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The Continuous Wavelet Transform for a Laguerre Type Operator on the Half Line

Jyoti Saikia, C. P. Pandey and Sunil Kumar Singh

abstract: In this paper, we consider a Laguerre differential operator Λ on [0, ∞) by accomplishing harmonic
analysis tools with respect to the operator Λ. We study some definitions and properties of Laguerre continuous
wavelet transform. We also explore generalized Laguerre Fourier transform and convolution product on [0, ∞)
associated with the operator Λ. Also a new continuous wavelet transform associated with Laguerre function
is constructed and investigated.
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1. Introduction

For a function f ∈ L2(R), the wavelet transform with respect to the wavelet φ ∈ L2(R) is defined by

(Wϕf)(σ2, σ1) =

∫ ∞

−∞

f(t)ϕσ2,σ1
(t)dt, σ1 > 0 (1.1)

where,

ϕσ2,σ1
(t) = σ

−1/2
1 ϕ(

t − σ2

σ1
). (1.2)

Translation τσ2
is defined by

τσ2 ϕ(t) = ϕ(t − σ2), σ1 ∈ R

and dilation Dσ1
is defined by

Dσ1
ϕ(t) = σ

−1/2
1 φ(

t

σ1
), σ1 > 0.

We can write
ϕσ2,σ1

= τσ2
Dσ1

φ(t). (1.3)

From above equations, we can say that wavelet transform of the function f on R is an integral transform
and the dilated and translated φ is the kernel.
We can also express wavelet transform as the convolution:

(Wϕ)(σ2, σ1) = (f ∗ go,σ1)(σ2), (1.4)

where,
g(t) = ϕ(−t).

Since there is a special type of convolution for every integral transform, therefore one can define wavelet
transform with respect to a integral transform using associated convolution.
The concept of wavelet is a collection of a function derived from a single function called mother wavelet,
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after that by applying the two operators known as translation and dilation we get a new type of continuous
wavelet.
Consider the Laguerre polynomial Lα

m of degree m and of order α > −1,

Lα
m =

x−αex

n!

(

d

dx

)m

xm+αe−x,

satisfies the equations
∂x

(

xe−xLα
m(x)

)

+ me−xLα
m(x) = 0, x ∈ (0, ∞).

The goal of this work is to extend the classical theory of wavelets to the Laguerre functions.
We call generalized wavelet each function g in a suitable functional space, satisfying the admissibility
condition

0 < Cg =
∑

n

|F∆(g)(λ)|2

(λ)
< ∞,

where FΛ(g)(λ) denotes the generalized Fourier transform related to Laguerre function

FΛ(g)(λ) =
1

Γ(α + 1)

∫ ∞

0

f(x)φ−λ(x)e−xxαdx.

Starting from a generalized wavelet g we construct by translation and dilation a family of generalized
wavelets by putting

ga,b(x) =
1

a1/2
T bga(x), a > 0, b ≥ 0,

where ga(x) = g(ax) and T b stand for generalized translation operator.

2. Preliminaries

In this section we states some result and facts related to harmonic analysis associated with the
Laguerre function. Here we only cite the properties needed for the discussion. Throughout this section
assume α > −1.
Define Lp

α[0, ∞), 1 ≤ p ≤ ∞, as the class of measurable functions on [0, ∞) for which ||f ||p,α < ∞,
where

||f ||p,α =

(

1

Γ(α + 1)

∫ ∞

0

|f(x)|pe−xxαdx

)1/p

< ∞, 1 ≤ p ≤ ∞,

and
||f ||∞ = ess0≤x<∞sup|f(x)| < ∞.

The Fourier-Laguerre transform of order α is defined for a function f on [0, ∞) by

Fα(f)(λ) =
1

Γ(α + 1)

∫ ∞

0

f(x)ζα
ne−xxαdx (2.1)

where ζα
n(x) is a Laguerre function

ζα
n(x) = ρ(n)Γ(α + 1)Lα

n(x) (2.2)

ρ(n) = n!
Γ(n+α+1) and Lα

n(x) is the Laguerre polynomial of degree n and of α > −1

Proposition 2.1.

(i) If both f and Fα(f) are in [0, ∞) then

f(x) =
∑

n

Fα(f)ζα
n(x)σ(n)

where

σ(n) =
1

Γ(α + 1)ρ(n)
. (2.3)
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(ii) For every f ∈ L2
α we have

∑

n

σ(n)|Fα(n)|2 =
1

Γ(α + 1)

∫ ∞

0

|f(x)|2e−xxαdx.

(iii) The inverse transform is given by

F −1
α (g)(y) =

∑

n

g(n)ζα
n(y)σ(n).

The Laguerre translation operators τx, x > 0 in [4] are defined by

τx =
1

Γ(α + 1)

∫ ∞

0

f(z)d(x, y, z)e−zzαdz, (2.4)

where
d(x, y, z) =

∑

n

ζα
n(x)ζα

n(y)ζα
n(z)σ(n), (2.5)

∫ ∞

0

d(x, y, z)ζα
n(z)d∆(z) = ζα

n(x)ζα
n(y), (2.6)

and

dΛ(λ) =
1

Γ(α + 1)
e−λλαdλ. (2.7)

The Laguerre convolution product of two functions is defined by the relation

f ∗ g(x) =
1

Γ(α + 1)

∫ ∞

0

τxf(y)g(y)e−yyαdy. (2.8)

Proposition 2.2. Let p ∈ [1, ∞] and f ∈ Lp
α, Then for all x ≥ 0, τxf ∈ Lp

α and

(i) ||τxf ||p,α ≤ ||f ||p,α.

(ii) Fα(τxf) = Lα
n(y)Fα.

(iii) Let p, q ∈ [1, ∞) such that 1
p + 1

q = 1. If f ∈ Lp
α and g ∈ Lq

α, then

∫ ∞

0

τxf(y)g(y)d(x, y, z)e−yyαdy =

∫ ∞

0

f(y)τxg(y)d(x, y, z)e−yyαdy.

(iv) Let p, q, r ∈ [1, ∞) such that 1
p + 1

q − 1 = 1
r . If f ∈ Lp

α and g ∈ Lq
α then f ∗ g ∈ Lr

α and

||f ∗ g||r,α ≤ ||f ||p,α||g||q,α.

(v) Fα(f ∗ g) = Fα(f)Fα(g).

Definition 2.3. A function g ∈ Lp
α be a Laguerre wavelet.The continuous Laguerre wavelet, if it satisfies

the admissibility condition

0 < Cα
g =

∑

n

|Fα(g)(n)|2

n
< ∞. (2.9)

Definition 2.4. Let g ∈ Lp
α be a Laguerre wavelet transform is defined for suitable function f by

Sα
g (f)(b, a) =

1

Γ(α + 1)

∫ ∞

0

f(x)gα
b,a(x)e−xxαdx, (2.10)

where a > 0, b > 0,

gα
b,a(t) =

1

a1/2
τbga(t) (2.11)

and
ga(t) = g(at) = g(t/a). (2.12)
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Theorem 2.5. Let g ∈ Lp
α[0, ∞) be a Laguerre wavelet. Then

(i) For all f ∈ L2
α[0, ∞) we have the Plancherel formula

∫ ∞

0

|f(x)|2dΛ(x) =
1

Cα
g

∫ ∞

0

∫ ∞

0

|Sα
g (f)(b, a)|2

dΛ(a)

a
dΛ(b).

(ii) For f ∈ L2
α[0, ∞) such that Fα(f) ∈ L2

α[0, ∞) we have

f(x) =
1

Cα
g

∫ ∞

0

(
∫ ∞

0

Sα
g (f)(b, a)gα

b,a(x)dΛ(b)

)

dΛ(a)

a

for almost all x ≥ 0. Where dΛ(λ) = 1
Γ(α+1) e−λλαdλ.

3. Harmonic analysis associated with Laguerre function

Note 3.1 From here assume α > −1 and n ∈ N ∪ {0}. Let M be the map defined by

Mf(x) = e
−|λ|x2

2 f(x).

Let Lp
α, 1 ≤ p ≤ ∞, be the class of measurable functions f on [0, ∞) for which ||f ||p = ||M−1f ||p < ∞.

3.1 Generalized Fourier Transform

For λ ∈ C and x ∈ R, put

φλ(x) = e
−|λ|x2

2 ζα
m(|λ|x2), (3.1)

where ζα
m(x) is a Laguerre function.

Definition 3.1. The generalized Fourier transform is defined for a function f ∈ L1
α by

FΛ(f)(λ) =
1

Γ(α + 1)

∫ ∞

0

f(x)φ−λ(x)e−xxαdx, λ ≥ 0. (3.2)

Remark 3.2.

(i) By (3.1) and (3.2) observe that
FΛ = Fα ◦ M−1, (3.3)

where Fα is the Fourier-Laguerre transform given by (1.1).

(ii) If f ∈ L1
α then FΛ(f) satisfies ||FΛ(f)||∞ ≤ ||f ||1,Λ.

Theorem 3.3. Let f be a measurable function on [0, ∞), Then for almost all x ≥ 0.

f(x) =
∑

λ

FΛ(f)(λ)φλ(x)σ(λ),

where σ(λ) is given in (2.3).

Proof. By (3.1), (3.3) and proposition 2.1(ii) we have

∑

λ

FΛ(f)(λ)φλ(x)σ(λ) = e
−|λ|x2

2

∑

λ

FΛ(f)(λ)ζα
n(x)ρ(λ)

= e
−|λ|x2

2

∑

λ

FΛ(M−1f)(λ)ζα
n(x)ρ(λ)

= e
−|λ|x2

2 M−1f(x)

= f(x)

�
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Theorem 3.4.

(i) The Plancherel formula

∑

λ

ρ(λ)|FΛ(f)(λ)|2 =

∫ ∞

0

|f(x)|2e−xxαdx.

(ii) The inverse transform is given by

F −1
Λ (g)(x) =

∑

λ

ρ(λ)|FΛ(M−1f)(λ)|2

Proof. By (3.3) and proposition 2.1(iii) we have

∑

λ

ρ(λ)|FΛ(f)(λ)|2 =
∑

λ

ρ(λ)|FΛ(M−1f)(λ)|2

=

∫ ∞

0

|M−1f(x)|2e−xxαdx

=

∫ ∞

0

|f(x)|2e−xxαdx

which ends the proof of (i).
The proof of (ii) is obvious. �

3.2 Generalized translation operators and convolution product

Definition 3.5. The generalized translation operators T x, x ≥ 0, by the relation

T xf(y) = e
−|λ|(x2+y2)

2 τx
α(M−1f)(y), (3.4)

where τx
α is the Laguerre translation operator.

Definition 3.6. The generalized convolution product of two functions f and g is defined by

f♯g(x) =
1

Γ(α + 1)

∫ ∞

0

T xf(y)g(y)e−yyαdy. (3.5)

Remark 3.7. By (3.4)
f♯g(x) = M [(M−1f) ∗y (M−1g)], (3.6)

where ∗y is the Laguerre convolution given by (2.8).

Proof.

f♯g(x) =
1

Γ(α + 1)

∫ ∞

0

T xf(y)g(y)e−yyαdy

=
1

Γ(α + 1)

∫ ∞

0

e
−|λ|(x2+y2)

2 τx
α(M−1f)(y)g(y)e−yyαdy

=
e

−|λ|(x2)
2

Γ(α + 1)

∫ ∞

0

e
−|λ|(y2)

2 τx
α(M−1f)(y)g(y)e−yyαdy

= e
−|λ|(x2)

2 [(M−1f) ∗y (M−1g)](x)

= M [(M−1f) ∗y (M−1g)](x).

�
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Proposition 3.8.

(i) ||T xf ||p,α ≤ e
−|λ|(x2)

2 ||f ||p,α

(ii) FΛ(T xf) = φλ(x)FΛ(f)(λ).

(iii) Let p, q, r ∈ [0.∞) such that 1
p + 1

q − 1 = 1
r , then

||f♯g||r,α ≤ ||f ||p,α||g||q,α.

(iv) FΛ(f♯g) = FΛ(f)FΛ(g).

Proof. (i) By using proposition 2.2(i) and (3.4) we have

||T xf ||p,α = ||e
−|λ|(x2+y2)

2 τx
α(M−1f)||p,α

= e
−|λ|(x2)

2 ||e
−|λ|(y2)

2 τx
α(M−1f)||p,α

= e
−|λ|(x2)

2 ||M ◦ τx
α ◦ (M−1f)||p,α

= e
−|λ|(x2)

2 ||τx
α ◦ M−1f ||

≤ e
−|λ|(x2)

2 ||M−1f ||p,α

= e
−|λ|(x2)

2 ||f ||p,α.

(ii) By (3.1), (3.3), (3.4) and proposition (ii)

FΛ(T xf)(λ) = Fα ◦ M−1(T xf)(λ)

= Fα ◦ M−1

(

e
−|λ|(x2)

2 M ◦ τx
α ◦ M−1f

)

(λ)

= e
−|λ|(x2)

2 Fα

(

τx
α ◦ M−1f

)

(λ)

= e
−|λ|(x2)

2 Lα
n(λ)Fα(f)(λ)

= φλ(x)Fα(f)(λ).

(iii) By (3.4) and proposition 2.2(iii)

||f♯g||r,α = ||M [(M−1f)y(M−1g)]||r,α

≤ ||M−1f ||p,α||M−1g||q,α

= ||f ||p,α||g||q,α.

(iv) By (3.3), (3.6) and proposition 2.2(v)

FΛ(f♯g) = Fα[(M−1f) ∗y (M−1g)]

= Fα(M−1f)Fα(M−1g)

= FΛ(f)FΛ(g).

�

3.3 Transmutation operators

Definition 3.9. For a function f on half line, define the integral transform by

χf(x) =
2Γ(α + 1)

ΓπΓ(α + 1/2)
e

−|λ|(x2)
2

∫ 1

0

f(tx)(1 − t2)α−1/2dt. (3.7)
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Remark 3.10.

(i) For λ = 0, χ is just the Riemann-Liouville integral transform of α order by

Rα(f)(y) = aα

∫ 1

0

f(ty)(1 − t2)α−1/2dt, (3.8)

where aα = 2Γ(α+1)
ΓπΓ(α+1/2) .

(ii) By (3.8)
χ = M ◦ Rα. (3.9)

Definition 3.11. Define the integral transform tχ for a smooth function f on half line by

tχf(y) = aα

∫ ∞

y

e
−|λ|x2

2 f(x)(x2 − y2)α−1/2dx (3.10)

Remark 3.12.

(i) For λ = 0,t χ reduces to the Weyl integral transform of order αby

Wα(f)(y) = aα

∫ ∞

y

f(x)(x2 − y2)α−1/2dx, y ≥ 0. (3.11)

(ii) It is seen that
tχ = Wα ◦ M−1. (3.12)

Proposition 3.13.

(i) ||χf ||∞,α ≤ ||f ||α.

(ii) ||tχf ||1 ≤ ||f ||1,∞.

(iii) tχ(f♯g) =t χf ∗t χg.

(iv) χ(tχf ∗ g) = f♯(χg).

Proof. (i) By (3.9) and [4] we have

||χf ||∞,α = ||M ◦ Rα(f)||∞ = ||Rα(f)||∞ ≤ ||f ||∞.

(ii) By (3.12) and [4] we have

||tχf ||1 ≤ ||Wα ◦ M−1||1 ≤ ||M−1(f)||1,∞ = ||f ||1,∞.

(iii) By (3.6), (3.12) and [4] we have

tχ(f♯g) = Wα ◦ M−1(f♯g)

= Wα ◦ M−1(M [(M−1f) ∗y (M−1g)])

= Wα ◦ [(M−1f) ∗y (M−1g)]

= (WαM−1f) ∗ (WαM−1g)

=t χf ∗t χg.

(iv) By (3.6), (3.9), (3.12) and [4] we have

f♯(χg) = M [(M−1f) ∗y (M−1χg)]

= M [(M−1f) ∗y (M−1M ◦ Rαg)]

= M [(M−1f ∗y (Rαg))]

= MRα[(WαM−1f) ∗ g]

= χ(tχf ∗ g).

�
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4. Generalized wavelets

Definition 4.1. A generalized wavelet is a function g satisfying the admissibility condition

0 < Cg =
∑

n

|FΛ(g)(λ)|2

(λ)
< ∞. (4.1)

Remark 4.2. By (2.9), (3.3) and (4.1), g ∈ Lp
Λ is a generalized wavelet if and only if, M−1g is a

Laguerre wavelet and
Cg = Cα

M−1g. (4.2)

Note 4.1 For g ∈ Lp
Λ and (a, b) ∈ (0, ∞) × [0, ∞) let

ga,b(t) = a−1/2T bga(t). (4.3)

where ga(t) = g(at) is given by () and T b is the generalized translation operator defined by ().

Proposition 4.3. For all (a, b) ∈ (0, ∞) × [0, ∞) we have

ga,b(t) = e
−|λ|(b2+t2)

2 (M−1g)α
b,a(t). (4.4)

Proof. Using (2.12), (3.4) and (4.3) we have

ga,b(t) =
1

a1/2
T bga(t)

=
1

a1/2
e

−|λ|(b2+t2)
2 τ b

α(M−1g)(at)

=
e

−|λ|(b2+t2)
2

a1/2
τ b

α(M−1g)(at)

= e
−|λ|(b2+t2)

2 (M−1g)α
b,a(t).

�

Definition 4.4. Let g ∈ Lp
α be a generalized wavelet. The generalized continuous wavelet transform is

defined by

φg(f)(a, b) =
1

Γ(α + 1)

∫ ∞

0

f(x)ga,b(x)e−xxαdx, (4.5)

which can also be written as

φg(f)(a, b) =
1

a−1/2
f♯ga(b), (4.6)

where ♯ is the generalized convolution product given by (3.5).

Proposition 4.5. We have

φg(f)(a, b) = e
−|λ|b2

2 Sα
M−1g(M−1f)(a, b). (4.7)

Proof.

φg(f)(a, b) =
1

Γ(α + 1)

∫ ∞

0

f(x)ga,b(x)e−xxαdx

=
1

Γ(α + 1)

∫ ∞

0

f(x)e
−|λ|(b2+x2)

2 (M−1g)α
b,a(x)e−xxαdx

=
e

−|λ|(b2)
2

Γ(α + 1)

∫ ∞

0

f(x)e
−|λ|(x2)

2 (M−1g)α
b,a(x)e−xxαdx

=
e

−|λ|(b2)
2

Γ(α + 1)

∫ ∞

0

(M−1f)α
b,a(x)(M−1g)α

b,a(x)e−xxαdx

= e
−|λ|b2

2 Sα
M−1g(M−1f)(a, b).
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�

Theorem 4.6. Plancherel formula

∫ ∞

0

|f(x)|2dΛ(x) =
1

Cg

∫ ∞

0

∫ ∞

0

|φg(f)(a, b)|2dΛ(b)
dΛ(a)

a
.

Proof. By (4.2), (4.5) and Theorem 2.1(i) we have

∫ ∞

0

∫ ∞

0

|φg(f)(a, b)|2dΛ(b)
dΛ(a)

a
=

∫ ∞

0

∫ ∞

0

(e
−|λ|b2

2 )2|Sα
M−1g(M−1f)(a, b)|2e−(a+b)aαbαdb

da

a

=

∫ ∞

0

∫ ∞

0

|Sα
M−1g(M−1f)(a, b)|2e−(|λ)|b2+a+b)aαbαdb

da

a

= Cα
M−1g

∫ ∞

0

|M−1f(x)|2e−xxαdx

= Cg

∫ ∞

0

|f(x)|2dΛ(x).

�

Theorem 4.7. Inversion formula

f(x) =
1

Cg

∫ ∞

0

(

φg(f)(a, b)ga,b(x)e−(a+b)aαbαdb
) da

a

Proof. By (4.2), (4.3) and (4.5) we have

1

Cg

∫ ∞

0

(

φg(f)(a, b)ga,b(x)e−(a+b)aαbαdb
) da

a

=
1

Cα
M−1g

∫ ∞

0

(
∫ ∞

0

e
−|λ|b2

2 Sα
M−1g(M−1f)(a, b)ga,b(x)e−(a+b)aαbαdb

)

da

a

=
1

Cα
M−1g

∫ ∞

0

(
∫ ∞

0

(Sα
M−1g(M−1f)(a, b))ga,b(x)e−(|λ|b2+a+b)aαbαdb

)

da

a

The result follows now from the Theorem 2.1(iii). �
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