we recalling a few definitions and results in this
section that we will use in our main section. Recalling a positive function δ : [a, b] → (0, ∞) is a gauge
(see [4]).

Definition 1.1. [4, Definition 9.3] A function f : [a, b] → R is said to be Henstock-Kurzweil integrable
on [a, b] if there exists A ∈ R with the following property: given ǫ > 0 there exists a gauge δ on [a, b] such
that
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for each δ-fine P−partition {(Ii, ξi)}
P
i=1 of [a, b]. We write A as H

∫

[a,b] f

Recalling I = [a, b] denote the family of all compact sub intervals J ⊂ I, a function F : I → X is
additive if F (J ∪ L) = F (J) + F (L) for any non overlapping J, L ∈ I such that J ∪ L ∈ I. Recalling the
space Lr, 1 ≤ r < ∞, as

Lr

(

[a, b]

)

=

{

f :

(

1

h

∫ b

a

|f(x) − P (x)|rdx

)
1

r

< ǫ, 0 < h < ∞, for some polynomial P (x)

}

.

For detailed of Lr, 1 ≤ r < ∞ one can follow [2,8,14].

Definition 1.2. [8] Let f ∈ Lr(I) for 1 ≤ r < ∞ and I = (a, b). For all x ∈ I, r− Dini derivative. The
upper-right Lr- derivative:

D+
r f(x) = inf

{

a :

(

1

h

∫ h

0

[f(x + t) − f(x) − at]r+dt

)
1

r

= o(h)

}

.

The lower-right Lr− derivate:

D+,rf(x) = sup

{

a :

(

1

h

∫ h

0

[f(x + t) − f(x) − at]r−dt

)
1

r

= o(h)

}

.

The upper-left Lr- derivate:

D−
r f(x) = inf

{

a :

(

1

h

∫ h

0

[−f(x − t) + f(x) − at]r+dt

)
1

r

= o(h)

}

and the lower-left Lr- derivate:

D−,rf(x) = sup

{

a :

(

1

h

∫ h

0

[−f(x − t) + f(x) − at]r−dt

)
1

r

= o(h)

}

Remark 1.3. D+
r f(x) = inf

{

a :
∫ h

0

(

f(x+t)−f(x)
t

− a

)r

+

dt = o(h)

}

, with similar results for the other

r-Dini derivatives.

Definition 1.4. [8] For 1 ≤ ∞, a real valued function f is Lr- Henstock-Kurzweil integrable (in short
HKr- integrable) if there exists a function F ∈ Lr[a, b] so that for any ǫ > 0 there exists a gauge function
δ so that for all finite collections P = {(xi, [ci, di])} of non overlapping tagged intervals in [a, b] with
P < δ, we have:

n
∑

i=1

(

1

di − ci

∫ di

ci

∣

∣

∣

∣

F (y) − F (xi) − f(xi)(y − xi)

∣

∣

∣

∣

r

dy

)
1

r

< ǫ. (1.1)

The function f is said to be Lr-Henstock-Kurzweil integrable on the set E ⊂ [a, b] if the function fχE

is Lr-Henstock-Kurzweil integrable on [a, b]. We write

(Lr − H)

∫

I

fχE = (Lr − H)

∫

E

f.

Recalling that a gauge δ is HKr-appropriate for ǫ and for f if (1.1) holds for any δ-fine tagged partition
P. If f is HKr-integrable on [a, b], the following function is well defined for all x ∈ [a, b] :

F (x) = (HKr)

x
∫

a

f(t)dt. (1.2)
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Let f ∈ HKr[a, b]. The HKr norm of f as follows:

||f ||HKr
= ||F ||r,

where F is the indefinite HKr integral of f as defined in (1.2). The concept of absolute continuity which
characterizes indefinite HKr -integrals as follows:

Definition 1.5. [8, Definition 11] Let 1 ≤ r < ∞. We say that F ∈ ACr(E) if for all ǫ > 0 there
exists ν > 0 and a gauge function δ(x) defined on E so that for all P = {(xi, [ci, di])} < δE such that
∑q

i=1(di − ci) < ν we have
q

∑

i=1

(
1

di − ci

∫ di

ci

|F (y) − F (xi)|
rdy)

1

r < ǫ

2. Bounded variation of Lr-Henstock-Kurzweil integral

Paul Musial in [9] gave the definition of Lr- bounded variation. They missed the coherent concept of
Lr[a, b].

Definition 2.1. [9] Let 1 ≤ r ≤ ∞, let f : [a, b] → R and let E be a measurable subset of [a, b]. We say
that f is Lr− bounded variational on E(f ∈ BVr[E]) if there exists M > 0 and a gauge δ > 0 defined on
E so that if P = {(xi, [ci, di])}

n
i=1 is a finite collection of δ− fine tagged sub-intervals of [a, b] having tags

in E, then

q
∑

i=1

(
1

di − ci

∫ di

ci

|F (y) − F (xi)|
rdy)

1

r < M.

We re-write the definition of Lr-bounded variational as follows:

Definition 2.2. Let 1 ≤ r ≤ ∞, let f : [a, b] → R and let E be a measurable subset of [a, b]. We say that
f is Lr- bounded variational on E(f ∈ BVr[E]) if there exists a function F ∈ Lr([a, b]) so that for any
M > 0 and a gauge δ > 0 defined on E so that if P = {(xi, [ci, di])}

n
i=1 is a finite collection of δ- fine

tagged sub-intervals of [a, b] having tags in E, then

q
∑

i=1

(

1

di − ci

∫ di

ci

|F (y) − F (xi)|
rdy

)
1

r

< M.

Paul Musial in [9] mentioned the sketch of proof of the following Theorem. We have given the full
proof here so that we can use this Theorem in our results.

Theorem 2.3. [9, Theorem 2] If f ∈ BVr(E), then we can find {Ei}i≥1 so that E =
⋃∞

i=1 Ei and
f ∈ BV (Ei) for all i.

Proof. Let f ∈ BVr(E) then for a function F ∈ Lr([a, b]) there exists M > 0 and a gauge δ > 0 defined
on E so that P = {(xi, [ci, di])}

n
i=1 is a finite collection of δ−fine tagged sub intervals of [a, b] having tags

in E then

n
∑

i=1

(
1

di − ci

∫ di

ci

|F (y) − F (xi)|
rdy)

1

r < M. (2.1)

Assume F ∈ BVr[a, b] and let ǫ > 0, then for a gauge function δ defined on [a, b] so that if P =
{(xi, [ci, di])} < δ such that the equation(2.1) holds.

The function F is Lr−continuous and so clearly approximately continuous, using the [8, Theorem 5]
there exists Pi = {(xi,j , [ci,j , di,j ])} < δ, where [ci,j , di,j ] ⊆ [ci, di] for all i and j, so that
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n
∑

i=1

1

di,j − ci,j

∫ di,j

ci,j

|F (y) − F (xi,j)|dy ≥ 1
2 |F (di) − F (ci)|.

Since P =
⋃n

i=1 Pi is sub-ordinates to δ, we have

n
∑

i=1

|F (di) − F (ci)| ≤
1

2

n
∑

i=1

n
∑

j

1

di,j − ci,j

∫ di,j

ci,j

|F (y) − F (xi,j)|dy

<
1

2
ǫ.

So, F ∈ BV (Ei). Hence we can find f ∈ BV (Ei). �

3. Lr-Henstock-Kurzweil integral and properties

In this section we discuss few properties of Lr-Henstock-Kurzweil integrals in real space R. The
collection of all function that are Lr-Henstock integrable on I = [a, b], will be denoted by HKr(I). In the
beggining of the section, we discuss few properties of BVr[a, b].

Proposition 3.1. 1. Let F ∈ BVr [a, b] then F is bounded variation on every sub interval of [a, b] and

BVr(F, [a, b]) = BVr(F, [a, c]) + BVr(F, [c, b])

for each c ∈ (a, b).

2. If F is in BVr[a, c] and F is in BVr[c, b] then F is in BVr[a, b].

Theorem 3.2. The function F ∈ ACr [a, b] is in BVr [a, b].

Proof. Let F ∈ ACr [a, b] and let ǫ > 0. There exists ν > 0 and a gauge function δ defined on [a, b] so
that if P = {(xn, [cn, dn])} < δ and

q
∑

n=1

(dn − cn) < ν

then
q

∑

n=1

1
dn−cn

∫ dn

cn
|F (y) − F (xn)|dy < ǫ. �

Theorem 3.3. For 1 ≤ r < ∞ , BVr [a, b] = BV [a, b].

Proof. Let us assume F ∈ BV [a, b]. If {[ci, di]} is a finite collection of non overlapping intervals that have
end points in E, there exists M > 0 such that

sup

q
∑

j=1

|F (dj) − F (cj)| < M.

This implies that for any ν > 0 if
∑q

j=1(dj − cj) < ν then

q
∑

j=1

( max
x∈[cj,dj ]

F (x) − min
x∈[cj,dj]

F (x)) < M.

For any choice of xj ∈ [cj , dj ],

q
∑

j=1

(
1

dj − cj

∫ dj

cj

|F (y) − F (xj)|rdy)
1

r ≤ sup

q
∑

j=1

( max
x∈[cj,dj]

F (x) − min
x∈[cj,dj ]

F (x))

< M for any gauge function δ.

So, BV [a, b] ⊆ BVr[a, b]. also from the Theorem(2.3) BVr[a, b] ⊆ BV [a, b]. Hence BVr[a, b] = BV [a, b]. �
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Theorem 3.4. If f : I = [a, b] → R are Lr-Henstock-Kurzweil integrable on I. If f ≥ 0 a.e. on I then
(Lr − H)

∫

I
f ≥ 0.

Proof. Let f be Lr-Henstock-Kurzweil integrable on I = [a, b] then there exists a function F ∈ Lr[I] such
that for any ǫ > 0 there exists a gauge function δ such that for all finite collection P = {(xi, [ci, di])} of
non-overlapping tagged intervals in I with P < δ implies

n
∑

i=1

(
1

di − ci

∫ di

ci

|F (y) − F (xi) − f(xi)(y − xi)|
rdy)

1

r < ǫ.

That is,

n
∑

i=1

(
1

di − ci

∫ di

ci

|F (y − xi) − S(f,P)|rdy)
1

r < ǫ.

Now by the [8, Theorem 21], f ∈ L1[a, b]. From the fact of Lebesgue integral we get the proof. �

Remark 3.5. The linearity of Lr-Henstock-Kurzweil integral (see [9]) and the Theorem 3.4, gives if
f ≥ g a.e. on I then (Lr − H)

∫

I
f ≥ (Lr − H)

∫

I
g.

Lemma 3.6. For 1 ≤ r < ∞, ACGr[a, b] = ACG[a, b].

Proof. Let E ⊆ [a, b]. From the known fact that ACGr [a, b] =
⋃

ACr [En] where E =
∞
⋃

n=1
En. Also

ACr[En] = AC[En]. Therefore,

ACGr[a, b] =
⋃

AC[En]

= ACG[E].

Consequently, ACGr [a, b] = ACG[a, b]. �

We can find from the known fact that HKr(I) is contained in L1(I), then any function in HKr(I) is
Denjoy integrable. That is:

Theorem 3.7. Let f : I = [a, b] → R. For 1 ≤ r < ∞, if f is Lr-Henstock-Kurzweil integrable function
is Denjoy integrable.

Theorem 3.8. Let f : I → R be Lr-Henstock-Kurzweil integrable on I. Then |f | ∈ HKr(I) if and only
if the indefinite integral F (x) =

∫ x

a
f has BVr(I).

Proof. The proof is immediate. Since f is in HKr(I), then f is in L1(I). Therefore, F (x) is of bounded
variation, which tell us that f is in BVr(I). See [1, Theorem 7.5]. �

Corollary 3.9. Let f : [a, b] → R be Lr-Henstock-Kurzweil integrable function on [a, b]. Lr-Henstock-
Kurzweil integrable function are absolutely integrable function on [a, b].

Theorem 3.10. The function f : I = [a, b] → R.

1. If f is Lr-Henstock-Kurzweil integrable then f is measurable.

2. If f is Lr-Henstock-Kurzweil integrable on [a, b] and f ≥ 0 a.e then f is Lebesgue integrable on
[a, b].
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Proof. For (1) Let f be Lr-Henstock-Kurzweil integrable on I = [a, b] and F is the Lr-Henstock-Kurzweil
integral of f, then [8, Theorem 14] there exists F ∈ ACGr [a, b] so that F ′

r = f a.e. so that I is the
sum of a sequence {En} of closed sets on each of which F is Lr−AC. Again [8, Theorem 15] gives F is
AC. [13, Lemma 4.1 of Ch VII] there exists for each n a function En of bounded variation on I, which
coincides with F on En. We therefore have a.e. on En the relation f(x) = F ′

r(x) = F ′
n(x) where F ′

r(x)
is Lr- derivative of F and since the derivative of a function is bounded variation is measurable and a.e.
finite, it follows that f is measurable and a.e. finite on each En and consequently on the whole interval
I = [a, b].
For (2), follows [8, Theorem 21]. �

Corollary 3.11. If f : [a, b] → R be Lr-Henstock-Kurzweil integrable on [a, b]. The following are holds:

a) If f is bounded on [a, b] then f is clearly Lebesgue integrable on [a, b].

b) If f ≥ 0 a.e. is Lr−Henstock integrable on every measurable subset of [a, b] then f is Lebesgue
integrable on [a, b].

Theorem 3.12. Let f : [a, b] → R. If f is Lr-Henstock-Kurzweil integrable on [a, b] then every perfect
set in [a, b] contains a portion on which f is Lebesgue integrable.

Proof. Let f be Lr-Henstock-Kurzweil integrable on [a, b] then the Theorem(3.7), f is Denjoy integrable
on [a, b]. Using [4, Theorem 12(c)], we found every perfect set in [a, b] a portion on which f is Lebesgue
integrable. �
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