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On Power Integral Bases of Certain Pure Number Fields Defined By x120 −m

Jalal Didi and Hamid Ben Yakkou

abstract: Let K = Q(α) be a pure number field with α a complex root of a monic irreducible polynomial
F (x) = x120 − m ∈ Z[x], where m 6= ±1. In this paper, we study the monogenity of K. More precisely, we
prove that if m is square free, m 6≡ 1 (mod 4), m 6≡ ±1 (mod 9), and m 6∈ {∓1, 7, 18} (mod 25), then K

is monogenic. On the other hand, if m ≡ 1 (mod 4), m ≡ 1 (mod 9), or m ≡ 1 (mod 25), then K is not
monogenic. Our results are illustrated by some computational examples.
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1. Introduction

Let K be a number field generated by a complex root α of a monic irreducible polynomial F (x) ∈ Z[x]
of degree n and ZK its ring of integers which is a free Z-module of rank n = [K : Q]. If ZK has a power
integral basis (1, θ, ..., θn−1) for some θ ∈ ZK ; ZK = Z[θ], then the field K is said to be monogenic.
Otherwise, K is called not monogenic . Recall that for any θ ∈ ZK , the abelian quotient group ZK/Z[θ]
is finite. Its order is called the index of Z[θ], which we denote by (ZK : Z[θ]). The index of K is

i(K) = gcd{(ZK : Z[θ]) | θ ∈ ZK andK = Q(θ)}.

A rational prime p dividing i(K) is called a prime common index divisor of K. If ZK has a power integral
basis, then i(K) = 1. Thus, if there is a prime common index divisor of K, then K is not monogenic.
The problem of giving an arithmetic characterization of monogenic number fields is called the problem
of Hasse (see [13,14,22,21]). It is one of the most important problems in algebraic number theory. This
problem is the subject of many studies and is of interest to several researchers. Let us recall some previ-
ous works regarding this problem. In [16], Gaál and Remete, calculated the elements of index 1 in pure
quartic number fields Q( 4

√
m) for 1 < m < 107 and m ≡ 2, 3 (mod 4). In [15], Gaál and Győry gave an

algorithm for solving index form equations in totally real quintic fields with Galois group S5. In [6], Bilu,
Gaál, and Győry studied the monogenity of totally real sextic number fields with Galois group S6. In [2],
Ahmad, Nakahara, and Husnine proved that if m ≡ 2, 3 (mod 4) and m 6= ±1 (mod 9), then the pure
sextic number field Q( 6

√
m) is monogenic. On the other hand, if m ≡ 1 (mod 4) and m 6≡ ±1 (mod 9),

then it is not monogenic (see [1]). Also, Hameed and Nakahara proved that if m ≡ 1 (mod 4), then the
octic number field Q( 8

√
m) is not monogenic, but if m ≡ 2, 3 (mod 4), then it is monogenic (see [21]). In

[9,10], El Fadil studied the monogenity of pure number fields of degree 12 and 24, respectively. In [11],
El Fadil, Ben Yakkou, and Didi studied the monogenity of pure number fileds Q( 42

√
m). In [17], Gaál and

Remete obtained, by applying the explicit form of the index equation, new deep results on monogenity
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of number fields Q( n
√
m), where 3 ≤ n ≤ 9 and m a square free rational integer. They also showed in

[18] that if m ≡ 2 or 3 (mod 4) is square free rational integer, then the octic field K = Q(i, 4
√
m) is not

monogenic. Also in [25], Pethő and Pohst studied indices in multiquadratic number fields.

The aim of this paper is to study the monogenity of a pure number field K generated by a complex
root α of a monic irreducible polynomial F (x) = x120 −m, with m 6= ±1 a rational integer. Our method
is based to Newton polygon techniques applied on prime ideal factorization.

2. Main Results

Let K be a number field generated by a complex root α of a monic irreducible polynomial F (x) =
x120 − m ∈ Z[x], where m 6= ±1 is a rational integer. The following theorem gives a necessary and
sufficient conditions for ZK = Z[α].

Theorem 2.1. The ring Z[α] is the ring of integers of K if and only if m is square free, m 6≡ 1 (mod 4),
m 6≡ ±1 (mod 9), and m 6∈ {∓1, 7, 18} (mod 25). In this case, K is monogenic and α generates a power
integral of ZK .

Remark 2.2. Note that the significant Gassert’s result ( [19, Theorem 1.1]) yields only one way and
cannot garantee the equivalence. However, Theorem 2.1 above gives the wanted equivalence in the context
of pure number fields of degree 120.

According to the above theorem, if m is not square free, m ≡ 1 (mod 4), m ≡ ±1 (mod 9), or m is
contained in {∓1, 7, 18} (mod 25), then α does not generates a power integral basis of ZK . Henceforth, in
these cases, Theorem 2.1 can not decide on the monogenity of K. The following theorem gives a partial
answer. It produce infinite families of non-monogenic pure number fields K, that it ZK has no power
integral basis.

Theorem 2.3. If one of the following conditions holds:

1. m ≡ 1 mod 4.

2. m ≡ 1 mod 9.

3. m ≡ 1 mod 25,

then K is not monogenic.

Remark 2.4. Note that the condition m is square free is not required for the above theorem.

As a consequence of the two previous theorems, the following result gives an important characterization
of the monogenity of some special pure number fields of degree 120.

Corollary 2.5. Let K be a pure number field generated by a root α of a monic irreducible polynomial
x120 − mt, with m 6= ±1 a square free rational integer and t a positive integer which is coprime to 30.
Then

1. If m 6≡ 1 (mod 4), m 6≡ ±1 (mod 9), and m 6∈ {∓1, 7, 18} (mod 25), then K is monogenic.

2. If m ≡ 1 mod 4, m ≡ 1 mod 9, or m ≡ 1 mod 25, then K is not monogenic.

3. Preliminaries

To prove our results, we based our method on prime ideal factorization. Let p be a rational prime.
In 1878, Dedekind gave the explicit factorization of the principal ideal pZK when p does not divide the
index (ZK : Z[θ]) for some primitive element θ ∈ ZK (see [8] and [23, Theorem 4.33]). He also gave
a criterion known as Dedekind’s criterion to test the divisibility of the index (ZK : Z[θ]) by p (see [7,
Theorem 6.14], [8], and [23]). When p divides i(K), then Dedekind’s theorem cannot give the prime
ideal factorization of pZK . In 1928, Ore developed an algorithm to factorize pZK . His method is based
on Newton polygon techniques. The papers [12], [20], and [24] give a detailed survey on the theory and
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applications of Newton polygon techniques, including prime ideal factorization in number fields. Now,
let us recall some fundamental notions on Newton polygon techniques. Let νp be the discrete valuation
of Qp(x) defined on Zp[x] by

νp

(

r
∑

i=0

aix
i

)

= min{νp(ai), 0 ≤ i ≤ r}.

Let φ(x) ∈ Z[x] be a monic polynomial whose reduction modulo p is irreducible. By successive euclidean
divisions, any monic irreducible polynomial F (x) ∈ Z[x] admits a unique φ-adic development

F (x) = a0(x) + a1(x)φ(x) + · · · + an(x)φ(x)
n
,

with deg (ai(x)) < deg (φ(x)). For every 0 ≤ i ≤ n, let ui = νp(ai(x)). The φ-Newton polygon of F (x)
is the lower boundary convex envelope of the set of points

{(i, ui) | 0 ≤ i ≤ n and ai(x) 6= 0}

in the euclidean plane, which we denote by Nφ(F ). The polygon Nφ(F ) is the union of different adjacent
sides S1, S2, . . . , Sg with increasing slopes λ1 < λ2 < . . . < λg. We shall write Nφ(F ) = S1 +S2 + · · ·+Sg.
The polygon determined by the sides of negative slopes of Nφ(F ) is called the φ-principal Newton polygon

of F (x) and will be denoted by N+
φ (F ). Recall that the length of N+

φ (F ) is l(N+
φ (F )) = νφ(F (x)),

the highest power of φ(x) dividing F (x) modulo p. Let Fφ be the finite residue field Z[x]/(p, φ(x)) ≃
Fp[x]/(φ(x)). We attach to any abscissa 0 ≤ i ≤ l(N+

φ (F )), the following residue coefficient:

ci =







0, if (i, ui) lies strictly above N+
φ (F ),

ai(x)

pui
(mod (p, φ(x))), if (i, ui) lies on N+

φ (F ).

Let S be one of the sides of N+
φ (F ) and λ = − h

e be its slope, where e and h are two positive coprime
integers. The length of S, denoted l(S) is the length of its projection to the horizontal axis. The degree

of S is d = d(S) = l(S)
e ; it is equal to the the number of segments into which the integral lattices divide

S. More precisely, if (s, us) is the initial point of S, then the points with integer coordinates lying in S
are exactly

(s, us), (s+ e, us − h), . . . , (s+ de, us − dh).

We attach to S the following residual polynomial defined by

Rł(F )(y) = cs + cs+ey + · · · + cs+(d−1)ey
d−1 + cs+dey

d ∈ Fφ[y].

The φ-index of F (x), denoted indφ(F ), is deg(φ) times the number of points with natural integer coordi-
nates that lie below or on the polygon N+

φ (F ), strictly above the horizontal axis and strictly beyond the
vertical axis (see FIGURE 1). We say that the polynomial F (x) is φ-regular with respect to p if for each
side S of N+

φ (F ) of slope ł, its associated residual polynomial Rł(F )(y) is separable in Fφ[y]. The poly-

nomial F (x) is said to be p-regular if F (x) is φi-regular for every 1 ≤ i ≤ t , where F (x) =
∏t

i=1 φi(x)
li

is

the factorization of F (x) into a product of powers of distinct monic irreducible polynomials in Fp[x]. For
every i = 1, . . . , t, let N+

φi
(F ) = Si1 + · · ·+Siri

and for every j = 1, . . . , ri, let Rłij
(F )(y) =

∏sij

s=1 ψ
nijs

ijs (y)

be the factorization of Rłij
(F )(y) in Fφi

[y]. Now, we state the theorem of Ore, which plays a significant
role in the proof of our results (see [12, Theorem 1.7 and Theorem 1.9], [20], and [24]):

Theorem 3.1. (Ore’s Theorem)
Under the above notations, we have:

1.

νp((ZK : Z[α])) ≥
t
∑

i=1

indφi
(F ).

The equality holds if F (x) is p-regular.
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2. If F (x) is p-regular, then

pZK =

t
∏

i=1

ri
∏

j=1

sij
∏

s=1

p
eij

ijs,

where eij is the ramification index of the side Sij and fijs = deg(φi)×deg(ψijs) is the residue degree
of pijs over p.

Corollary 3.2. Under the hypothesis of the above theorem, if for every i = 1, . . . , t, li = 1 or N+
φi

(F ) = Si

has a single side of height 1, then p does not divide (ZK : Z[α]).

Example 3.3. Consider the monic irreducible polynomial F (x) = x9 + 54x+ 134 which factors in F3[x]

as follow: F (x) = φ(x)
9

where φ = x+ 2. The φ-adic development of F (x) is

F (x) = −486 + 2358φ− 4608φ2 + 5376φ3 − 4032φ4 + 2016φ5 − 672φ6 + 144φ7 − 18φ8 + φ9

Thus, N+
φ (F ) = S1 + S2 + S3 with respect to ν3 has three sides of degree 1 each joining the points

(0, 5), (1, 2), (3, 1), and (9, 0) in the euclidean plane (see Figure 1) with respective slopes ł1 = −3, ł2 = −1
2 ,

and ł3 = −1
6 . Thus, the residual polynomial Rłi

(F )(y) is irreducible polynomials in Fφ[y] ≃ F3[y] as it is
of degree 1 for i = 1, 2, 3. Thus, F (x) is φ-regular. Hence it is 3-regular. Let K = Q(a) with α a root of
F (x). By Theorem 3.1, we have

ν2((ZK : Z[α])) = indφ(F ) = deg(φ) × 4 = 4

and
3ZK = p1p

2
2p

6
3,

with residue degrees f(pk/3) = 1 for k = 1, 2, 3.

1 2 3 4 5 6 7 8 9

1

2

3

4

5
S1

S2

S3

Figure 1: N+
φ (F ) with respect to ν3.

Since it is difficult to find the φ-adic development of certain polynomials, we will use any adequate
φ-admissible development of F (x). This technique will allow us to comfortably apply Theorem 3.1. In
what follows, we recall some useful facts concerning this technique. Let

F (x) =

n
∑

j=0

Aj(x)φ(x)j , Aj(x) ∈ Zp[x] (3.1)

be a φ-development of F (x), not necessarily the φ-adic one. Take ωj = νp(Aj(x)) for all 0 ≤ j ≤ n. Let
N be the principal Newton polygon of the set of points {(j, ωj), 0 ≤ j ≤ n, ωj 6= ∞}. To any 0 ≤ j ≤ n,
we attach the following residue coefficient:

c
′

j =







0, if (j, ωj) lies strictly above N,
Aj(x)

pωj
(mod (p, φ(x))), if (j, ωj) lies on N.

Likewise, for any side S of N with slope ł, we define the residual polynomial associated to S and denoted
by R

′

ł(F )(y) (similar to the residual polynomial Rł(F )(y) defined from the φ-adic development of F (x)).
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We say that the φ-development (3.1) of F (x) is admissible if c
′

j 6= 0 for each abscissa j of a vertex of

N . Recall that c
′

j 6= 0 if and only if φ(x) does not divide

(

Aj(x)

pωj

)

. For more details, refer to [20]. The

following lemma shows an important relationship between the φ-adic development and any φ-admissible
development of a given polynomial F (x).

Lemma 3.4. ( [20, Lemma 1.12])
If a φ-development of F (x) is admissible, then N+

φ (F ) = N and c
′

j = cj. In particular, for any segment

S of N with slope ł, we have R
′

ł(F )(y) = Rł(F )(y) (up to multiply by a non-zero element of Fφ).

4. Proofs of main results

After recalling necessary preliminaries and results in the above section, we are now in the position to
prove our main results. Let us begin by Theorem 2.1.

Proof of Theorem 2.1

Let D(α) be the discriminant of α and dK the discriminant of K. By [23, Propositions 2.9 and 2.13],
one has:

D(α) = D(1, α, . . . , α119) = (−1)
120×(120−1)

2 NK/Q(F
′

(α)) = −NK/Q(120 · α119)

= 120120NK/Q(α)
119

= (23 · 3 · 5)
120
m119 = (ZK : Z[α])

2 · dK .

It follows that, Z[α] is integrally closed if and only if p does not divide the index (ZK : Z[α]) for every
rational prime p dividing 2 · 3 · 5 ·m. Let p be a rational prime dividing m, then F (x) ≡ φ120 (mod p),
where φ = x. The φ-principal Newton polygon of F (x) with respect to νp, N+

φ (F ) = S has a single side

with slope ł =
−νp(b)

120 ; it is the side joining the points (0, νp(b)) and (120, 0). If νp(m) ≥ 2 (this means
that m is not square free), then by using Theorem 3.1, we have

νp(ZK : Z[α]) ≥ indφ(F ) =
119(νp(b) − 1) + gcd(νp(b), 120) − 1

2
≥ 2.

Consequently, p2 divides the index (ZK : Z[α]) and α does not generate a power integral basis of ZK .
If νp(m) = 1 for every prime divisor of m (i.e., m is square free), then N+

φ (F ) = S has a single side of

height 1 with slope ł = −1
120 . Thus, the residual polynomial Rł(F )(y) is irreducible over Fφ ≃ Fp. By

Theorem 3.1, we get νp((ZK : Z[α])) = indφ(F ) = 0, that is to say, p does not divide (ZK : Z[α]). Now,
we deal with p ∈ {2, 3, 5} when p does not divide m. Let us start by p = 2. In this case, one has

F (x) = (x15 − 1)
8

inF2[x].

Since 2 does not divide 15, the polynomial x15 −1 is separable modulo 2. Let φ(x) be a monic irreducible
factor of x15 − 1 and write x15 − 1 = φ(x)U(x) + R(x) with R(x) = 0. Note that φ(x) does not divide
U(x), since x15 − 1 is separable modulo 2. Write

F (x) = x120 − m = (x15 − 1 + 1)8 −m

= (φ(x)U(x) +R(x) + 1)8 −m

= (φ(x)U(x))8 +

7
∑

j=1

(

8

j

)

(R(x) + 1)8−jU(x)jφ(x)j + (R(x) + 1)8 −m.

= (φ(x)U(x))8 +

7
∑

j=1

(

8

j

)

(R(x) + 1)8−jU(x)jφ(x)j +

7
∑

j=1

(

8

j

)

(R(x))j

+ 1 −m. (4.1)

Let A0(x) =
∑7

j=1

(

8

j

)

(R(x))j + 1 − m. Note that ν2(
∑7

j=1

(

8

j

)

(R(x))j) ≥ 2. If m 6≡ 1 (mod 4), then

ν2(A0(x)) = 1. Since φ(x) does not divide U(x)(R(x) + 1), the above φ-development (4.1) of F (x) is
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admissible. Thus, by Lemma 3.4, for every irreducible factor φ(x) of F (x) modulo 2, N+
φ (F ) = S has

a single side of height 1 joining the points (0, 1) and (8, 0). By Corollary 3.2, 2 does not divide the
index (ZK : Z[α]). If m ≡ 1 (mod 4), then ν2(A0(x)) ≥ 2. Let A0(x) =

∑

j≥0 aj(x)φ(x)j be the φ-adic
development of A0(x) (that is deg(aj(x)) < deg(φ(x))). It follows that

F (x) =
∑

j≥9

aj(x)φ(xj) + (a8(x) + U(x)8)φ(x)8 +

7
∑

j=1

(

(

8

j

)

(R(x) + 1)8−jU(x)j + aj(x))φ(x)j + a0(x)

Since ν2(A0(x)) ≥ 2, ν2(aj(x)) ≥ 2, let

7
∑

j=1

(

(

8

j

)

(R(x) + 1)8−jU(x)j + aj(x))φ(x)j =
∑

j≥1

bj(x)φ(x)j ,

with deg(bj(x)) < deg(φ(x)). We rewrite the φ-development (4.1) of F (x) as follows:

F (x) =
∑

j≥9

(aj(x) + bj(x))φ(x)j + (U(x)8 + a8(x) + b8(x))φ(x)8 +

7
∑

j=1

bj(x)φ(x)j + a0(x) (4.2)

Note that the above development (4.2) is the unique φ-adic development of F (x). For every j =
1, . . . , 7, let νj = ν2(bj(x)) which is greater than 1 and ν0 = ν2(a0(x)) which is greater than 2.
Note also that ν2

(

U(x)8 + a8(x) + b8(x)
)

= 0. So, N+
φ (F ) is the Newton polygon joining the points

(0, ν0), (1, ν1), . . . , (7, ν7), and (8, 0) in the euclidean plane. It follows that (1, 1) is a point with natural
integer coordinates that lie below or on the polygon N+

φ (F ), strictly above the horizontal axis and strictly
beyond the vertical axis. So, by Theorem 3.1, 2 divides the index (ZK : Z[α]). We conclude that when
2 does not divide m, then 2 does not divide the index (ZK : Z[α]) if and only if m 6≡ 1 (mod 4). Now
we deal with p ∈ {3, 5} and p does not divide m. Set 120 = p · u with p does not divide u. In this

case, F (x) = (xu −m)
p

in Fp[x]. Let φ(x) be a monic irreducible factor of xu − m modulo p, and set

xu −m = φ(x)U(x) +R(x) with R(x) = 0 and φ(x) does not divide U(x). Note that νp

((

p

j

))

= 1 for

every j = 1, . . . , p− 1. Set T (x) = 1
p2

∑p−1
j=0

(

p

j

)

R(x)p−jmj ∈ Z[x]. By applying binomial theorem twice,

we get

F (x) = x120 −m = (φ(x)U(x))p +

p−1
∑

j=1

(

p

j

)

(R(x) +m)p−jU(x)jφ(x)j + p2T (x) +mp −m. (4.3)

If νp(mp − m) = νp(mp−1 − 1) = 1, then νp(p2T (x) + mp − m) = 1. Since φ(x) does not divide
(R(x) +m)p−jU(x)j , the above φ-development (4.3) of F (x) is admissible. By Lemma 3.4, N+

φ (F ) = S
has a single side of height 1 joining the points (0, 1) and (p, 0). By Corollary 3.2, p does not divide the
index (ZK : Z[α]). Suppose now that νp(mp − m) ≥ 2. Let T (x) =

∑

j≥0 aj(x)φ(x)j be the φ-adic
development of T (x) (i.e., deg(aj(x)) < deg(φ(x))). We rewrite the development (4.3) as follows:

F (x) =
∑

j≥p+1

aj(x)φ(x)j +

p−1
∑

j=1

Aj(x)φ(x)j + p2a0(x) +mp −m, (4.4)

where Aj(x) = p









(

p

j

)

(R(x) + m)p−j

p
+ paj(x)









for every j = 1, . . . , p − 1. It follows that ωj =

νp(Aj(x)) = 1 for every j = 1, . . . , p− 1 and φ(x) does not divide
(

Aj(x)
pωj

)

. Moreover, ω0 = νp(A0(x)) =
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νp(p2a0(x) +mp −m) ≥ 2 and φ(x) does not divide
(

A0(x)
pω0

)

, because deg(a0(x)) < deg(φ(x)). Thus, the

φ-developement (4.4) of F (x) is admissible. By Lemma 3.4, for any monic irreducible factor of F (x) mod-
ulo p, N+

φ (F ) = S1 + S2 has two sides of degree 1 each joining the points (0, ω0), (1, 1), and (p, 0) in the
euclidean plane with ω0 ≥ 2. Thus, Rłk

(F )(y) is irreducible over Fφ as it is of degree 1 for every k = 1, 2.
It follows that F (x) is p-regular. By Theorem 3.1, νp(ZK : Z[α]) =

∑

indφ(F ) ≥ 1, where φ runs over all
monic irreducible factors of F (x) modulo p. We conclude that when p ∈ {3, 5} does not divide m, then p
does not divide the index (ZK : Z[α]) if and only if νp(mp−1 −1) = 1, equivalently, if m 6≡ ±1 (mod 9) and
m ≡ ±1, 7, 18 (mod 25). This completes the proof of the Theorem. �

The following lemma gives a sufficient condition for a rational prime p to be a prime common index
divisor of the field K. For more details, refer to [8] and [23, Theorems 4.33 and 4.34 ].

Lemma 4.1. Let p be a rational prime and K a number field. For every positive integer m, let Pp(m) be
the number of distinct prime ideals of ZK lying above p with residue degree m and Np(m) be the number
of monic irreducible polynomials of Fp[x] of degree m. If for some positive integer m, Pp(m) > Np(m),
then p is a prime common index divisor of K.

Recall that the number of monic irreducible polynomials of degree m in Fp[x] is

Np(m) =
1

m

∑

d|m

µ(d)p
m
d ,

where µ is the Möubius function. This number was found by Gauss (see [23, Proposition 4.35]).

Proof of Theorem 2.3

In all cases, we prove that K is not monogenic by showing that i(K) > 1.

1. Since m ≡ 1 (mod 4), F (x) = (φ1(x)φ2(x)U(x))8 in F2[x], where φ1(x) = x− 1, φ2(x) = x2 +x+ 1,
U(x) = 1 + x3 + x6 + x9 + x12. Write

F (x) = x120 −m = (x15 − 1 + 1)8 −m

= (φ1(x)φ2(x)U(x) + 1)8 −m

= (φ1(x)φ2(x)U(x))8 + 8(φ1(x)φ2(x)U(x))7 + 28(φ1(x)φ2(x)U(x))6

+ 56(φ1(x)φ2U(x))5 + 70(φ1(x)φ2(x)U(x))4 + 56(φ1(x)φ2(x)U(x))3

+ 28(φ1(x)φ2(x)U(x))2 + 8(φ1(x)φ2(x)U(x)) + 1 −m. (4.5)

Since φ1(x) does not divide φ2(x)U(x) and φ2(x) does not divide φ1(x)U(x), the above φi-development
is admissible for i = 1, 2. Let ν = ν2(1 −m). We distinguish four cases.
• If m ≡ 5 (mod 8); ν = 2, then by using (4.5) and Lemma 3.4, N+

φi
(F ) = S has a single side

of degree 2 with slope ł = −1
4 joining the points (0, 2) and (8, 0) for i = 1, 2 (see Figure 2). The

residual polynomial provided by φ1(x), R1
ł (F )(y) = 1 + y + y2 ∈ Fφ1

[y] which is irreducible, and
the residual polynomial provided by φ2(x) is

R2
ł (F )(y) = 1 + (φ1(j)U(j))4y + (φ1(j)U(j))8y2 ∈ Fφ2

[y],

where φ2(j) = 1 + j + j2 = 0 in Fφ2
[y]. It follows that

R2
ł (F )(y) = 1 + (1 + j)y + jy2

= (y + 1)(jy + 1)

Thus, F (x) is 2-regular. By Theorem 3.1, we see that

2ZK = (p1p2p3)4
a,
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1 2 3 4 5 6 7 8

1

2
S

Figure 2: N+
φi

(F ), i = 1, 2 when m ≡ 5 (mod 8)

where is a is a non-zero ideal of ZK (provided by the factors of U(x) modulo 2) and pk is a prime
ideal of residue degree f(pk/2) = 2 for k = 1, 2, 3. So, P2(2) ≥ 3 > N2(2) = 1 (note that there is a
unique monic irreducible polynomial over F2, namely x2 + x + 1). By Lemma 4.1, 2 divides i(K),
and so K is not monogenic.
• If m ≡ 9 (mod 16); ν = 3, then by using (4.5) and Lemma 3.4, N+

φi
(F ) = Si1 + Si2 has two sides

joining the points (0, 3), (4, 1), and (8, 0) in the euclidean plane, with respective degrees d(Si1) = 2
and d(Si2) = 1, with respective slopes łi1 = −1

2 and łi2 = −1
4 for i = 1, 2 (see Figure 3). Thus,

Rł11(F )(y) = 1 + y + y2 and Rł12(F )(y) = 1 + y which are irreducible in Fφ2
[y] ≃ F2[y]. On the

other hand,

Rł21(F )(y) = 1 + ((φ1U)(j))2y + ((φ1U)(j))4

= (y + 1)((1 + j)y + 1)

which is separable over Fφ2
[y]. Also, Rł22(F )(y) = 1 + y. We conclude that F (x) is 2-regular. By

applying Theorem 3.1, we obtain that

2ZK = (p1p2p3)2
p

4
4q

4
1a,

where a is a non-zero ideal of ZK , pk is a prime ideal of ZK of residue degree f(pk/2) = 2 for
k = 1, 2, 3, 4 and q is a prime ideal with f(q/2) = 1. So, there are four prime ideals of residue
degree 2 each lying above 2. Since there is a unique monic irreducible polynomial of degree 2 in
F2[x], by Lemma 4.1, 2 divides i(K). Consequently K is not monogenic.

1 2 3 4 5 6 7 8

1

2
Si1

Si2

Figure 3: N+
φi

(F ), i = 1, 2 when m ≡ 9 (mod 16)

• If m ≡ 17 (mod 32); ν = 4, then by using (4.5) and Lemma 3.4, N+
φi

(F ) = Si1 + Si2 + Si3 with

respective degrees d(Si1) = 2 and d(Si2) = d(Si3) = 1 (see Figure 4). Similarly to the above case,
we get that F (x) is 2-redular. By applying Theorem 3.1, we see that

2ZK = p1p2p3p
2
4p

4
5q

2
1q

4
2a,

where a is a non-zero ideal of ZK , pk is a prime ideal of residue degree f(pk/2) = 2 for k = 1, . . . , 5,
and qk is a prime ideal of ZK of residue degree 1 for k = 1, 2. Then, for p = 2, we have P2(2) ≥
5 > 1 = N2(2), by Lemma 4.1, 2 divides i(K). So, K is not monogenic.
• If m ≡ 1 (mod 32), then N+

φi
(F ) = Si1 +Si2 +Si3 +Si4 has four sides of degree 1 each, for i = 1, 2

(see Figure 5). Their attached residual polynomial Rłik
(F )(y) is irreducible in Fφi

[y] for every
i = 1, 2 and k = 1, . . . , 4 as it is of degree 1. So, the polynomial F (x) is 2-regular. By Theorem 3.1,
we see that

2ZK = p1p2p
2
3p

8
4q1q2q

2
3q

8
4a,
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1 2 3 4 5 6 7 8

1

2

3

4
Si1

Si2

Si3

Figure 4: N+
φi

(F ), i = 1, 2 when m ≡ 17 (mod 16)

where a is a non-zero ideal of ZK and pk is a prime ideal of residue degree f(pk/2) = 2 for
k = 1, 2, 3, 4 and qk is a prime ideal of ZK of residue degree 1 for k = 1, 2, 3, 4. It follows that there
are at least four prime ideals of residue degree 1 each lying above 2. As there are only two monic
irreducible polynomial of degree 1 in F2[x], namely x and x + 1, by Lemma 4.1, 2 divides i(K).
Consequently, K is not monogenic. We conclude that if m ≡ 1 (mod 4), then K is not monogenic.

1 2 3 4 5 6 7 8

1

2

3

4

5
Si1

Si2

Si3

Si3

Figure 5: N+
φi

(F ), i = 1, 2 when m ≡ 1 (mod 32)

2. If m ≡ 1 (mod 9); µ = ν3(m2−m) = ν3(1−m) ≥ 2, then F (x) = (x40 − 1)
3

= (φ1(x)φ2(x)V (x))
3

in
F3[x], where φ1(x) = x−1, φ2(x) = x+1 such that φi(x) does not divide V (x). By Proof of Theorem
2.1 when we have determined N+

φ (F ) for p ∈ {3, 5} and p does not divide m, N+
φi

(F ) = Si1 + Si2

has two sides of degree 1 each joining the points (0, ωi), (1, 1), and (3, 0), with ωi ≥ 2 (see Figure
6). Thus, Rłik

(F )(y) is irreducible in Fφk
[y] for every k = 1, 2, i = 1, 2. By Theorem 3.1, we have

3ZK = p1p2p
2
3p

2
4a,

where a is a proper ideal of ZK and pj is a prime ideal with residue degree f(pj/3) = 1 for
j = 1, 2, 3, 4. Then, for p = 3, we have P3 ≥ 4 > N3(1) = 3. By Lemma 4.1, 3 divides i(K).
Consequently, K is not monogenic.

1 2 3

1

ωi

Si1

Si2

Figure 6: N+
φi

(F ), i = 1, 2 when m ≡ 1 (mod 9)

3. If m ≡ 1 (mod 25); ω = ν5(m4 − 1) ≥ 2, then F (x) = (x24 − 1)
5
(

∏4
i=1 φi(x)V (x)

)5

, where φi(x) =

x − i for i = 1, 2, 3, 4, such that φk(x) does not divide V (x).By Proof of Theorem 2.1, for p = 5,
i = 1, 2, 3, 4, N+

φi
(F ) = Si1 + Si2 has two sides with respective slopes łi1 ≤ −1 and łi2 = −1

4 joining
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the points (0, ωi), (1, 1), and (0, 5). Thus, the residual polynomial Rłik
(F )(y) ∈ Fφi

[y] ≃ F5[y] is
irreducible as it is of degree 1 for i = 1, 2, 3, 4, k = 1, 2. By Theorem 3.1, we see that

5ZK =

4
∏

i=1

pi1p
4
i2a,

where a is a non-zero ideal of ZK and pik is a prime ideal of ZK of residue degree f(pkj/5) =
deg(φi(x)) × deg(Rłik

(F )(y)) = 1 × 1 = 1 for every i = 1, . . . , 4 and k = 1, 2. Thus, there are
at least 8 prime ideals of ZK of residue degree 1 each lying above 5. As there are only 5 monic
irreducible polynomials of degree 1 in F5[x], namely x, x − 1, x − 2, x − 3 and x − 4, by Lemma
4.1, 5 divides i(K). Hence, K is not monogenic.

�

Proof of Corollary 2.5

As gcd(t, 30) = 1, let (x, y) be the positive solution of the Diophantine equation xt − 120y = 1 with

0 ≤ y < t. Let η = αx

my . Then η120 = α120x

m120y = mtx

m120y = mtx−120y = m. Since G(x) = x120 −m ∈ Z[x] is an
Eisenstein polynomial with respect to any prime divisor of m, then it is irreducible over Q. On the other
hand, as η ∈ K and [K : Q] = deg(G(x)), K = Q(η). Up to replace F (x) byG(x), then by a direct applica-
tion of Theorems 2.1 and 2.3, we conclude the corollary. �

5. Examples

Let F (x) ∈ Z[x] be a monic irreducible polynomial and K the number field generated by a root α of
F (x).

1. Let F (x) = x120 − 2022 ∈ Z[x]. As F (x) is a 3-Eisenstein polynomial, then it is irreducible over
Q. Since 2022 ≡ 2 (mod 4), 2022 ≡ 6 (mod 9), and 2022 ≡ 22 (mod 25), by Theorem 2.1, K is
monogenic and α generates a power integral basis of ZK .

2. Let F (x) = x120 − 178 ∈ Z[x]. As F (x) is a 2-Eisenstein polynomial, then it is irreducible over Q.
Since 178 ≡ 2 (mod 4), 178 ≡ 7 (mod 9) and 178 ≡ 3 (mod 25) , by Theorem 2.1, K is monogenic.

3. Let F (x) = x120 − 106 ∈ Z[x]. As F (x) is a 2-Eisenstein polynomial, then it is irreducible over Q.
Since 106 ≡ 1 (mod 4), by Theorem 2.3, K is not monogenic.

4. Let F (x) = x120 − 82 ∈ Z[x]. As F (x) is a 2-Eisenstein polynomial, then it is irreducible over Q.
Since 82 ≡ 1 (mod 9), by Theorem 2.3, K is not monogenic.

5. Let F (x) = x120 − 626 ∈ Z[x]. As F (x) is a 2-Eisenstein polynomial, then it is irreducible over Q.
Since 626 ≡ 1 (mod 25), by Theorem 2.3, K cannot be monogenic.

6. If F (x) = x120 − 67, then K is monogenic and θ = α7

6 generates a power integral basis of ZK .

Final comments

It is important to note that the fundamental method which allows to test whether a number field is
monogenic or not is to solve the index form equation which is very complicated for higher number field
degrees, see e.g [13] and [14]. In this work, we have based our method of Newton polygon techniques
applied on prime ideal factorization which is an efficient tool to investigate the monogenity of such pure
number fields.
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