
Bol. Soc. Paran. Mat. (3s.) v. 2024 (42) : 1–15.
©SPM –ISSN-2175-1188 on line ISSN-0037-8712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.65826

A Quasistatic Electro-Elastic Contact Problem with Long Memory and Slip Dependent

Coefficient of Friction ∗

Nadhir Chougui, Fares Yazid†, Abdelkader Saadallah and Fatima Siham Djeradi

abstract: In this paper we consider a mathematical model which describes a quasistatic frictional contact
problem between a deformable body and an obstacle, say a foundation. We assume that the behavior of the
material is described by a linear electro-elastic constitutive law with long memory. The contact is modelled
with a version of Coulomb’s law of dry friction in which the normal stress is prescribed on the contact surface.
Moreover, we consider a slip dependent coefficient of friction. We derive a variational formulation for the
model, in the form of a coupled system for the displacements and the electric potential. Under a smallness
assumption on the coefficient of friction, we prove an existence result of the weak solution of the model. We
can show the uniqueness of the solution by adding another condition. The proofs are based on arguments of
time-dependent variational inequalities, differential equations and Banach fixed point theorem.
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1. Introduction

Since frictional contact is so important in industry and in everyday life, there is a need to model and
predict it accurately. However, the main industrial need is to effectively control the process of frictional
contact. Currently, there is a considerable interest in frictional contact problems involving piezo-electric
materials, see for instance [2], [6], [9], [10], [12], [19], [20], and [21]. Exellent refernce on analysis and
numerical appximation of variational inequalities arising from frictional contact problems are [5] and [17].

A piezoelectric material is one that produces an electric charge when a mechanical stress is applied
(the material is squeezed or stretched). Conversely, a mechanical deformation (the material shrinks or
expands) is produced when an electric field is applied. This kind of materials appears usually in the
industry as switches in radiotronics, electroacoustics or measuring equipments. Piezoelectric materials
for which the mechanical properties are elastic are also called electro-elastic materials, and those for which
the mechanical properties are viscoelastic are also called electro-viscoelastic materials. Different models
have been developed to describe the interaction between the electric and mechanical fields ( see [1], [3],
[8], [13]- [15], [24], [25]). General models for elastic materials with piezoelectric effect, called electro-
elastic materials, can be found in [1], [8] and [22]. A static frictional contact problem for electric-elastic
materials was considered in [2], [11] and a slip-dependent frictional contact problem for electro-elastic
materials was studied in [20].

This paper is a contribution to the study of the contact problem for piezoelectric materials. In this
work, we consider a mathematical model for frictional contact between a body assumed to be electro-
elastic with long memory and an obstacle, say foundation. We model the contact with a version of
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Coulomb’s law of dry friction in which the normal stress is prescribed on the contact surface and the
coefficient of friction depends on the slip. The novelty in the present paper consists in the fact that
the material’s behavior is assumed to be electro-elastic with long memory. Note that the elastic contact
problem is resolved in [4].

The paper is structured as follows. In Section 2 we present the electro-elastic contact model and
provide comments on the contact boundary conditions. In Section 3 we list the assumptions on the data
and derive the variational formulation. In section 4, we present our main existence results, where we can
show the uniqueness of the solution by adding another condition.

2. Problem statement

We consider the following physical setting. An electro-elastic body occupies a bounded domain Ω ⊂
Rd (d = 2, 3) with a smooth boundary ∂Ω = Γ. The body is submitted to the action of body forces
of density f0 and volume electric charges of density q0. It is also submitted to mechanical and electric
constraints on the boundary. To describe them, we consider a partition of Γ into three measurable parts
Γ1, Γ2 and Γ3 on one hand, and a partition of Γ1 ∪ Γ2 into two open parts Γa and Γb, on the other
hand., such that meas(Γ1) > 0, meas(Γa) > 0. We assume that the body is clamped on Γ1 and surface
tractions of density f2 act on Γ2. On Γ3 the body is in frictional contact with an insulator obstacle, the
so-called foundation. We also assume that the electrical potential vanishes on Γa and a surface electric
charge of density q2 is prescribed on Γb. We denote by Sd the space of second order symmetric tensors
on Rd and we use ”.” and ‖ ‖ for the inner product and the Euclidean norm on Rd and Sd, respectively.
Also, below ν represents the unit outward normal on Γ. With these assumptions, the classical model for
the process is the following.

Problem 1. Find a displacement field u : Ω × [0, T ] → Rd, a stress field σ : Ω × [0, T ] → Sd, an electric
potential field ϕ : Ω × [0, T ] → R, and an electric displacement field D : Ω × [0, T ] → Rd such that :

σ = Fε(u) +

∫ t

0

K(t− s)ε(u)ds− E∗E(ϕ) in Ω × (0, T ) , (2.1)

D = BE(ϕ) + Eε(u) in Ω × (0, T ) , (2.2)

Divσ + f0 = 0 in Ω × (0, T ) , (2.3)

divD = q0 in Ω × (0, T ) , (2.4)

u = 0 on Γ1 × (0, T ) , (2.5)

σν = f2 on Γ2 × (0, T ) , (2.6)

σν = S on Γ3 × (0, T ) , (2.7)







‖ στ ‖≤ µ(‖ uτ ‖) | S |
‖ στ ‖< µ(‖ uτ ‖) | S |=⇒ u̇τ = 0
‖ στ ‖= µ(‖ uτ ‖) | S |⇒ ∃λ ≥ 0, στ = −λu̇τ

on Γ3 × (0, T ) , (2.8)

ϕ = 0 on Γa × (0, T ) , (2.9)

D · ν = q2 on Γb × (0, T ) , (2.10)

u(0) = u0 in Ω. (2.11)

We now provide some comments on equations and conditions (2.1)–(2.11). Equations (2.1) and (2.2)
represent the electro-elastic constitutive law with long memory of the material such that: F = (Fijkl) is
a 4th rank tensor, called the elastic tensor and its components Fijkl are called coefficients of elasticity;

ε(u) denotes the linearized strain tensor;
∫ t

0 K(t − s)ε(u)ds is the memory term in which K denotes
the tensor of relaxation; the stress σ(t) at current instant t depends on the whole history of strains
up to this moment of time; E(ϕ) = −∇ϕ is the electric field, where ϕ is the electric potential, E

represents the piezoelectric operator, E∗ is its transposed, B denotes the electric permittivity operator,
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and D = (D1, . . . , Dd) is the electric displacement vector. Details on the constitutive equations of the
form (2.1) and (2.2) can be find, for instance, in [1], [2] and in [23]. Next, equations (2.3) and (2.4)
are the equilibrium equations for the stress and electric-displacement fields, respectively, in which “Div”
and “div” denote the divergence operator for tensor and vector valued functions, respectively. Equations
(2.5) and (2.6) represent the displacement and traction boundary conditions. Conditions (2.9) and (2.10)
represent the electric boundary conditions. Condition (2.7) states that the normal stress σν is prescribed
on the contact surface, since S is a given data. Such kind conditions arise in the study of some mechanisms
and were already used in [7,18]. Condition (2.8) represents the Coulomb’s law of dry friction, where στ

is the tangential stress, uτ , u̇τ are the tangential displacement and velocity, respectively. The function
µ, which assumed to depend on the slip ‖ uτ ‖, is the coefficient of friction. When the strong inequality
holds the surface of the body adheres to the foundation and is in the so-called stick state and when
equality holds, there is relative sliding, the so-called slip state. Here and below in this paper, a dot above
a function represents the derivative with respect to the time variable. Finally, (2.11) represent the initial
condition where u0 is given.

3. Variational formulation and preliminaries

In this section, we list the assumptions on the data and derive a variational formulation for the contact
problem. To this end we need to introduce some notation and preliminary material.

We recall that the inner products and the corresponding norms on Rd and Sd are given by

u · υ = uiυi , ‖υ‖ = (υ · υ)
1

2 , ∀u, υ ∈ Rd,

σ · τ = σijτ ij , ‖τ‖ = (τ · τ )
1

2 , ∀σ, τ ∈ Sd.

Here and everywhere in this paper, i, j, k, l run from 1 to d, summation over repeated indices is applied
and the index that follows a comma represents the partial derivative with respect to the corresponding

component of the spatial variable, e.g. ui,j =
∂ui

∂xj

.

Everywhere below, we use the classical notation for Lp and Sobolev spaces associated to Ω and Γ.
Moreover, we use the notation L2(Ω)d, H1(Ω)d, H and H1 for the following spaces

L2(Ω)d = { υ = (υi) | υi ∈ L2(Ω) }, H1(Ω)d = { υ = (υi) | υi ∈ H1(Ω) },
H = { τ = (τ ij) | τ ij = τ ji ∈ L2(Ω) }, H1 = { τ ∈ H | τ ij,j ∈ L2(Ω) }.

The spaces L2(Ω)d, H1(Ω)d, H and H1 are real Hilbert spaces endowed with the canonical inner products
given by

(u, υ)L2(Ω)d =

∫

Ω

u · υ dx, (u, υ)H1(Ω)d =

∫

Ω

u · υ dx +

∫

Ω

∇u · ∇υ dx,

(σ, τ )H =

∫

Ω

σ · τ dx, (σ, τ )H1
=

∫

Ω

σ · τ dx+

∫

Ω

Div σ ·Div τ dx,

and the associated norms ‖ ‖L2(Ω)d , ‖ ‖H1(Ω)d , ‖ ‖
H

and ‖ ‖
H1

, respectively. Here and below we use
the notation

∇υ = (υi,j), ε(υ) := (εij(υ)), εij(υ) :=
1

2
(υi,j + υj,i), ∀ υ ∈ H1(Ω)d,

Div τ = (τ ij,j), ∀ τ ∈ H1.

For every element υ ∈ H1(Ω)d. We also write υ for the trace of υ on Γ and we denote by υν and υτ the
normal and tangential components of υ on Γ given by υν = υ · ν, υτ = υ − υνν.

Let now consider the closed subspace of H1(Ω)d defined by

V := { υ ∈ H1(Ω)d : υ = 0 on Γ1 }.

Since meas (Γ1) > 0, the following Korn’s inequality holds

‖ε(υ)‖H ≥ cK ‖υ‖H1(Ω)d , ∀ υ ∈ V, (3.1)
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where cK > 0 is a constant which depends only on Ω and Γ1. Over the space V we consider the inner
product given by

(u, υ)V = (ε(u), ε(υ))H, (3.2)

and let ‖ ‖V be the associated norm. It follows from Korn’s inequality (3.1) that ‖ ‖H1(Ω)d and ‖ ‖V

are equivalent norms on V and, therefore, (V, ‖ ‖V ) is a real Hilbert space. Moreover, by the Sobolev
trace theorem, (3.1) and (3.2), there exists a constant C0 depending only on the domain Ω, Γ1 and Γ3

such that
‖υ‖L2(Γ3)d ≤ C0‖υ‖V , ∀υ ∈ V. (3.3)

We also introduce the following spaces

W = { ψ ∈ H1(Ω) | ψ = 0 on Γa },

W1 = { D = (Di) | Di ∈ L2(Ω), Di,i ∈ L2(Ω) }.

Since meas (Γa) > 0, the following Friedrichs-Poincaré inequality holds

‖∇ψ‖L2(Ω)d ≥ cF ‖ψ‖H1(Ω), ∀ψ ∈ W, (3.4)

where cF > 0 is a constant which depends only on Ω and Γa. Over the space W , we consider the inner
product given by

(ϕ, ψ)W =

∫

Ω

∇ϕ · ∇ψ dx,

and let ‖ ‖W be the associated norm. It follows from (3.4) that ‖ ‖H1(Ω) and ‖ ‖W are equivalent

norms on W and therefore (W, ‖ ‖W ) is a real Hilbert space. Moreover, by the Sobolev trace theorem,
there exists a constant c̃0, depending only on Ω, Γa and Γ3, such that

‖ψ‖L2(Γ3) ≤ c̃0‖ψ‖W , ∀ψ ∈ W. (3.5)

The space W1 is a real Hilbert space with the inner product

(D,E)W1
=

∫

Ω

D · E dx+

∫

Ω

div D · div E dx,

and the associated norm ‖ · ‖W1
.

Finally, for every real Hilbert space X we use the classical notation for the spaces Lp(0, T ;X) and
W k,p(0, T ;X), 1 ≤ p ≤ ∞, k ≥ 1.

In the study of the Problem 1, we consider the following assumptions on the problem data.
The elasticity operator F, the piezoelectric operator E, the electric permittivity operator B and the

coeffcient of friction satisfy














(a) F = (Fijkl) : Ω × Sd −→ Sd.

(b) Fijkl = Fklij = Fjikl ∈ L∞(Ω).
(c) There exists mF > 0 such that Fijklεijεkl ≥ mF‖ε‖2,

∀ε ∈ Sd.

(3.6)















(a) E : Ω × Sd → Rd.

(b) E(x, τ ) = (eijk(x)τ jk), ∀τ = (τ ij) ∈ Sd, ∀ x ∈ Ω.

(c) eijk = eikj ∈ L∞(Ω).

(3.7)



































(a) B : Ω × Rd → Rd.

(b) B(x,E) = (bij(x)Ej), ∀E = (Ei) ∈ Rd, ∀x ∈ Ω.

(c) bij = bji ∈ L∞(Ω).

(d) There exists mB > 0 such that bij(x)EiEj ≥ mB‖E‖2,

∀E = (Ei) ∈ R
d.

(3.8)
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(a) µ : Γ3 × R+ → R+.

(b) There exists Cµ > 0 such that
|µ(x, r1) − µ(x, r2)| ≤ Cµ|r1 − r2|,
∀r1, r2 ∈ R+, ∀x ∈ Γ3.

(c) The mapping x 7−→ µ(x, r) is Lebesgue measurable
on Γ3, ∀r ∈ R+.

(d) The mapping x 7−→ µ(x, 0) ∈ L2(Γ3).

(3.9)

We note here that, to obtain the uniqueness results, we need to replace assumption (3.9) by the following
condition where µ does not depend on the slip ‖ uτ ‖, i.e.

{

µ is given function which satisfies
µ ∈ L2(Γ3) and µ(x) ≥ 0.

(3.10)

From the assumptions (3.7) and (3.8), we deduce that the piezoelectric operator E and the electric per-
mittivity operator B are linear, have measurable bounded components denoted eijk and bij , respectively,
and moreover, B is symmetric and positive definite.

Recall also that the transposed operator E∗ is given by E∗ = (e∗
ijk) where e∗

ijk = ekij , and the following
equality holds

Eσ · υ = σ · E∗υ ∀σ ∈ S
d, υ ∈ R

d. (3.11)

We also suppose that the body forces and surface tractions have the regularity

f0 ∈ W 1,∞(0, T ;L2(Ω)d), f2 ∈ W 1,∞(0, T ;L2(Γ2)d). (3.12)

We assume that the tensor of relaxation K satisfies

K ∈ W 1,∞(0, T ;L(V )), (3.13)

where L(V ) is the space of linear continuous operators from V to V .
We assume that the given normal stress satisfies

S ∈ L∞(Γ3), (3.14)

and the densities of electric charges satisfy

q0 ∈ W 1,∞(0, T ;L2(Ω)), q2 ∈ W 1,∞(0, T ;L2(Γb)). (3.15)

The Riesz representation theorem implies the existence of two functions
f : [0, T ] → V and q : [0, T ] → W such that

(f(t), υ)V =

∫

Ω

f0(t) · υ dx+

∫

Γ2

f2(t) · υ da, (3.16)

(q(t), ψ)W =

∫

Ω

q0(t)ψ dx−

∫

Γb

q2(t)ψ da, (3.17)

for all υ ∈ V, ψ ∈ W and t ∈ [0, T ]. We note that conditions (3.12) and (3.15) imply that

f ∈ W 1,∞(0, T ;V ), q ∈ W 1,∞(0, T ;W ). (3.18)

Next, we define the friction functional V × V → R by

jfr(u, υ) =

∫

Γ3

µ(‖uτ ‖) | S | ‖υτ ‖ da. (3.19)

Finally, we consider the following assumptions on the initials conditions

u0 ∈ V, (3.20)



6 N. Chougui, F. Yazid, A. Saadallah and F. S. Djeradi

(Fε(u0), ε(υ))H + (E∗∇ϕ0, ε(υ))H + jfr(u0, υ) ≥ (f(0), υ)V ∀υ ∈ V, (3.21)

(B∇ϕ0,∇ψ)L2(Ω)d = (Eε(u0),∇ψ)L2(Ω)d + (q(0), ψ)W ∀ψ ∈ W. (3.22)

By a standard procedure based on Green’s formula we can derive the following variational formulation
of the contact problem (2.1)–(2.11).

Problem 2. Find a displacement field u : [0, T ] −→ V and an electric potential field ϕ : [0, T ] → W such
that :

(Fε(u(t)), ε(υ) − ε(u̇(t)))H +

(

t
∫

0

K(t− s)ε(u(s))ds, ε(υ) − ε(u̇(t))

)

H

+(E∗∇ϕ(t), ε(υ) − ε(u̇(t)))H + jfr(u(t), υ) − jfr(u(t), u̇(t))
≥ (f(t), υ − u̇(t))V , ∀υ ∈ V a.e. t ∈ [0 T ] ,

(3.23)

(B∇ϕ(t),∇ψ)L2(Ω)d − (Eε(u(t)),∇ψ)L2(Ω)d = (q(t), ψ)W

∀ψ ∈ W a.e. t ∈ [0 T ] ,
(3.24)

u(0) = u0, (3.25)

4. Existence and uniqueness result

Our main result which states the solvability of Problem 2, is the following.

Theorem 4.1. Assume that (3.6)–(3.8), (3.12)–(3.15) and (3.20)–(3.22) hold. Then

(i) Under the assumption (3.9), there exists µ0 > 0 such that if Cµ ‖ S ‖L∞(Γ3)≤ µ0 then the Problem

2 has at least a solution (u, ϕ) which satisfies

u ∈ W 1,∞(0, T ;V ), (4.1)

ϕ ∈ W 1,∞(0, T ;W ). (4.2)

(ii) Under the assumption (3.10), there exists µ0 > 0 such that if Cµ ‖S‖L∞(Γ3) ≤ µ0 then the Problem

2 has a unique solution (u, ϕ) which satisfies

u ∈ W 1,∞(0, T ;V ), (4.3)

ϕ ∈ W 1,∞(0, T ;W ). (4.4)

Moreover, the mapping (f, u0) −→ u is Lipschitz continuous from
W 1,∞(0, T ;V ) × V to L∞(0, T ;V ).

A quadruple of functions (u, σ, ϕ, D) which satisfies (2.1), (2.2), (3.23)–(3.25) is called a weak solution
of the contact Problem 1. To precise the regularity of the weak solution we note that the constitutive
relations (2.1) and (2.2), the assumptions (3.6)–(3.8) and the regularities (4.3), (4.4) show that σ ∈
W 1,∞(0, T ;H), D ∈ W 1,∞(0, T ;L2(Ω)d). By putting υ =

.
u(t) ± ξ, where ξ ∈ C∞

0 (Ω)d in (3.23) and
ψ ∈ C∞

0 (Ω) in (3.24) we obtain

Divσ(t) + f0(t) = 0, divD(t) = q0(t), ∀t ∈ [0, T ].

It follows now from the regularities (3.12), (3.15) that Divσ ∈ W 1,∞(0, T ;L2(Ω)d) and
divD ∈ W 1,∞(0, T ;L2(Ω)), which shows that

σ ∈ W 1,∞(0, T ;H1), (4.5)

D ∈ W 1,∞(0, T ;W1). (4.6)

We conclude that the weak solution (u, σ, ϕ,D) of the piezoelectric contact Problem 1 has the regularity
implied in (4.3), (4.4), (4.5) and (4.6).

The proof of Theorem 4.1 is carried out in several steps and is based on the following abstract result
for evolutionary variational inequalities.
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Let X be a real Hilbert space with the inner product (·, ·)X and the associated norm ‖ ‖X .
Let a : X × X −→ R be a bilinear form on X, j : X × X −→ R, f : [0 T ] −→ X and u0 ∈ X . With

these data, we consider the following quasivariational problem: find u : [0 T ] −→ X such that

a(u(t), υ − u̇(t)) + j(u(t), υ) − j(u(t), u̇(t)) ≥ (f(t), υ − u̇(t))X

∀υ ∈ X, a.e. t ∈ (0 T ),
(4.7)

u(0) = u0. (4.8)






















a : X ×X −→ R is a bilinear symmetric form and
(a) there exists M > 0 such that

|a(u, υ)| ≤ M ‖u‖X ‖υ‖X , ∀u, υ ∈ X,

(b) there exists m > 0 such that

a(υ, υ) ≥ m ‖υ‖
2
X , ∀υ ∈ X.

(4.9)

In order to solve the problem (4.7)–(4.8), we consider the following assumptions.















For every ζ ∈ X, j(ζ, .) : X −→ R is a positively
homogeneous subadditive functional, i.e.
(a) j(ζ, λu) = λj(ζ, u) ∀u ∈ X, λ ∈ R+,

(b) j(ζ, u+ υ) ≤ j(ζ, u) + j(ζ, υ), ∀u, υ ∈ X.

(4.10)

f ∈ W 1,∞(0, T ;X). (4.11)

u0 ∈ X. (4.12)

a(u0, υ) + j(u0, υ) ≥ (f(0), υ)X , ∀υ ∈ X. (4.13)

Keeping in mind (4.10), it results that for all ζ ∈ X , j(ζ, .) : X −→ R is a convex functional. Therefore,
there exists the directional derivative j

′

2 given by

j
′

2(ζ, u; υ) = lim
λց0

1

λ
[j(ζ, u+ λυ) − j(ζ, u) ] , ∀ζ, u, υ ∈ X. (4.14)

We consider now the following additional assumptions on the functional j.



















For every sequence (un) ⊂ X with ‖un‖X −→ ∞,
every sequence (tn) ⊂ [0 1] and each ũ ∈ X one has

lim
n→+∞

inf

[

1

‖un‖
2
X

j
′

2(tnun, un − ũ; −un)

]

< m.

(4.15)



















For every sequence (un) ⊂ X with ‖un‖X −→ ∞, every
bounded sequence (ζn) ⊂ X and each ũ ∈ X one has

lim
n→+∞

inf

[

1

‖un‖
2
X

j
′

2(ζn, un − ũ; −un)

]

< m.

(4.16)











For all sequence (un) ⊂ X and (ζn) ⊂ X such that
un ⇀ u ∈ X, ζn ⇀ ζ ∈ X and for every υ ∈ X, we have
lim

n→+∞
sup [j(ζn, υ) − j(ζn, un)] ≤ j(ζ, υ) − j(ζ, u).

(4.17)

{

There exists k0 ∈ (0,m) such that

j(u, υ − u) − j(υ, υ − u) ≤ k0 ‖u− υ‖
2
X , ∀u, υ ∈ X.

(4.18)















There exist two functions a1 : X −→ R and a2 : X −→ R,

which map bounded sets in X into bounded sets in R

such that | j(ζ, u) |≤ a1(ζ) ‖u‖
2
X + a2(ζ), ∀ζ, u ∈ X,

and a1(0X) < m− k0.

(4.19)
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For every sequence (ζn) ⊂ X with ζn ⇀ ζ ∈ X and every
bounded sequence (un) ⊂ X one has
lim

n→+∞
[j(ζn, un) − j(ζ, un)] = 0.

(4.20)



























For every s ∈ (0 T ] and every functions
u, υ ∈ W 1,∞(0, T ;X) with u(0) = υ(0), u(s) 6= υ(s),
the inequality below holds

∫ s

0 [j(u(t), υ̇(t)) − j(u(t), u̇(t)) + j(υ(t), u̇(t))

−j(υ(t), υ̇(t))]dt <
m

2
‖u(s) − υ(s)‖2

X .

(4.21)























There exists α ∈
(

0 , m
2

)

such that for every s ∈ (0 T ]
and for every functions u, υ ∈ W 1,∞(0, T ;X)
with u(s) 6= υ(s), the inequality below holds
∫ s

0
[j(u(t), υ̇(t)) − j(u(t), u̇(t)) + j(υ(t), u̇(t))

−j(υ(t), υ̇(t))]dt < α ‖u(s) − υ(s)‖2
X .

(4.22)

In the study of the evolutionary problem (4.7)–(4.8), we recall the following result.

Theorem 4.2. Let (4.9)–(4.13) hold.
(i) If the assumptions (4.15)–(4.20) are satisfied then there exists at least a solution u ∈ W 1,∞(0, T ;X)

to the problem (4.7)–(4.8).
(ii) If the assumptions (4.15)–(4.21) are satisfied then there exists a unique solution u ∈ W 1,∞(0, T ;X)

to the problem (4.7)–(4.8).
(iii) If the assumptions (4.15)–(4.20) and (4.22) are satisfied then there exists a unique solution

u = u(f, u0) ∈ W 1,∞(0, T ;X) to the problem (4.7)–(4.8) and the mapping (f, u0) −→ u is Lipschitz
continuous from W 1,∞(0, T ;X) ×X to L∞(0, T ;X).

Theorem 4.2 will be used in this section in order to prove the existence and the uniqueness of the
solution to the variational problem associated with our mechanical model; its proof can be found in [16].

We return now to proof of Theorem 4.1. To this end, we assume in the following that (3.6)–(3.8),
(3.12)–(3.15) and (3.20)–(3.22) hold; below, ”c” is a generic positive constants which may depend on Ω,
Γ1, Γ3, F, whose value may change from place to place. For the sake of simplicity, we suppress in what
follows the explicit dependence on various functions on x ∈ Ω ∪ Γ3.

Using Riesz’s representation theorem, we can define the following operators G : W −→ W and
R : V −→ W respectively by

(Gϕ(t), ψ)W = (B∇ϕ(t),∇ψ)L2(Ω)d , ∀ϕ, ψ ∈ W, (4.23)

(Rυ, ϕ)W = (Eε(υ),∇ϕ)L2(Ω)d , ∀ϕ ∈ W, υ ∈ V. (4.24)

We can show that G is a linear continuous symmetric positive definite operator. Therefore, G is an
invertible operator on W . We can also prove that R is a linear continuous operator on V . Let R∗ the
adjoint of R. Thus, from (3.11) we can write

(R∗ϕ, υ)V = (E∗∇ϕ, ε(υ))H, ∀ϕ ∈ W, υ ∈ V. (4.25)

By introducing (4.23)–(4.24) in (3.24) we get

(Gϕ(t), ψ)W = (Ru(t), ψ)W + (q(t), ψ)W , ∀ψ ∈ W,

and consequently
Gϕ(t) = Ru(t) + q(t).

On the other hand, G is invertible where the previous equality gives us

ϕ(t) = G
−1

Ru(t) + G
−1q(t). (4.26)
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Using (4.25)–(4.26) and (3.23) we obtain

(Fε(u(t)), ε(υ) − ε(u̇(t)))H + (
∫ t

0
K(t− s)ε(u)ds, ε(υ) − ε(u̇(t)))H

+(R∗G−1Ru(t), υ − u̇(t))V + jfr(u(t), υ) − jfr(u(t), u̇(t))
≥ (f(t) − R∗G−1q(t), υ − u̇(t))V ∀υ ∈ V, a.e. t ∈ (0 T ).

(4.27)

Let now the operator L : V → V defined by

Lυ = R
∗
G

−1
Rυ, ∀υ ∈ V. (4.28)

Using the properties of the operators G, R and R∗, we deduce that L is a linear symmetric positive
operator on V , Indeed, we have

(Lu, υ)V = (R∗
G

−1
Ru, υ)V = (u,R∗

G
−1

Rυ)V = (u, Lυ)V , ∀u, υ ∈ V,

(Lυ, υ)V = (G−1Rυ,Rυ)W ≥ 0, ∀υ ∈ V. (4.29)

Now, let the bilinear form a : V × V → R such that

a(u, υ) = (Fε(u(t)), ε(υ))H + (Lu, υ)V , ∀u, υ ∈ V. (4.30)

The bilinear form a is continuous and coercive on V . Indeed, we have

| a(u, υ) |≤ (M + ‖L‖) ‖u‖V ‖υ‖V , ∀u, υ ∈ V, (4.31)

a(υ, υ) ≥ m ‖υ‖
2
V , ∀υ ∈ V, (4.32)

and the symmetry of F and L leads to the symmetry of a.
Let now the function f : [0 T ] → V defined by

f(t) = f(t) − R
∗
G

−1q(t), ∀t ∈ [0 T ] . (4.33)

From (3.18) we obtain
f ∈ W 1,∞(0, T, V ). (4.34)

The relations (4.27), (4.30) and (4.33) lead us to consider the following variational problem, in the terms
of displacement field.

Problem 3. Find a displacement field u : [0, T ] −→ V such that :

a(u(t), υ − u̇(t)) + (
∫ t

0
K(t− s)ε(u(s))ds, ε(υ) − ε(u̇(t)))H

+jfr(u(t), υ) − jfr(u(t), u̇(t)) ≥ (f(t), υ − u̇(t))V , ∀υ ∈ V,
(4.35)

u(0) = u0. (4.36)

Theorem 4.3. Assume that (3.6)–(3.8), (3.12)–(3.15) and (3.20)–(3.22) hold. Then

(i) Under the assumption (3.9) there exists µ0 > 0 such that:
if Cµ ‖S‖L∞(Γ3) ≤ µ0 then the Problem 3 has at least a solution u which satisfies

u ∈ W 1,∞(0, T ;V ). (4.37)

(ii) Under the assumption (3.10) the Problem 3 has a unique solution u which satisfies

u ∈ W 1,∞(0, T ;V ). (4.38)

Moreover, the mapping (f, u0) −→ u is Lipschitz continuous from
W 1,∞(0, T ;V ) × V to L∞(0, T ;V ).
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We assume in the following that the conditions of Theorem 4.3 hold and we introduce the set

Z :=
{

η ∈ W 1,∞(0, T ;V ) : η(0) = 0V

}

. (4.39)

Let η ∈ Z be given and we consider the following intermediate problem, in the term of displacement field.

Problem 4. Find the displacement field uη : [0, T ] → V such that :

a(uη(t), υ − u̇η(t)) + jfr(uη(t), υ)

−jfr(uη(t), u̇η(t)) ≥ (fη(t), υ − u̇η(t))V , ∀υ ∈ V,
(4.40)

uη(0) = u0, (4.41)

fη(t) = f(t) − η(t), ∀t ∈ [0, T ]. (4.42)

Remark 4.4. From (4.34) and the regularity of η we deduce that fη ∈ W 1,∞(0, T, V ).

Remark 4.5. From (3.22) and (3.23), we deduce that (4.13) is verified.

Theorem 4.6. Assume that (3.6)–(3.8), (3.12)–(3.15) and (3.20)–(3.22) hold. Then

(i) Under the assumption (3.9) there exists µ0 > 0 such that:
if Cµ ‖S‖L∞(Γ3) ≤ µ0 then the problem Problem 4 has at least a solution uη which satisfies

uη ∈ W 1,∞(0, T ;V ). (4.43)

(ii) Under the assumption (3.10) the Problem 4 has a unique solution uη which satisfies

uη ∈ W 1,∞(0, T ;V ). (4.44)

Moreover, the mapping (f, u0) −→ u is Lipschitz continuous from
W 1,∞(0, T ;V ) × V to L∞(0, T ;V ).

We will use the results given by the Theorem 4.2 to give a result of existence and uniquness of solutions
of Problem 4. We remark that the functional jfr, given by (3.19), satisfies condition (4.10). In addition,
we have the following results.

Lemma 4.7. The functional jfr satisfies the assumptions (4.15) and (4.16).

Proof. Let ζ, u, ũ ∈ V and let λ ∈ (0, 1]. Using (3.19), it follows that jfr satisfies

jfr(ζ, u− ũ− λu) − jfr(ζ, u− ũ) ≤ λ

∫

Γ3

µ(‖ ζτ ‖) | S |‖ ũτ ‖ da.

Using (4.14) we find

j
′

2(ζ, u− ũ ; −u) ≤

∫

Γ3

µ(‖ ζτ ‖) | S |‖ ũτ ‖ da, ∀ζ, u, ũ ∈ V. (4.45)

Let now consider the sequences (un) ⊂ V, (tn) ⊂ [0 1] and the element ũ ∈ V. Using (3.3), (3.9), (3.14)
and (4.45), we obtain

j
′

2(tnun, un − ũ; −un) ≤

∫

Γ3

(Cµ ‖ unτ ‖ + | µ(0) |) | S |‖ ũτ ‖ da (4.46)

≤
(

C0Cµ ‖ un ‖V + | µ(0) |L2(Γ3)

)

C0 | S |L∞(Γ3)‖ ũ ‖V .

It follows from the previous inequality that if ‖un‖V −→ +∞, then

lim
n−→+∞

inf

[

1

‖un‖2
V

j
′

2(tnun, un − ũ; −un)

]

≤ 0,
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where we deduce that jfr satisfies assumption (4.15).
Let now consider the consequences (un) ⊂ V, (ζn) ⊂ V such that

‖un‖V −→ +∞, (4.47)

‖ζn‖V ≤ C, ∀n ∈ N. (4.48)

such that C > 0. By using (3.3), (3.9), (3.14) and (4.45) we obtain

j
′

2(ζn, un − ũ; −un) ≤
(

C0Cµ ‖ ζn ‖V + | µ(0) |L2(Γ3)

)

C0 | S |L∞(Γ3)‖ ũ ‖V , (4.49)

for all ũ ∈ V and n ∈ N. Then, using (4.47)–(4.49), we can conclude that

lim
n−→+∞

inf

[

1

‖un‖2
V

j
′

2(ζn, un − ũ; −un)

]

≤ 0 ,

where we deduce that jfr satisfies (4.16). �

Lemma 4.8. The functional jfr satisfies the conditions (4.17) and (4.20).

Proof. Let (un) ⊂ V, (ζn) ⊂ V be two sequences such that un ⇀ u ∈ V and ζn ⇀ ζ ∈ V . It follows from
the compactness property of the trace map that

un −→ u in L2(Γ3)d, (4.50)

µ(‖ ζnτ ‖) −→ µ(‖ ζτ ‖) in L2(Γ3). (4.51)

We conclude by the last two limits (4.50) and (4.51) that

jfr(ζn, υ) −→ jfr(ζ, υ), ∀υ ∈ V,

jfr(ζn, un) −→ jfr(ζ, u),

which implies that

lim
n−→+∞

sup [jfr(ζn, υ) − jfr(ζn, un)] ≤ jfr(ζ, υ) − jfr(ζ, u).

Thus, we deduce that jfr satisfies (4.17).
Next, we consider (un) a bounded sequence of V , i.e.

‖un‖V ≤ C, ∀n ∈ N, (4.52)

where C > 0. Representation (3.19) yields

jfr(ζn, un) − jfr(ζ, un) =

∫

Γ3

| S | (µ(‖ ζnτ ‖) − µ(‖ ζτ ‖)) ‖ unτ ‖ da.

Moreover, using (3.3) and (3.9) we find

| jfr(ζn, un) − jfr(ζ, un) |≤ C0 | S |L∞(Γ3) |µ(‖ ζnτ ‖) − µ(‖ ζτ ‖)|L2(Γ3) ‖ un ‖V ,

where we deduce that jfr satisfies (4.20), i.e.

lim
n−→+∞

[jfr(ζn, un) − jfr(ζ, un)] = 0.

�

Lemma 4.9. Under the assumption (3.9), the functional jfr satisfies the assumptions (4.18) and (4.19)
for all k0 ∈ (0,m).
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Proof. Let u, υ ∈ V . Using (3.3), (3.14) and (3.19) we find

jfr(u, υ − u) − jfr(υ, υ − u) =

∫

Γ3

| S | (µ(‖ uτ ‖) − µ(‖ υτ ‖)) ‖ uτ − υτ ‖ da

≤ CµC
2
0 | S |L∞(Γ3)‖ u− υ ‖2

V .

Choosing µ0 =
m

C2
0

we assume that

Cµ | S |L∞(Γ3)< µ0.

This implies that there exists k0 ∈ (0,m) such that

CµC
2
0 | S |L∞(Γ3)< k0 < m.

From above, it follows that jfr satisfies (4.18).
Let now ζ, u ∈ V . Using again (3.3), (3.9), (3.14) and (3.19) we obtain

| jfr(ζ, u) | = |

∫

Γ3

µ(‖ ζτ ‖) | S |‖ uτ ‖ da |

≤ C0 | S |L∞(Γ3)

(

C0Cµ ‖ ζ ‖V + | µ(0) |L2(Γ3)

)

‖ u ‖V .

which implies that condition (4.19) is verified for all k0 ∈ (0,m). �

Lemma 4.10. Under the assumption (3.10) the functional jfr satisfies (4.10) and (4.15)–(4.22).

Proof. In this case the functional jfr does not depend on the first argument and is given by

jfr(υ) =

∫

Γ3

µ | S |‖ υτ ‖ da.

By using arguments similar to those used in the proof of Lemmas 4.7 – 4.9, it is easy to check that the
functional jfr satisfies (4.10) and (4.15)–(4.22). �

Proof of Theorem 4.6. Keeping in mind that the bilinear form a is symmetric, continuous and coercive
on V and using (3.20) and Remarks 4.4 – 4.5 we obtain
• The proof of Theorem 4.6(i) follows now from Lemmas 4.7 – 4.9 and Theorem (4.2) (i).
• The proof of Theorem 4.6(ii) follows now from Lemma 4.10 and Theorem 4.2 (ii) and (iii). �

In the next step, we use the displacement field uη obtained in Theorem 4.6 and we consider the
operator K : Z −→ Z defined by

Kη(t) :=

∫ t

0

K(t− s)ε(uη(s))ds. (4.53)

We have the following result.

Lemma 4.11. For any η ∈ Z there holds Kη ∈ Z and the operator K has a unique fixed point η∗ ∈ Z.

Proof. Let η ∈ Z. Using (4.53), (3.13) and the fact that uη ∈ W 1,∞(0, T ;V ), it is easy to check that
Kη ∈ Z. Moreover, by a standard computation we find that

(

d

dt
Kη

)

(t) = K(0)ε(uη(t)) +

∫ t

0

K̇(t− s)ε(uη(s))ds. (4.54)
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Let now η1, η2 ∈ Z and for the sake of simplicity, denote uη
1

= u1 and uη
2

= u2, for all t ∈ [0 T ]. Using
(4.53), (3.13) and (3.2) we find that

‖Kη1(t) − Kη2(t)‖V ≤ c

∫ t

0

‖u1(s) − u2(s)‖V ds. (4.55)

Moreover, using (4.54), (3.13) and (3.2) we obtain

∥

∥

∥

∥

(

d

dt
Kη1

)

(t) −

(

d

dt
Kη2

)

(t)

∥

∥

∥

∥

V

≤ c ‖u1(t) − u2(t)‖V

+ c

∫ t

0

‖u1(s) − u2(s)‖V ds. (4.56)

On the other hand, from (4.40) and (4.42) we have

a(u1, υ − u̇1) + jfr(u1, υ) − jfr(u1, u̇1) ≥ (f − η1, υ − u̇1)V ,

a(u2, υ − u̇2) + jfr(u2, υ) − jfr(u2, u̇2) ≥ (f − η2, υ − u̇2)V ,

for all υ ∈ V . Choose υ = u̇2 in the first inequality, υ = u̇1 in the second inequality, and sum the results
to obtain

a(u1 − u2, u̇1 − u̇2) ≤ jfr(u1, u̇2) − jfr(u2, u̇2)
+jfr(u2, u̇1) − jfr(u1, u̇1) − (η1 − η2, u̇1 − u̇2)V .

(4.57)

Some algebraic calculations show that

1

2

d

dt
a(u1 − u2, u1 − u2) ≤ −(η1 − η2, u̇1 − u̇2)V .

Iintegrating the previous inequality from 0 to t and using (4.41) we obtain

1

2
a(u1(t) − u2(t), u1(t) − u2(t)) ≤ −(η1(t) − η2(t), u1(t) − u2(t))V

+

∫ t

0

(η̇1(s) − η̇2(s), u1(s) − u2(s))V ds.

It follows now from (4.32) that

m

2
‖u1(t) − u2(t)‖2

V ≤ ‖η1(t) − η2(t)‖V ‖u1(t) − u2(t)‖V

+

∫ t

0

‖η̇1(s) − η̇2(s)‖V ‖u1(s) − u2(s)‖V ds,

where we deduce that

‖u1(t) − u2(t)‖V ≤ c

(

‖η1(t) − η2(t)‖V +

∫ t

0

‖η̇1(s) − η̇2(s)‖V

)

. (4.58)

Now, since

η1(t) − η2(t) =

∫ t

0

(η̇1(s) − η̇2(s))ds,

we deduce that

‖η1(t) − η2(t)‖V ≤

∫ t

0

‖η̇1(s) − η̇2(s)‖V ds.
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Substituting this inequality in (4.58), we obtain

‖u1(t) − u2(t)‖V ≤ c

∫ t

0

‖η̇1(s) − η̇2(s)‖V ds. (4.59)

By adding the results obtained in (4.55), (4.56) and using (4.59) we obtain

‖Kη1(t) − Kη2(t)‖V +

∥

∥

∥

∥

(

d

dt
Kη1

)

(t) −

(

d

dt
Kη2

)

(t)

∥

∥

∥

∥

V

≤ c

∫ t

0

‖η̇1(s) − η̇2(s)‖V ds.

Iterating the last inequality, we find

‖Knη1(t) − Knη2(t)‖V +

∥

∥

∥

∥

(

d

dt
Knη1

)

(t) −

(

d

dt
Knη2

)

(t)

∥

∥

∥

∥

V

≤ cn

∫ t

0

∫ s1

0

· · ·

∫ sn−1

0

‖η̇1(sn) − η̇2(sn)‖V dsn . . . ds1,

where Kn denotes the nth power of the operator K. The last inequality implies

‖Knη1 − Knη2‖W 1,∞(0,T ;V ) ≤
cnT n

n!
‖η1 − η2‖W 1,∞(0,T ;V ) .

Since lim
n−→∞

cnT n

n!
= 0, the previous inequality implies that for n large enough, a power Kn of K is

a contraction in Z. Then, there exists a unique element η∗ ∈ Z such that Kmη∗ = η∗, since Z is a
non-empty closed subset of the Banach space W 1,∞(0, T ;V ). Then, η∗ is the unique fixed point of K, i.e
Kη∗ = η∗ which concludes the proof of Lemma 4.11. �

Proof of Theorem 4.3. Let η∗ ∈ Z be the fixed point of the operator K and let u be the functions
defined in Theorem 4.6 for η = η∗, i.e u = uη∗ . Using (4.53), we deduce that Theorem 4.3 is a consequence
of Theorem 4.6. �

We have now all the ingredients needed to prove the Theorem 4.1.

Proof of Theorem 4.1. Let η∗ ∈ Z be the fixed point of the operator K and let u be the functions
defined in Theorem 4.3 for η = η∗. Using (4.36), (4.35), (4.33),(4.30), (4.28), (4.26) and (4.25) we
conclude that Theorem 4.1 is a consequence of Theorem 4.3. �
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