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On Graded S−comultiplication Modules
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abstract: In this paper, we introduce the concept of graded S−comultiplication modules. Several results
concerning graded S−comultiplication modules are proved. We show that N is a graded S−second submodule
of a graded S−comultiplication R−module M if and only if AnnR(N) is a graded S−prime ideal of R and
there exists x ∈ S such that xN ⊆ xN for every x ∈ S.
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1. Introduction

Commutative algebra evolved from problems arising in number theory and algebraic geometry. Much
of the modern development of the commutative algebra emphasizes graded rings. Once the grading is
considered to be trivial, the graded theory reduces to the usual module theory. So from this perspective,
the theory of graded modules can be considered as an extension of module theory. Graded rings play a
central role in algebraic geometry and commutative algebra. Gradings appear in many circumstances,
both in elementary and advanced level. Recently, extensive researches have been done on rings with
group-graded structure, see for example [2,3,5,13,17,20]. The notion of graded multiplication modules
was studied by many authors, see for example [7,9,12,22]. The notion of graded comultiplication modules
which are the dual nation of graded multiplication modules was introduced and studied by Ansari-Toroghy
and Farshadifar in [2]. Later, Al-Zoubi and Al-Qderat [1] studied on this issue. The objective of this
paper is following [21] in order to construct more accurate results and concepts regarding generalizations
of graded comultiplication modules. In fact the motivation of writing this paper is two folded:
(i) To extend the concept of graded comultiplication modules to the concept of graded S−comultiplication
modules.
(ii) To determine when a graded module is graded S−comultiplication modules. The remains of this
paper is organized as follows:
Section 2 concerns some basic definitions and results in the sequel of this paper. In section 3, the main
results concerning graded S−comultiplication modules will be given. Section 4 concerns the conclusion.

2. Preliminary Notes

In this section we state some basic concepts and results related to graded ring theory. We hope that
this will improve the readability and understanding of this paper.

Definition 2.1. [15] Let G be a group with identity and R be a commutative ring with unity 1R. Then,
R is said to be a G−graded ring if there exist additive subgroups Rg of R indexed by elements g ∈ G
such that R =

⊕
g∈ G Rg and RgRh ⊆ Rgh for all g, h ∈ G. If RgRh = Rgh, the ring is called strongly

graded ring.
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Consider supp(R) = {g ∈ G : Rg 6= 0}. An element x of R has a unique decomposition as
x =

∑
g∈ G xg for all g ∈ G. Also, we write h(R) =

⋃
g∈ G Rg. Moreover Re is a subring of R and

1R ∈ Re. If an element of R belongs to h(R), then it is called homogeneous and any element xg ∈ Rg

is said to have degree g.

Definition 2.2. [15] Let R =
⊕

g∈ G Rg be a G−graded ring. An ideal I of R is said to be a graded
ideal of R if I =

⊕
g∈ G(I

⋂
Rg).

Clearly,
⊕

g∈ G(I
⋂

Rg) ⊆ I and hence I is a graded ideal of R if I ⊆
⊕

g∈ G(I
⋂

Rg). Moreover
R/I becomes a G−graded ring with g−component (R/I)g = (Rg + I)/I for g ∈ G.

Definition 2.3. [15] Let R be a G−graded ring and M be an R−module. We say that M is a graded
R−module if there exists a family of subgroups {Mg}g∈ G of M such that M =

⊕
g∈ G Mg (as abelian

groups) and RgMh ⊆ Mgh for all g, h ∈ G. If RgMh = Mgh, the R−mould M is called strongly graded
R−module.

Consider supp(M) = {g ∈ G : Mg 6= 0}. Here RgMh denotes the additive subgroups of M consisting
of all finite sums of elements rgsh with rg ∈ Rg and sh ∈ Mh. Also, we write h(M) =

⋃
g∈ G Mg. If an

element of M belongs to h(M), then it is called homogeneous and any element xg ∈ Mg is said to have
degree g. It is clear that Mg is an Re−submodule of M for all g ∈ G.

Definition 2.4. [15] Let M =
⊕

g∈ G Mg be a G−graded R−module and N a submodule of M . Then,
N is said to be a graded submodule of M if N =

⊕
g∈ G Ng where Ng = N

⋂
Mg for g ∈ G. In this

case, Ng is called the g−component of N for g ∈ G. Moreover, M/N becomes a G−graded module with
g−component (M/N)g = (Mg + N)/N for g ∈ G.

Definition 2.5. [18] Let I be a graded ideal of a G−graded ring R. Then, I is said to be a graded prime
ideal if I 6= R; and whenever ab ∈ I, we have a ∈ I or b ∈ I, where a, b ∈ h(R).

Definition 2.6. [8] Let R be a G−graded ring and M be a graded R−module. A graded submodule N
of M is said to be a graded prime submodule of M if N 6= M ; and whenever r ∈ h(R) and m ∈ h(M)
with rm ∈ N , then either m ∈ N or r ∈ (N :R M) = {r ∈ R : rM ⊆ N}.

Definition 2.7. [15] Let R be a G−graded ring. A nonzero graded R−module M is said to be a graded
prime module if AnnR(M) = AnnR(N) for every nonzero graded submodule N of M .

Definition 2.8. [15] Let R be a G−graded ring. A nonempty S ⊆ h(R) is said to be a multiplicatively
closed subset of R if (i) 0 6∈ S, (ii) 1 ∈ S, (iii) ab ∈ S for all a, b ∈ S.

Definition 2.9. [19] let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R and
M be a graded R−module. A graded submodule N of M with (N :R M)

⋂
S = φ is said to be a graded

S−prime submodule of M if there exists a fixed x ∈ S such that whenever rm ∈ N for some r ∈ h(R)
and m ∈ h(M), then either xr ∈ (N :R M) or xm ∈ N . In particular, a graded ideal P of R is said to
be a graded S−prime if P is a graded S−prime submodule of M .

Definition 2.10. [4] Let R be a G−graded ring and M be a graded R−module. A non zero graded
submodule N of M is said to be a graded second submodule of M if rN = 0 or rN = N for every
r ∈ h(R).

Definition 2.11. [15] Let R be a G−graded ring. A graded R−module M is said to be graded finitely
generated if M = Rm1

+ Rm2
+ ... + Rmn

for some m1, m2, ..., mn ∈ h(M). M is called a graded cyclic
if it can be generated by a single element i.e., there exists x ∈ h(M) such that M = Rx.

Definition 2.12. [15] Let R be a G−graded ring and M, M be graded R−modules. Then, an
R−homomorphism f : M −→ M is said to be a graded R−homomorphism if for all m, n ∈ M ;
(i) f(m + n) = f(m) + f(n);
(ii) f(rm) = rf(m) for any r ∈ R and m ∈ M ;
(iii) f(Mg) ⊆ Mg for all g ∈ G.



On Graded S−comultiplication Modules 3

Definition 2.13. [6] Let R be a G−graded ring, M be a graded R−module and N be a graded submodule
of M . M is said to be a graded torsion − free R−module if whenever r ∈ h(R) and m ∈ M with
rm = 0, then either m = 0 or r = 0.

Equivalently, M is said to be a graded torsion − free R−module if the set T (M) = {m ∈ M :
rm = 0 for some 0 6= r ∈ h(R)} is zero. M is called a graded torsion R−module if T (M) = M .

Remark 2.14. [16] Let R be a G−graded ring, M be a graded R−module, P be a graded ideal of R and
N be a graded submodule of M . Then,
(i) AnnR(M) = (0 :R M) = {r ∈ R : rM = 0} is a graded ideal of R.
(ii) (0 :M P ) = {m ∈ M : P m = 0} is a graded submodule of M .
(iii) AnnR(N) = (0 :R N) = {r ∈ R : rN = 0} is a graded ideal of R.

Definition 2.15. [2] Let R be a G−graded ring. A graded R−module M is said to be a graded comul-
tiplication module if for every graded submodule N of M , there exists a graded ideal I of R such that
N = (0 :M I).

We recall the following Lemma.

Lemma 2.16. [10] Let R be a G−graded ring, M be a graded R−module. Then the following assertions
hold.

(i) If N is a graded submodule of M , r ∈ h(R), x ∈ h(M) and I is a graded ideal of R, then Rx, IN
and rN are graded submodules of M .

(ii) If N and K are graded submodules of M , then N + K and N ∩ K are also graded submodules of
M and (N :R M) = {r ∈ R : rM ⊆ N} is a graded ideal of R.

3. Results and Discussion

We start by the following definition.

Definition 3.1. Let R be a G−graded ring, M be a graded R−module and S ⊆ h(R) be a multiplicatively
closed subset of R. M is is said to be a graded S−comultiplication module if for each graded submodule
N of M , there exist x ∈ S and a graded ideal P of R such that x(0 :M P ) ⊆ N ⊆ (0 :M P ).

We define the graded ring R to be a graded S−comultiplication ring if it is a graded S−comultiplication
module over itself.

Remark 3.2. (i) Every graded R−module M with AnnR(M) ∩ S 6= φ is a graded S−comultiplication
module.

(ii) Every graded comultiplication module is also graded S−comultiplication module.

The next example shows that the converse is not true in general. On the other hand, the converse
will be true in the case that S ⊆ U(R), where U(R) denotes the set of all units in R.

Example 3.3. Consider R = Z, G = Z2. Define R0 = Z and R1 = {0}. Then, R is a G−graded ring. Let
M = Z[i] = ⊕g∈Z2

Mg be a graded Z[i]−module where M0 = Z and M1 = iZ. Let S = Z−{0} ⊆ h(Z) be a
multiplicatively closed subset of R and consider the graded submodule N = mZ of M where m 6= 0, ± 1.
Thus, (0 :R AnnR(mZ)) = Z 6= mZ. Thus, M is not graded comultiplication module. Now, we show
that M is a graded S−comultiplication module, for let L be any graded submodule of M . Then, L = rZ
for some r ∈ Z. if r = 0, then one can choose x = 1 so that x(0 :R AnnR(L)) = (0) = rZ. If r 6= 0,
then one can choose x = r so that x(0 :R AnnR(L)) ⊆ rZ = L ⊆ (0 :R AnnR(L)). Thus, M is a graded
S−comultiplication module.

Theorem 3.4. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R and M be
a graded R−module. Then the following assertions are equivalent.
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(i) M is a graded S−comultiplication module.

(ii) For every graded submodule N of M , there exists x ∈ S such that x(0 :M AnnR(N)) ⊆ N ⊆ (0 :M
AnnR(N)).

(iii) For every graded submodules L, N of M with AnnR(L) ⊆ AnnR(N), there exists x ∈ S such that
xN ⊆ N .

Proof. (i) =⇒ (ii) Assume that M is a graded S−comultiplication module and N be a graded submodule
of M . Then, there exist x ∈ S and a graded ideal P of R such that x(0 :M P ) ⊆ N ⊆ (0 :M P ). Now,
P N = (0) and thus, P ⊆ AnnR(N). Therefore, x(0 :M AnnR(N)) ⊆ x(0 :M P ) ⊆ N ⊆ (0 :M
AnnR(N)).
(ii) =⇒ (iii) Assume that AnnR(L) ⊆ AnnR(N) for some graded submodules L, N of M . By (ii), there
exist x1, x2 ∈ S such that x1(0 :M AnnR(L)) ⊆ L ⊆ (0 :M AnnR(L)) and x2(0 :M AnnR(N)) ⊆ N ⊆
(0 :M AnnR(N)). Since, AnnR(L) ⊆ AnnR(N), we have (0 :M AnnR(N)) ⊆ (0 :M Ann(L)) and thus,
x1x2(0 :M AnnR(N)) ⊆ x2N ⊆ x2(0 :M AnnR(N)) ⊆ x2(0 :M AnnR(L)) ⊆ L.
(iii) =⇒ (ii) Assume that (iii) holds. Let N be a graded submodule of M . Then it is clear that
AnnR(N) = AnnR(0 :M AnnR(N)). Therefore, by (iii), there exists x ∈ S such that x(0 :M
AnnR(N)) ⊆ N ⊆ (0 :M AnnR(N)).
(ii) =⇒ (i) It is clear. �

Theorem 3.5. Let R be a G− strongly graded ring, S ⊆ h(R) be a multiplicatively closed subset of
R and M be a graded R−module. If M is a graded S−comultiplication module, then Me is a graded
S−comultiplication as an Re−module.

Proof. Assume that M is a graded S−comultiplication module and let N be an Re−submodule of Me.
Consider the graded submodule N of M defined by Ng = RgN for every g ∈ G. Then by assumption, we
have x(0 :M P ) ⊆ N ⊆ (0 :M P ) for some x ∈ S and graded ideal P of R. Since R is strongly graded,
then P = RPe by [14]. Hence, one can easily see that (0 :M P ) = (0 :M Pe). Thus, x(0 :Me

Pe) ⊆ Ne ⊆
(0 :Me

Pe). Therefore, Me is an S−comultiplication an Re−module. �

Definition 3.6. Let R be a G− graded ring, S ⊆ h(R) be a multiplicatively closed subset of R and M
be a graded R−module. Then, S−1M is a graded S−1R− module where,
The ring of fraction is defined by:

(S−1R)g = {
r

x
: r ∈ h(R), x ∈ S and g = deg r − deg x for all g ∈ G}

The quotient module M is thus defined by:

(S−1M)g = {
m

x
: m ∈ h(M), x ∈ S and g = deg m − deg x for all g ∈ G}

The saturation S⋆ of S is defined by:

S⋆ = {x ∈ h(R) : x divides s for some s ∈ S} ⊆ h(R)

is a multiplicatively closed subset of R containing S.
Also, S is called a saturated multiplicatively closed set if S = S⋆. Note that S⋆ is always a saturated
multiplicatively closed set.

Theorem 3.7. Let R be a G− graded ring, S ⊆ h(R) be a multiplicatively closed subset of R and M be
a graded R−module. Then the following assertions hold.

(i) Let S1 ⊆ h(R) and S2 ⊆ h(R) be two multiplicatively closed subsets of R such that S1 ⊆ S2. If
M is a graded S1−comultiplication module, then M is also a graded S2−comultiplication module.
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(ii) M is a graded S−comultiplication module if and only if M is a graded S⋆−comultiplication module
.

Proof. (i) It is clear.

(ii) Assume that M is a graded S−comultiplication module. Since S ⊆ S⋆, then the result follows
from part (i).
Conversely; assume that M is a graded S⋆−comultiplication module, where S⋆ is the saturation of
S. Let N be a graded submodule of M . Since M is a graded S⋆−comultiplication module, then
there exists x ∈ S⋆ such that x(0 :M AnnR(N)) ⊆ N ⊆ (0 :M AnnR(N)) by Theorem 3.4. Now,
x ∈ S⋆ implies that there exists s ∈ S such that x divides s, that is there exists r ∈ h(R) such
that s = rx. Thus, s(0 :M AnnR(N)) ⊆ x(0 :M AnnR(N)) ⊆ N ⊆ (0 :M AnnR(N)). Therefore,
M is graded S−comultiplication module.

�

Now, we introduce the following definition.

Definition 3.8. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R and M
be a graded R−module. A graded submodule N of M is said to be a graded S−finite submodule if there
exists a finitely generated graded submodule L of M such that xN ⊆ L ⊆ N for some x ∈ S. Also, M
is said to be a graded S−Noetherian module if each graded submodule is graded S−finite. In particular,
R is said to be a graded S−Noetherian ring if it is a graded S−Noetherian R−module.

Theorem 3.9. Let R be a G−graded S−Noetherian ring and M be a graded S−comultiplication module.
Then, S−1M is a graded comultiplication module.

Proof. Let K be a graded submodule of S−1M . Then, K = S−1N for some graded submodule N
of M . Since M is a graded S−comultiplication module, then there exists x ∈ S such that x(0 :M
P ) ⊆ N ⊆ (0 :M P ) for some graded ideal P of R. Thus, we have S−1(x(0 :M P )) = S−1((0 :M
P )) ⊆ S−1N ⊆ S−1((0 :M P )), that is S−1N = S−1((0 :M P )). We need to show that S−1((0 :M P )) =
(0 :S−1M S−1P ). Let m

y ∈ S−1((0 :M P )), where m ∈ (0 :M P ) and y ∈ S. Then, we have P m = (0) and

so (S−1P )(m
y ) = (0). This implies that m

y ∈ (0 :S−1M S−1P ) and thus, S−1((0 :M P )) ⊆ (0 :S−1M S−1P ).

Now, let m
y ∈ (0 :S−1M S−1P ). Then, (S−1P )(m

y ) = (0). This implies that for each a ∈ P , there exists
z ∈ S such that zam = 0. Since R is a graded S−Noetherian ring, then P is graded S−finite. Thus, there
exists t ∈ S and a1, a2, ..., an ∈ P ∩ h(R) such that tP ⊆ {a1, a2, ..., an} ⊆ P . As (S−1P )(m

y ) = (0)

and ai ∈ P ∀ i ∈ {1, ..., n}, then there exists xi ∈ S such that xiaim = 0. Now, put r = x1x2...xnt ∈ S.
Then, we have raim = 0 for all ai and thus, rP m = 0. Then, we deduce m

y = rm
ry = S−1((0 :M P ))

and thus, (0 :S−1M S−1P ) ⊆ S−1((0 :M P )). Thus, S−1((0 :M P )) = (0 :S−1M S−1P ) and so
K = S−1N = (0 :S−1M S−1P ). Therefore, S−1M is a graded comultiplication module. �

Let R be a G−graded ring and S ⊆ h(R) be a multiplicatively closed subset of R. S is said to satisfy
the maximal multiple condition if there exists x ∈ S such that t divides x for each t ∈ S.

Theorem 3.10. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R satisfying
the maximal multiple condition and M be a graded R−module. Then M is a graded S−comultiplication
module if and only if S−1M is a graded comultiplication module.

Proof. Assume that K is a graded submodule of S−1M . Then K = S−1N for some graded submodule
N of M . Since M is a graded S−comultiplication module, then there exist x ∈ S and a graded ideal P
of R such that x(0 :M P ) ⊆ N ⊆ (0 :M P ). Thus, P N = (0) and so S−1(P N) = (S−1P )(S−1N) = (0).
Thus, we have S−1N ⊆ (0 :S−1M S−1P ). Let m

s ∈ (0 :S−1M S−1P ). Then, we get a
1

m
s = 0 for each

a ∈ P and thus, yam = 0 for some y ∈ S. As S satisfies the maximal multiple condition, then there
exists z ∈ S such that y divides z for each y ∈ S. This implies that z = yr for some r ∈ h(R). Then, we
have zam = ryam = 0. Then, we have P zm = 0 and so zm ∈ (0 :M P ). Thus, xzm ∈ x(0 :M P ) ⊆ N
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and so m
s = xzm

xzs ∈ S−1N . Thus, we have S−1N = (0 :S−1M S−1P ) and hence S−1M is a graded
comultiplication module.
Conversely; assume that S−1M is a graded comultiplication module and let N be a graded submodule
of M . Since S−1M is a graded comultiplication module, then S−1N = (0 :S−1M S−1P ) for some graded
ideal P of R. Then, we have (S−1P )(S−1N) = S−1(P N) = 0. Then for each r ∈ P, m ∈ N , we have
rm
1 = 0 and thus, xrm = 0 for some x ∈ S. Since S ⊆ h(R) is a multiplicatively closed subset of R

satisfying the maximal multiple condition, then there exists y ∈ S such that yrm = 0 and so yP N = 0.
Thus, N ⊆ (0 :M yP ). Now, let m ∈ (0 :M yP ). Then, P ym = 0, so it is easily seen that (S−1P )(m

1 ) = 0.
Thus, we have m

1 ∈ (0 :S−1M S−1P ) = S−1N . Then, there exists z ∈ S such that zm ∈ N . Again by
the maximal multiple condition, ym ∈ N . Thus, we have y(0 :M yP ) ⊆ N ⊆ (0 :M yP ). Since yP is a
graded ideal of R, then M is a graded S−comultiplication module. �

Theorem 3.11. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R, M and
M be graded R−modules, and f : M −→ M be a graded R−homomorphisim with a.Ker(f) = 0 for some
a ∈ S. Then the following assertions hold.

(i) If M is a graded S−comultiplication module, then M is a graded S−comultiplication module.

(ii) If f is a graded R−epimorphism and M is a graded S−comultiplication module, then M is a graded
S−comultiplication module.

Proof. (i) Let N be a graded submodule of M . Since M is a graded S−comultiplication module,
then there exist x ∈ S and a graded ideal P of R such that x(0 :M P ) ⊆ f(N) ⊆ (0 :M P ).
Thus, we have P f(N) = f(P N) = 0 and so P N ⊆ Ker(f). Since a.Ker(f) = 0, we have
aP N = (0) and so N ⊆ (0 :M aP ). Now, we will show that a2x(0 :M aP ) ⊆ N ⊆ (0 :M aP ). Let
m ∈ (0 :M aP ). Then we have aP m = 0 and so f(aP m) = aP f(m) = P f(am) = 0. This implies
that f(am) ∈ (0 :M P ). Thus, we have xf(am) = f(xam) ∈ x(0 :M P ) ⊆ f(N) and so there exists
y ∈ N such that f(xam) = f(y) and so xam − y ∈ Ker(f). Thus, we have a(xam − y) = 0 and so
a2xm = ay. Then we obtain a2x(0 :M aP ) ⊆ aN ⊆ N ⊆ (0 :M aP ). Now, put a2x = s ∈ S and
J = aP . Thus, s(0 :M J) ⊆ N ⊆ (0 :M J). Therefore, M is a graded S−comultiplication module.

(ii) Let N be a graded submodule of M . Since M is a graded S−comultiplication module, then there
exist x ∈ S and a graded ideal P of R such that x(0 :M P ) ⊆ f−1(N) ⊆ (0 :M P ). This implies that
P f−1(N) = (0) and so f(P f−1(N)) = P N = (0) since f is graded surjective. Then, we have N ⊆
(0 :M P ). On the other hand, we get f(x(0 :M P )) = xf((0 :M P )) ⊆ f(f−1(N)) = N . Now, let
m ∈ (0 :M P ). Then, P m = 0. Since f is graded epimorphism, then there exists m ∈ M such that
m = f(m). Then we have P m = P f(m) = f(P m) = 0 and so P m ⊆ Ker(f). Since a Ker(f) = 0,
we have aP m = (0) and so am ∈ (0 :M P ). Then, we get f(am) = af(m) = am ∈ f((0 :M P )).
Thus, we have a(0 :M P ) ⊆ f((0 :M P )) and hence xa(0 :M P ) ⊆ xf((0 :M P )) ⊆ N ⊆ (0 :M P ).

Therefore, M is a graded S−comultiplication module.
�

Corollary 3.12. Let R be a G− graded ring, S ⊆ h(R) be a multiplicatively closed subset of R, M be
a graded R−module and N be a graded submodule of M . Then the following assertions hold.

(i) If M is a graded S−comultiplication module, then N is a graded S−comultiplication module.

(ii) If M is a graded S−comultiplication module and aM ⊆ N for some a ∈ S, then M/N is a graded
S−comultiplication R− module.

Proof. Follows directly from Theorem 3.11 �
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Let R1 and R2 be G−graded rings. As in [11], R = R1 × R2 is a G−graded ring with Rg =
(R1)g × (R2)g for all g ∈ G. Let M1 be a G−graded R1−module, M2 be a G−graded R2−module and
R = R1 × R2. Then M = M1 × M2 is a G−graded R−module with Mg = (M1)g × (M2)g for all
g ∈ G. Also, if S1 ⊆ h(R1) is a multiplicatively closed subset of R1 and S2 ⊆ h(R2) is a multiplicatively
closed subset of R2, then S = S1 × S2 is a multiplicatively closed subset of R. Furthermore, each graded
submodule of M is of the form N = N1 × N2, where Ni is a graded submodule of Mi for i = 1, 2.

Theorem 3.13. Let Ri be a G−graded ring, Mi be a graded Ri module and Si ⊆ h(Ri) be a mul-
tiplicatively closed subset of Ri for each i ∈ {1, 2}. Suppose that M = M1 × M2 be a graded
R = R1 × R2−module and S = S1 × S2 be a multiplicatively closed subset of R. If M is a graded
S−comultiplication R−module, then M1 is a graded S1−comultiplication R1−modue and M2 is a graded
S2−comultiplication R2−modue.

Proof. Assume that M is a graded S−comultiplication R−module. Let K1 be a graded submodule of
M1. Then, K1 × {0} is a graded submodule of M . Since M is a graded S−comultiplication R−module,
then there exist x = (x1, x2) ∈ S1 × S2 and a graded ideal J = P1 × P2 of R such that (x1, x2)(0 :M
P1 × P2) ⊆ K1 × {0} ⊆ (0 :M P1 × P2), where Pi is a graded ideal of Ri. Then, we can easily get
x1(0 :M1

P1) ⊆ K1 ⊆ (0 :M1
P1). Therefore, M1 is a graded S1−comultiplication R1−modue. Similarly,

taking a graded submodule K2 of M2 and a graded submodule {0} × K2 of M , we can show that M2 is
a graded S2−comultiplication R2−modue. �

Theorem 3.14. Let Ri be a G−graded ring, Mi be a graded Ri− module and Si ⊆ h(Ri) be a multi-
plicatively closed subset of Ri for each i ∈ {1, 2, ..., n}. Suppose that M = M1 × M2 × ... × Mn be a
graded R = R1 × R2 × ... × Rn−module and S = S1 × S2 × ... × Sn be a multiplicatively closed subset of
R. If M is a graded S−comultiplication R−module, then Mi is a graded Si−comultiplication Ri−modue
for each i ∈ {1, 2, ..., n}.

Proof. Use induction on n. �

Now we give the following definition.

Definition 3.15. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R and M
be a graded R−module. M is is said to be a graded S−cyclic module if there exists x ∈ S such that
xM ⊆ Rm ⊆ M for some m ∈ h(M).

Theorem 3.16. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R, M be
a graded S−comultiplication R−module and N be a minimal graded ideal of R such that (0 :M N) = 0.
Then, M is a graded S−cyclic module.

Proof. Chose 0 6= m ∈ h(M). Since M is a graded S−comultiplication R−module, then there exist
x ∈ S and a graded ideal P of R such that x(0 :M P ) ⊆ Rm ⊆ (0 :M P ). Since (0 :M N) = 0, we
have x((0 :M N) :M P ) ⊆ Rm ⊆ ((0 :M N) :M P ). Then, x(0 :M NP ) ⊆ Rm ⊆ (0 :M NP ). Since
0 ⊆ NP ⊆ N and N is minimal graded ideal of R, then either NP = N or NP = 0. Case (i): NP = N ,
then x(0 :M N) ⊆ Rm ⊆ (0 :M N). This means that Rm = 0, a contradiction. Case (ii): NP = 0, then
x(0 :M 0) ⊆ Rm ⊆ (0 :M 0). This means that xM ⊆ Rm ⊆ M and hence M is a graded S−cyclic. �

Theorem 3.17. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R, M be
a graded S−comultiplication R−module and {Mi}i∈ I be a collection of graded submodules of M with⋂

i Mi = 0. Then, for every graded submodule K of M , there exists an x ∈ S such that x
⋂

i(K +
Mi) ⊆ K ⊆

⋂
i(K + Mi).

Proof. Let K be a graded submodule of M . Since M is a graded S−comultiplication module, then
x(0 :M AnnR(K)) ⊆ K ⊆ (0 :M AnnR(K)) for some x ∈ S. Thus, x(

⋂
i Mi :M AnnR(K)) ⊆ K ⊆

(
⋂

i Mi :M AnnR(K)) since
⋂

i Mi = 0. Thus, x
⋂

i(Mi :M AnnR(K)) ⊆ K ⊆
⋂

i(Mi :M AnnR(K)).
Therefore, x

⋂
i(K + Mi) ⊆ x

⋂
i(Mi :M AnnR(K)) ⊆ K ⊆

⋂
i(k + Mi) �
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Theorem 3.18. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R and M
be a graded S−comultiplication R−module. Then for each graded submodule N of M and each graded
ideal P of R with N ⊆ x(0 :M P ) for some x ∈ S, there exists a graded ideal J of R with P ⊆ J and
x(0 :M J) ⊆ N

Proof. Assume that N is a graded submodule of M . Since, M is a graded S−comultiplication module,
then we have x(0 :M AnnR(N) ⊆ N ⊆ (0 :M AnnR(N) for some x ∈ S. Thus, we have x(0 :M
AnnR(N) ⊆ N ⊆ x(0 :M P ). Since P ⊆ P +AnnR(N), one can take J to be P +AnnR(N). Therefore,
x(0 :M J) = x(0 :M P + AnnR(N)) ⊆ x(0 :M P )

⋂
x(0 :M AnnR(N)) ⊆ x(0 :M AnnR(N)) ⊆ N . �

Theorem 3.19. Every graded S−comultiplication module is either graded S−cyclic or graded torsion.

Proof. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R and M be a graded
S−comultiplication R−module. Suppose that M is not graded S−cyclic and AnnR(m) = 0 for some
m ∈ M . As Rm is a graded submodule of M and M a graded S−comultiplication R−module, we get
x(0 :M AnnR(m)) ⊆ Rm ⊆ (0 :M AnnR(m)) for some x ∈ S. Thus, xM ⊆ Rm ⊆ M , a contradiction.
Thus, AnnR(m) 6= 0 ∀ m ∈ M and hence M is graded torsion. �

Now, we introduce the following definition.

Definition 3.20. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R, M be
a graded R−module and N be a nonzero graded submodule of Mmodule. M is is said to be a graded
S−minimal submodule if L ⊆ N for some graded submodule L of M , then there exists x ∈ S with
xN ⊆ L.

Theorem 3.21. Every graded S−comultiplication prime module is graded S−minimal.

Proof. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R and M be a graded
S−comultiplication prime R−module. Let L be a nonzero graded submodule of M . Since M is graded
prime, we have AnnR(L) = AnnR(M). Also, (0 :M AnnR(L)) = (0 :M AnnR(M)). Since, M is graded
S−comultiplication module, then x(0 :M AnnR(L)) ⊆ L ⊆ (0 :M AnnR(L)) for some x ∈ S. Thus, we
have x(0 :M AnnR(M)) ⊆ L ⊆ (0 :M AnnR(M)) and hence xM ⊆ L ⊆ M . Therefore, M is graded
S−minimal. �

Now, we need the following definition.

Definition 3.22. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R, M and
M be two graded R−modules and f : M −→ M be a graded R−homomorphism.

(i) If there exists x ∈ S such that f(m) = 0, where m ∈ h(M) implies that xm = 0, then f is called
a graded S−injective.

(ii) If there exists x ∈ S such that xM ⊆ Im(f), then f is called a graded S−surjective.

(iii) f is called a graded S−zero if there exists x ∈ S such that xf(m) = 0 ∀ m ∈ h(M).

Theorem 3.23. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R, M be
a graded R−module and N be a graded submodule of M with (N :R M)

⋂
S = φ. Then the following

assertions are equivalent.

(i) N is a graded S−prime submodule of M .
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(ii) There exists a fixed x ∈ S such that for any r ∈ h(R), the homothety M/N r−→ M/N (End(M)

given by multiplication of r) is either graded S−zero or graded S−injective with respect to x ∈ S.

Proof. (i) =⇒ (ii) Assume that N is a graded S−prime submodule of M . Then, there exists a fixed
x ∈ S such that rm ∈ N for some r ∈ h(R), m ∈ h(M) implies that xrM ⊆ N or xm ⊆ N . Now,
take r ∈ R and assume that the homothety M/N r−→ M/N is not graded S−injective with respect to

x ∈ S. Thus, there exists m ∈ h(M) with r(m + N) = rm + N = 0M/N , but x(m + N) 6= 0M/N .
Thus, rm ∈ N and xm 6∈ N . Now, since N is a graded S−prime submodule, then xr ∈ (N :R M) and
thus, xrt ∈ N for some t ∈ h(M). Thus, we have xr(t + N) = 0M/N for each t ∈ h(M), that is, the
homothety M/N r

−→
M/N is graded S−zero with respect to x ∈ S.

(ii) =⇒ (i) Assume that (ii) holds, let rm ∈ N for some r ∈ h(R) and m ∈ h(M). Suppose that
xm 6∈ N . Then, M/N r−→ M/N is not graded S−injectiv. Thus, by (ii), M/N r−→ M/N is graded S−zero

with respect to x ∈ S, namely, xr(t + N) = 0M/N for each t ∈ h(M). Thus, xr ∈ (N :R M). Therefore,
N is a graded S−prime submodule of M . �

Remark 3.24. Take S ⊆ U(R) in Theorem 3.23, one can easily see that a graded submodule N of M
is a graded prime submodule if and only if every homothety M/N r−→ M/N is either graded injective or
graded zero.

Now, we need the following definition.

Definition 3.25. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R and M
be a graded R−module. A nonzero graded submodule N of M with AnnR(N)

⋂
S = φ is said to be a

graded S−second submodule if there exists x ∈ S with xrN = 0 or xrN = xN for each r ∈ h(R).

Theorem 3.26. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R, M be
a graded R−module and N be a graded submodule of M with AnnR(N)

⋂
S = φ. Then the following

assertions are equivalent.

(i) N is a graded S−second submodule of M .

(ii) There exists x ∈ S such that for each r ∈ h(R), the homothety M/N r−→ M/N (End(M) given by

multiplication of r) is either graded S−zero or graded S−surjective with respect to x ∈ S.

(iii) There exists a fixed x ∈ S so that for each x ∈ h(R), either xrN = 0 or xN = rN .

Proof. Proceed similar to Theorem 3.23 �

Recall that a graded submodule N of a graded R−module M is said to be completely irreducible if
N is not the intersection of any graded submodules of M that properly contain it.

Theorem 3.27. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R, M be
a graded S−comultiplication R−module and N be a graded submodule of M with AnnR(N)

⋂
S = φ.

Then the following assertions are equivalent.

(i) N is a graded S−second submodule of M .

(ii) AnnR(N) is a graded S−prime ideal of R and there exists x ∈ S such that xN ⊆ xN for every
x ∈ S
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Proof. (i) =⇒ (ii) Assume that N is a graded S−second submodule of M . Let rr ∈ AnnR(N) for
some r, r ∈ h(R). Since N is a graded S−second submodule of M , then there exists x ∈ S such that
rxN = xN or rxN = 0 and rxN = xN or rxN = 0. If rxN = 0 or rxN = 0, then AnnR(N) is a
graded S−prime ideal of R. If rxN = xN , then 0 = rrxN = rxN , a contradiction. If rxN = xN , then
0 = rrxN = rxN , a contradiction. Thus, in any case, rxN = 0 or rxN = 0, and therefore, AnnR(N) is
a graded S−prime ideal of R. Again, N is a graded S−second submodule of M implies that there exists
x ∈ S such that rN ⊆ L for each r ∈ h(R) and a submodule L of M . Thus, xN ⊆ L or xrN = 0.
Let K be a completely irreducible graded submodule of M with xN ⊆ K. Then, xN ⊆ K or xxN = 0.
Since AnnR(N)

⋂
S = φ, we have xN ⊆ K. Therefore, xN ⊆ xN .

(ii) =⇒ (i) Assume that AnnR(N) is a graded S−prime ideal of R. We need to show that N is a
graded S−second submodule of M . Let r ∈ h(R). Since AnnR(N) is a graded S−prime ideal of R,
by ( [19], Lemma 4.2, Proposition 4.3), there exists x ∈ S such that AnnR(xN) is a graded prime ideal
and AnnR(xN) ⊆ AnnR(xN) for every x ∈ S. Assume that xrN 6= (0). Now, we need to show that
xN ⊆ rN . Since M is a graded S−comultiplication module, then there exist x ∈ S and a graded ideal
P of R with x(0 :M P ) ⊆ rN ⊆ (0 :M P ). Thus, rP ⊆ AnnR(N). Since AnnR(N) is a graded S−prime
ideal of R, then there exists x ∈ S such that xr ∈ AnnR(N) or xP ⊆ AnnR(N) by ( [19], Lemma 4.2,
Proposition 4.3). The first case is impossible since xrN 6= (0). Thus, we have P ⊆ AnnR(xN). Thus,
we have xx(0 :M AnnR(xN) ⊆ x(0 :M P ) ⊆ rN . Thus, xx2N ⊆ xx(0 :M AnnR(xN) ⊆ xN . Then, by
(ii), xN ⊆ xx2N ⊆ rN . Therefore, by Theorem 3.26, N is a graded S−second submodule of M . �

Theorem 3.28. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R, M be a
graded comultiplication R−module and N be a graded submodule of M with AnnR(N)

⋂
S = φ. Then

the following assertions are equivalent.

(i) N is a graded second submodule of M .

(ii) AnnR(N) is a graded prime ideal of R.

Proof. If we take S ⊆ U(R), then the concepts of graded S−comultiplication modules and graded
comultiplication modules are the same. On the other hand, the concepts of graded second submodules
and graded S−second submodules are the same. Therefore, the rest follows from Theorem 3.27 �

Theorem 3.29. Let R be a G−graded ring, S ⊆ h(R) be a multiplicatively closed subset of R, M be a
graded S−comultiplication R−module and N be a graded S−second submodule of M . If N ⊆

∑n
i=1 Ni

for some graded submodules N1, N2, ..., Nn of M , then there exists x ∈ S such that xN ⊆ Ni for some
i ∈ {1, 2, ..., n}.

Proof. Assume that N is a graded S−second submodule of a graded S−comultiplication module M such
that N ⊆

∑n
i=1 Ni for some graded submodules N1, N2, ..., Nn of M . Then, we have AnnR(

∑n
i=1 Ni) =⋂n

i=1 AnnR(Ni) ⊆ AnnR(N). Since N is a graded S−second submodule of M , we have AnnR(N) is a
graded S−prime ideal of R by Theorem 3.27. Then, by ( [19], Corollary 2.5), there exists x ∈ S such that
x AnnR(Ni) ⊆ AnnR(N) for some i ∈ {1, 2, ..., n}. Thus, AnnR(Ni) ⊆ AnnR(xN). Then by Theorem
3.4 (iii), xmN ⊆ Ni for some m ∈ S. Therefore, we are done. �

4. Conclusion

Here, we represented a new form of the graded theory. We discussed and proved new theorems in this
area. We investigated the relations between graded S−comultiplication modules and graded S−cyclic
modules. Also, we dedicated the study to graded S−second modules of graded S−comultiplication
modules. We can generalize the notion of graded S−comultiplication modules to the notion of graded
S−comultiplication 2−absorbing modules in the next work.
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