

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm

....

(3s.) **v. 2024 (42)** : 1–6. ISSN-0037-8712 IN PRESS doi:10.5269/bspm.64071

Some Characterization of L^r-Henstock-Kurzweil Integrable Functions

Hemanta Kalita

ABSTRACT: In this article, we discuss few properties of L^r -Henstock-Kurzweil (in short L^r -HK) integrable functions, introduced by Paul Musial in [8]. We re-defined L^r -bounded variations. We demonstrated that L^r -Henstock-Kurzweil integrable functions are Denjoy integrable.

Key Words: L^r -Henstock-Kurzweil integral, Absolute L^r -Henstock-Kurzweil integral, Denjoy integral.

Contents

T	Introduction and Preliminaries	T
2	Bounded variation of L^r -Henstock-Kurzweil integral	3
3	L^r -Henstock-Kurzweil integral and properties	4
4	Bibliography	6

1. Introduction and Preliminaries

R. A. Gordon in [4] defined the Denjoy-Dunford, Denjoy-Pettis, and Denjoy-Bochner integrals which are the extension of Dunford, Pettis, and Bochner integrals, respectively. Gordon established that a Denjoy-Dunford (Denjoy-Bochner) integrable function on [a, b] is Dunford (Bochner) integrable in some interval [a, b] and that for the spaces that do not contain copy c_0 , a Denjoy-Pettis integrable function on [a, b] is Pettis integrable on some sub interval of [a, b]. Major and minor functions were first introduced by de la Vallée Poussin in his study of the properties of the Lebesgue integral and those of functions additive of a set (see [12]). Entirely equivalent notions (of "Ober"- and "Unterfunktionen") were introduced independently by O. Perron [11], who based on them a new definition of integral, which does not require the theory of measure. Calderón & Zygmund first gave the notion of derivation in L^r and unlike the idea of the approximate derivative had proven to be quite effective in applications of Partial Differential Equation, area of surfaces, etc. (see [2]). L.Gordon defined the notion of Dini derivatives in metric L^r (briefly L^r -derivatives) also in his work Perron integral in L^r was discussed (see [6]). Gordon proved that AP-derivatives are equivalent to L^r derivatives. Paul M. Musial and Yoram Sagher introduced the L^r - Henstock-Kurzweil integral in [8]. P. Musial and F. Tulone obtained a norm on the space of HK_r -integrable functions, as well as the dual and completion of this space (see [10]). Paul M. Musial defined the class of L^r -variational integrable functions and show that it is equivalent to the class of L^r - Henstock-Kurzweil integrable functions. They also define the class of functions of L^r -bounded variation (see [9]). In this paper we charecterize properties of L^r - Henstock-Kurzweil integrable functions define in [a, b].

To make our presentation reasonably self-contained we recalling a few definitions and results in this section that we will use in our main section. Recalling a positive function $\delta : [a, b] \to (0, \infty)$ is a gauge (see [4]).

Definition 1.1. [4, Definition 9.3] A function $f : [a, b] \to \mathbb{R}$ is said to be Henstock-Kurzweil integrable on [a, b] if there exists $A \in \mathbb{R}$ with the following property: given $\epsilon > 0$ there exists a gauge δ on [a, b] such that

$$\left|\sum_{i=1}^{\mathcal{P}} f(\xi_i) |I_i| - A\right| < \epsilon$$

²⁰¹⁰ Mathematics Subject Classification: 35B40, 35L70.

Submitted June 20, 2022. Published December 20, 2022

H. KALITA

for each δ -fine \mathcal{P} -partition $\{(I_i, \xi_i)\}_{i=1}^{\mathcal{P}}$ of [a, b]. We write A as $H \int_{[a, b]} f$

Recalling I = [a, b] denote the family of all compact sub intervals $J \subset I$, a function $F: I \to X$ is additive if $F(J \cup L) = F(J) + F(L)$ for any non overlapping $J, L \in I$ such that $J \cup L \in I$. Recalling the space L^r , $1 \le r \le \infty$, as

$$L^r\left([a,b]\right) = \left\{f: \left(\frac{1}{h}\int_a^b |f(x) - P(x)|^r dx\right)^{\frac{1}{r}} < \epsilon, \ 0 < h < \infty, \ \text{for some polynomial} \ P(x)\right\}.$$

For detailed of L^r , $1 \le r < \infty$ one can follow [2,8,14].

Definition 1.2. [8] Let $f \in L^r(I)$ for $1 \le r \le \infty$ and I = (a, b). For all $x \in I$, r-Dini derivative. The upper-right L^r - derivative:

$$D_r^+ f(x) = \inf \left\{ a : \left(\frac{1}{h} \int_0^h [f(x+t) - f(x) - at]_+^r dt \right)^{\frac{1}{r}} = o(h) \right\}.$$

The lower-right L^r – derivate:

$$D_{+,r}f(x) = \sup\left\{a: \left(\frac{1}{h}\int_0^h [f(x+t) - f(x) - at]_-^r dt\right)^{\frac{1}{r}} = o(h)\right\}.$$

The upper-left L^r - derivate:

$$D_r^- f(x) = \inf\left\{a: \left(\frac{1}{h} \int_0^h [-f(x-t) + f(x) - at]_+^r dt\right)^{\frac{1}{r}} = o(h)\right\}$$

and the lower-left L^r - derivate:

$$D_{-,r}f(x) = \sup\left\{a: \left(\frac{1}{h}\int_0^h [-f(x-t) + f(x) - at]_-^r dt\right)^{\frac{1}{r}} = o(h)\right\}$$

Remark 1.3. $D_r^+ f(x) = \inf \left\{ a: \int_0^h \left(\frac{f(x+t) - f(x)}{t} - a \right)_+^r dt = o(h) \right\}$, with similar results for the other r-Dini derivatives.

Definition 1.4. [8] For $1 \leq \infty$, a real valued function f is L^r -Henstock-Kurzweil integrable (in short HK_r -integrable) if there exists a function $F \in L^r[a, b]$ so that for any $\epsilon > 0$ there exists a gauge function δ so that for all finite collections $\mathfrak{P} = \{(x_i, [c_i, d_i])\}$ of non overlapping tagged intervals in [a, b] with $P < \delta$, we have:

$$\sum_{i=1}^{n} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} \left| F(y) - F(x_i) - f(x_i)(y - x_i) \right|^r dy \right)^{\frac{1}{r}} < \epsilon.$$
(1.1)

The function f is said to be L^r -Henstock-Kurzweil integrable on the set $E \subset [a, b]$ if the function $f\chi_E$ is L^r -Henstock-Kurzweil integrable on [a, b]. We write

$$(L^r - H) \int_I f \chi_E = (L^r - H) \int_E f dx_E$$

Recalling that a gauge δ is HK_r -appropriate for ϵ and for f if (1.1) holds for any δ -fine tagged partition P. If f is HK_r -integrable on [a, b], the following function is well defined for all $x \in [a, b]$:

$$F(x) = (HK_r) \int_{a}^{x} f(t)dt.$$
(1.2)

Let $f \in HK_r[a, b]$. The HK_r norm of f as follows:

$$||f||_{HK_r} = ||F||_r,$$

where F is the indefinite HK_r integral of f as defined in (1.2). The concept of absolute continuity which characterizes indefinite HK_r -integrals as follows:

Definition 1.5. [8, Definition 11] Let $1 \le r < \infty$. We say that $F \in AC_r(E)$ if for all $\epsilon > 0$ there exists $\nu > 0$ and a gauge function $\delta(x)$ defined on E so that for all $\mathcal{P} = \{(x_i, [c_i, d_i])\} < \delta_E$ such that $\sum_{i=1}^{q} (d_i - c_i) < \nu$ we have

$$\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy\right)^{\frac{1}{r}} < \epsilon$$

2. Bounded variation of L^r-Henstock-Kurzweil integral

Paul Musial in [9] gave the definition of L^r -bounded variation. They missed the coherent concept of $L^r[a, b]$.

Definition 2.1. [9] Let $1 \le r \le \infty$, let $f : [a, b] \to \mathbb{R}$ and let E be a measurable subset of [a, b]. We say that f is L^r -bounded variational on $E(f \in BV_r[E])$ if there exists M > 0 and a gauge $\delta > 0$ defined on E so that if $\mathcal{P} = \{(x_i, [c_i, d_i])\}_{i=1}^n$ is a finite collection of δ - fine tagged sub-intervals of [a, b] having tags in E, then

$$\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy\right)^{\frac{1}{r}} < M.$$

We re-write the definition of L^r -bounded variational as follows:

Definition 2.2. Let $1 \le r \le \infty$, let $f : [a, b] \to \mathbb{R}$ and let E be a measurable subset of [a, b]. We say that f is L^r -bounded variational on $E(f \in BV_r[E])$ if there exists a function $F \in L^r([a, b])$ so that for any M > 0 and a gauge $\delta > 0$ defined on E so that if $\mathfrak{P} = \{(x_i, [c_i, d_i])\}_{i=1}^n$ is a finite collection of δ -fine tagged sub-intervals of [a, b] having tags in E, then

$$\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy \right)^{\frac{1}{r}} < M.$$

Paul Musial in [9] mentioned the sketch of proof of the following Theorem. We have given the full proof here so that we can use this Theorem in our results.

Theorem 2.3. [9, Theorem 2] If $f \in BV_r(E)$, then we can find $\{E_i\}_{i\geq 1}$ so that $E = \bigcup_{i=1}^{\infty} E_i$ and $f \in BV(E_i)$ for all *i*.

Proof. Let $f \in BV_r(E)$ then for a function $F \in L^r([a, b])$ there exists M > 0 and a gauge $\delta > 0$ defined on E so that $\mathcal{P} = \{(x_i, [c_i, d_i])\}_{i=1}^n$ is a finite collection of δ -fine tagged sub intervals of [a, b] having tags in E then

$$\sum_{i=1}^{n} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy\right)^{\frac{1}{r}} < M.$$
(2.1)

Assume $F \in BV_r[a, b]$ and let $\epsilon > 0$, then for a gauge function δ defined on [a, b] so that if $\mathcal{P} = \{(x_i, [c_i, d_i])\} < \delta$ such that the equation(2.1) holds.

The function F is L^r -continuous and so clearly approximately continuous, using the [8, Theorem 5] there exists $\mathcal{P}_i = \{(x_{i,j}, [c_{i,j}, d_{i,j}])\} < \delta$, where $[c_{i,j}, d_{i,j}] \subseteq [c_i, d_i]$ for all i and j, so that

$$\sum_{i=1}^{n} \frac{1}{d_{i,j} - c_{i,j}} \int_{c_{i,j}}^{d_{i,j}} |F(y) - F(x_{i,j})| dy \ge \frac{1}{2} |F(d_i) - F(c_i)|.$$

Since $\mathcal{P} = \bigcup_{i=1}^{n} P_i$ is sub-ordinates to δ , we have

$$\sum_{i=1}^{n} |F(d_i) - F(c_i)| \le \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{d_{i,j} - c_{i,j}} \int_{c_{i,j}}^{d_{i,j}} |F(y) - F(x_{i,j})| dy$$

$$< \frac{1}{2} \epsilon.$$

So, $F \in BV(E_i)$. Hence we can find $f \in BV(E_i)$.

3. L^r-Henstock-Kurzweil integral and properties

In this section we discuss few properties of L^r -Henstock-Kurzweil integrals in real space \mathbb{R} . The collection of all function that are L^r -Henstock integrable on I = [a, b], will be denoted by $HK_r(I)$. In the beggining of the section, we discuss few properties of $BV_r[a, b]$.

Proposition 3.1. 1. Let $F \in BV_r[a, b]$ then F is bounded variation on every sub interval of [a, b] and

$$BV_r(F, [a, b]) = BV_r(F, [a, c]) + BV_r(F, [c, b])$$

for each $c \in (a, b)$.

2. If F is in $BV_r[a, c]$ and F is in $BV_r[c, b]$ then F is in $BV_r[a, b]$.

Theorem 3.2. The function $F \in AC_r[a, b]$ is in $BV_r[a, b]$.

Proof. Let $F \in AC_r[a, b]$ and let $\epsilon > 0$. There exists $\nu > 0$ and a gauge function δ defined on [a, b] so that if $\mathcal{P} = \{(x_n, [c_n, d_n])\} < \delta$ and

 $\sum_{n=1}^{q} (d_n - c_n) < \nu$

then
$$\sum_{n=1}^{q} \frac{1}{d_n - c_n} \int_{c_n}^{d_n} |F(y) - F(x_n)| dy < \epsilon.$$

Theorem 3.3. For $1 \le r < \infty$, $BV_r[a, b] = BV[a, b]$.

Proof. Let us assume $F \in BV[a, b]$. If $\{[c_i, d_i]\}$ is a finite collection of non overlapping intervals that have end points in E, there exists M > 0 such that

$$\sup \sum_{j=1}^{q} |F(d_j) - F(c_j)| < M.$$

This implies that for any $\nu > 0$ if $\sum_{j=1}^{q} (d_j - c_j) < \nu$ then

$$\sum_{j=1}^{q} (\max_{x \in [c_j, d_j]} F(x) - \min_{x \in [c_j, d_j]} F(x)) < M.$$

For any choice of $x_j \in [c_j, d_j]$,

$$\sum_{j=1}^{q} \left(\frac{1}{d_j - c_j} \int_{c_j}^{d_j} |F(y) - F(x_j)|^r dy\right)^{\frac{1}{r}} \le \sup \sum_{j=1}^{q} \left(\max_{x \in [c_j, d_j]} F(x) - \min_{x \in [c_j, d_j]} F(x)\right) < M \text{ for any gauge function } \delta.$$

So, $BV[a, b] \subseteq BV_r[a, b]$. also from the Theorem(2.3) $BV_r[a, b] \subseteq BV[a, b]$. Hence $BV_r[a, b] = BV[a, b]$. \Box

Theorem 3.4. If $f : I = [a, b] \to \mathbb{R}$ are L^r -Henstock-Kurzweil integrable on I. If $f \ge 0$ a.e. on I then $(L^r - H) \int_I f \ge 0$.

Proof. Let f be L^r -Henstock-Kurzweil integrable on I = [a, b] then there exists a function $F \in L^r[I]$ such that for any $\epsilon > 0$ there exists a gauge function δ such that for all finite collection $\mathcal{P} = \{(x_i, [c_i, d_i])\}$ of non-overlapping tagged intervals in I with $\mathcal{P} < \delta$ implies

$$\sum_{i=1}^{n} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i) - f(x_i)(y - x_i)|^r dy\right)^{\frac{1}{r}} < \epsilon.$$

That is,

$$\sum_{i=1}^{n} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y - x_i) - S(f, \mathcal{P})|^r dy\right)^{\frac{1}{r}} < \epsilon.$$

Now by the [8, Theorem 21], $f \in L^1[a, b]$. From the fact of Lebesgue integral we get the proof.

Remark 3.5. The linearity of L^r -Henstock-Kurzweil integral (see [9]) and the Theorem 3.4, gives if $f \ge g$ a.e. on I then $(L^r - H) \int_I f \ge (L^r - H) \int_I g$.

Lemma 3.6. For $1 \le r < \infty$, $ACG_r[a, b] = ACG[a, b]$.

Proof. Let $E \subseteq [a, b]$. From the known fact that $ACG_r[a, b] = \bigcup AC_r[E_n]$ where $E = \bigcup_{n=1}^{\infty} E_n$. Also $AC_r[E_n] = AC[E_n]$. Therefore,

$$ACG_r[a, b] = \bigcup AC[E_n]$$

= $ACG[E].$

Consequently, $ACG_r[a, b] = ACG[a, b]$.

We can find from the known fact that $HK_r(I)$ is contained in $L^1(I)$, then any function in $HK_r(I)$ is Denjoy integrable. That is:

Theorem 3.7. Let $f : I = [a, b] \rightarrow \mathbb{R}$. For $1 \le r < \infty$, if f is L^r -Henstock-Kurzweil integrable function is Denjoy integrable.

Theorem 3.8. Let $f: I \to \mathbb{R}$ be L^r -Henstock-Kurzweil integrable on I. Then $|f| \in HK_r(I)$ if and only if the indefinite integral $F(x) = \int_a^x f$ has $BV_r(I)$.

Proof. The proof is immediate. Since f is in $HK_r(I)$, then f is in $L^1(I)$. Therefore, F(x) is of bounded variation, which tell us that f is in $BV_r(I)$. See [1, Theorem 7.5].

Corollary 3.9. Let $f : [a, b] \to \mathbb{R}$ be L^r -Henstock-Kurzweil integrable function on [a, b]. L^r -Henstock-Kurzweil integrable function are absolutely integrable function on [a, b].

Theorem 3.10. The function $f : I = [a, b] \rightarrow \mathbb{R}$.

- 1. If f is L^r -Henstock-Kurzweil integrable then f is measurable.
- 2. If f is L^r -Henstock-Kurzweil integrable on [a, b] and $f \ge 0$ a.e then f is Lebesgue integrable on [a, b].

H. Kalita

Proof. For (1) Let f be L^r -Henstock-Kurzweil integrable on I = [a, b] and F is the L^r -Henstock-Kurzweil integral of f, then [8, Theorem 14] there exists $F \in ACG_r[a, b]$ so that $F'_r = f$ a.e. so that I is the sum of a sequence $\{E_n\}$ of closed sets on each of which F is L^r -AC. Again [8, Theorem 15] gives F is AC. [13, Lemma 4.1 of Ch VII] there exists for each n a function E_n of bounded variation on I, which coincides with F on E_n . We therefore have a.e. on E_n the relation $f(x) = F'_r(x) = F'_n(x)$ where $F'_r(x)$ is L^r - derivative of F and since the derivative of a function is bounded variation is measurable and a.e. finite, it follows that f is measurable and a.e. finite on each E_n and consequently on the whole interval I = [a, b].

For (2), follows [8, Theorem 21].

Corollary 3.11. If $f : [a, b] \to \mathbb{R}$ be L^r -Henstock-Kurzweil integrable on [a, b]. The following are holds:

- a) If f is bounded on [a, b] then f is clearly Lebesgue integrable on [a, b].
- b) If $f \ge 0$ a.e. is L^r -Henstock integrable on every measurable subset of [a, b] then f is Lebesgue integrable on [a, b].

Theorem 3.12. Let $f : [a,b] \to \mathbb{R}$. If f is L^r -Henstock-Kurzweil integrable on [a,b] then every perfect set in [a,b] contains a portion on which f is Lebesgue integrable.

Proof. Let f be L^r -Henstock-Kurzweil integrable on [a, b] then the Theorem(3.7), f is Denjoy integrable on [a, b]. Using [4, Theorem 12(c)], we found every perfect set in [a, b] a portion on which f is Lebesgue integrable.

4. Bibliography

References

- 1. R.G. Bartle, A Modern Theory of Integration, AMS, 2001.
- A.P. Calderón and A. Zygmund, Local properties of Solutions of elliptic partial differential equations, Studia. Mathematica, 20, (1961), 171-225.
- 3. J. L. Gámez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math., 2, (1998), 115-133.
- 4. R. A. Gordon, The Denjoy extension of the Bochner, Pettis, and Dunford integrals, Studia Math., 1, (1989), 73-91.
- 5. Russell A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, AMS (1991).
- 6. L. Gordon, Perron integral for derivatives in L^r , ibid. 28 (1967), 295-316.
- 7. G. Q. Liu, On necessary conditions for Henstock integrability, Real Anal. Exchange, 18(2), (1992/93), 522-531.
- 8. Paul M. Musial and Yoram Sagher, The L^r Henstock-Kurzweil integral, Studia Mathematica 160(1), (2004) 53-81.
- 9. Paul Musial, The L_r -Variational integral, Real Analysis Exchange , Summer Symposium 2010, pp. 96-97
- 10. P. Musial, F. Tulone, Dual of the Class of HK_r Integrable Functions, Minimax Theory and its Applications Volume 4(1), (2019), 151-160.
- 11. O. Perron, Ueber den Integralbegriff, S.B. Heidelberg., Akad. Wiss, 16, (1914).
- 12. de la Vallée Poussin, Intégrales de Lebesgue, Functions d'ensemble. Classes de Baire, Paris, 1916.
- 13. Saks, S., Theory of Integral, 2nd revised ed., Hafner, New York, (1937).
- Tikare, A. S., Manohar S. Chaudhary, S. M., The Henstock-Stieltjes integral in L^r, Journal of Advanced Research in Pure Mathematics, 1, 59-80, (2012).
- Lions, J. L., Exact Controllability, Stabilizability, and Perturbations for Distributed Systems, Siam Rev. 30, 1-68, (1988).
- C. M. Dafermos, C. M., An abstract Volterra equation with application to linear viscoelasticity. J. Differential Equations 7, 554-589, (1970).

Hemanta Kalita, Mathematics Division, School of Advanced Sciences and Languages, VIT Bhopal University, Indore-Bhopal Highway, Sehore, Madhya Pradesh, India. E-mail address: hemanta30kalita0gmail.com