
Bol. Soc. Paran. Mat. (3s.) v. 2024 (42) : 1–14.
©SPM –ISSN-2175-1188 on line ISSN-0037-8712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.66516

Solution Forms for Generalized Hyperbolic Cotangent Type Systems of P −difference

Equations

Ahmed Ghezal and Imane Zemmouri

abstract: Due to the recent increasing interest in hyperbolic-cotangent types of scalar-or two-dimensional
systems of difference equations and treatment of some particular states. This paper presents a natural extension
of the p−dimensional of four-systems of this generalized type and treats general states. Which is an extension
of Stevic’s work (J. Inequal. Appl., 2021, 184 (2021)). We also show these systems are solvable by using
appropriate variable transformations and obtaining systems of homogeneous linear difference equations with
constant coefficients. Some numerical examples of these systems are presented.
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1. Introduction

In the past few decades, that has been an increasing interest in studying difference equations and systems
of difference equations, in particular, homogeneous linear with constant coefficients. These homogeneous
linear difference equations and systems with constant coefficients are theoretically solvable (see., [2],
[12], [13] − [14]) where there has been some recent applications in solvability of nonlinear ones, for
example, see., [1], [9]− [10], [24]. Several non(linear) difference equations and systems have been offered in
literature that indicate solvability, such as [3]− [11], [15], [17], [28]− [30]. Recently, Stevic et al. [21]− [27]
considered a more general type of discret models which are analogous to a few trigonometric formulas,
namely, the hyperbolic-cotangent type (motivated by [16], [18], [21], [23], [25], [26]), in particular, Stević
[23] gave the solutions to the following hyperbolic-cotangent-type difference equation

xn =
xn−kxn−l + α

xn−k + xn−l

, n ≥ 0, (1.1)

this equation can be readily reduced to the state α = 1, i.e.,

xn√
α

=

xn−k√
α

xn−l√
α

+ 1

xn−k√
α

+
xn−l√

α

, n ≥ 0, when α > 0,

which looks similar to the following hyperbolic-cotangent sum formula

coth (k + l) =
coth (k) coth (l) + 1

coth (k) + coth (l)
,
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hence the name for this type, while Stević [22] gave the form of the solutions of the following two-
dimentional systems of this type

xn =
un−kvn−l + α

un−k + vn−l

, yn =
wn−ksn−l + α

wn−k + sn−l

, n ≥ 0,

where un, vn, wn and sn are xn or yn. Now, due to the wonderful results that Stević et al. [27] obtained
through generalized the scalar difference equation (1.1), i.e., the following difference equation

xn+k =
xn+lxn − αβ

xn+l + xn − α − β
, n ≥ 0, (1.2)

Among the interesting motives of the difference equation (1.2) is solvability in closed form, this allows
them to be used to describe the long-term behavior of their solutions. It should also be noted that solvable
scalar and systems of difference equations have abundant applications. Here we present the extensions
of the difference equation in (1.2) and we show that are solvable in closed-form by giving its general
solution. Now, we consider this type of the following p−dimensional systems of difference equations

x
(i)
n+k =

x
(i+s) mod p

n+l x
(i+s′) mod p
n − αβ

x
(i+s) mod p

n+l + x
(i+s′) mod p
n − α − β

, n ≥ 0, i ∈ {1, ..., p} , (1.3)

where k ∈ N, l ∈ N0, l < k, s, s′ ∈ {0, 1}, α, β ∈ R and x
(i)
j ∈ R, j = {0, ..., k − 1}, i ∈ {1, ..., p} .

2. Main results

In this section, we present the solutions to the system (1.3) by considering various states separately.

2.1. First state α = β = 0

In this state, we have a following hyperbolic-cotangent–type system of p−difference equations

x
(i)
n+k =

x
(i+s) mod p

n+l x
(i+s′) mod p
n

x
(i+s) mod p

n+l + x
(i+s′) mod p
n

, n ≥ 0, i ∈ {1, ..., p} , (2.1)

which is an extension of the following works [21], [22], [25] and [26]. In order to determine the solution

of this system, we use the change of variables x
(i)
n =

(
y

(i)
n

)
−1

, i ∈ {1, ..., p}, which allows us to obtain a

following system of p−homogeneous linear difference equations with constant coefficients of order k,

y
(i)
n+k = y

(i+s) mod p

n+l + y
(i+s′) mod p

n , n ≥ 0, i ∈ {1, ..., p} . (2.2)

As it is known to researchers that the system (2.2) of linear difference equations with constant coefficients
is solvable. For this, we get the first result that we summarize in the following theorem

Theorem 2.1. Consider the system of rational difference equations (2.1). Then system (2.1) is solvable

and we have

a. If s = s′ = 0 then x
(i)
n =

(
τ∑

m=1

Rm−1∑
r=0

Kmrnrλn
m

)−1

, i ∈ {1, ..., p} .

b. If s = s′ = 1 then x
(i)
n =

(
τ̃∑

m=1

R̃m−1∑
r=0

K̃mrnrλn
m

)−1

, i ∈ {1, ..., p} .

c. If s = 1 − s′ = 0 then x
(i)
n =

(
τ∑

m=1

Rm−1∑
r=0

Kmrnrλn
m

)
−1

, i ∈ {1, ..., p} .
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d. If s′ = 1 − s = 0 then x
(i)
n =

(
τ̂∑

m=1

R̂m−1∑
r=0

K̂mrnrλ
n
m

)−1

, i ∈ {1, ..., p} .

Proof. a. If s = s′ = 0, the system (2.2), can be rewritten as

y
(i)
n+k = y

(i)
n+l + y(i)

n , n ≥ 0, i ∈ {1, ..., p} ,

hence, we get the general solution to the system (2.2),

y(i)
n =

τ∑

m=1

Rm−1∑

r=0

Kmrnrλn
m, n ≥ 0, i ∈ {1, ..., p} ,

where λm, m ∈ {1, ..., τ (τ ≤ k)} are the roots of the characteristic polynomial Pk (λ) = λk − λl − 1,

Kmr ∈ R, r ∈ {0, ..., Rm − 1}, m ∈ {1, ..., τ} and Rm, m ∈ {1, ..., τ} are the multiplicity of the
characteristic roots λm, m ∈ {1, ..., τ} , respectively.

b. If s = s′ = 1, the system (2.2), can be rewritten as

y
(i)
n+k = y

(i+1) mod p

n+l + y(i+1) mod p
n , n ≥ 0, i ∈ {1, ..., p}

= y
(i+2) mod p

n+2l−k + 2y
(i+2) mod p

n+l−k + y
(i+2) mod p

n−k

= y
(i+3) mod p

n+3l−2k + 3y
(i+3) mod p

n+2l−2k + 3y
(i+3) mod p

n+l−2k + y
(i+3) mod p

n−2k

...

=

p∑

j=0

Cj
py

(i)
n+(p−j)l−(p−1)k

,

where Cj
p =

p!

j! (p − j)!
, hence, we get the general solution to the system (2.2),

y(i)
n =

τ̃∑

m=1

R̃m−1∑

r=0

K̃mrnrλn
m, n ≥ 0, i ∈ {1, ..., p} ,

where λm, m ∈ {1, ..., τ̃ (τ̃ ≤ pk)} are the roots of the characteristic polynomial P̃k (λ) =

λpk −
p∑

j=0

Cj
pλ(p−j)l, K̃mr ∈ R, r ∈

{
0, ..., R̃m − 1

}
, m ∈ {1, ..., τ} and R̃m, m ∈ {1, ..., τ̃} are

the multiplicity of the characteristic roots λm, m ∈ {1, ..., τ̃} , respectively.

c. If s = 1 − s′ = 0, the system (2.2), can be rewritten as

y
(i)
n+k = y

(i)
n+l + y(i+1) mod p

n , n ≥ 0, i ∈ {1, ..., p} ,

and we have

y(i+j) mod p
n = y

(i+j−1) mod p

n+k − y
(i+j−1) mod p

n+l , n ≥ 0, i, j ∈ {1, ..., p} . (2.3)
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Now, for n ≥ 0, i ∈ {1, ..., p} , we have

y(i+p−1) mod p
n = y

(i+p−2) mod p

n+k − y
(i+p−2) mod p

n+l

= y
(i+p−3) mod p

n+2k − 2y
(i+p−3) mod p

n+k+l + y
(i+p−3) mod p

n+2l

= y
(i+p−4) mod p

n+3k − 3y
(i+p−4) mod p

n+2k+l + 3y
(i+p−4) mod p

n+k+2l − y
(i+p−4) mod p

n+3l

= y
(i+p−5) mod p

n+4k − 4y
(i+p−5) mod p

n+3k+l + 6y
(i+p−5) mod p

n+2k+2l − 4y
(i+p−5) mod p

n+k+3l + y
(i+p−5) mod p

n+4l

...

=

p−1∑

j=0

(−1)
j

C
j
p−1y

(i)
n+(p−1−j)k+jl

,

using (2.3) for j = p, we have

y(i)
n = y

(i+p−1) mod p

n+k − y
(i+p−1) mod p

n+l

=

p−1∑

j=0

(−1)
j

C
j
p−1y

(i)
n+(p−j)k+jl

−
p∑

j=1

(−1)
j−1

C
j−1
p−1y

(i)
n+(p−j)k+jl

,

for i ∈ {1, ..., p} , this system can be rewritten as

y
(i)
n+pk +

p∑

j=1

(−1)
j

Cj
py

(i)
n+(p−j)k+jl

− y(i)
n = 0, i ∈ {1, ..., p} ,

hence, we get the general solution to the system (2.2),

y(i)
n =

τ∑

m=1

Rm−1∑

r=0

Kmrnrλn
m, n ≥ 0, i ∈ {1, ..., p} ,

where λm, m ∈ {1, ..., τ (τ ≤ pk)} are the roots of the characteristic polynomial P k (λ) =
p∑

j=0

(−1)j
Cj

pλ(p−j)k+jl − 1, Kmr ∈ R, r ∈
{

0, ..., Rm − 1
}

, m ∈ {1, ..., τ} and Rm, m ∈ {1, ..., τ}

are the multiplicity of the characteristic roots λm, m ∈ {1, ..., τ} , respectively.

d. If s′ = 1 − s = 0, the system (2.2), can be rewritten as

y
(i)
n+k = y

(i+1) mod p

n+l + y(i)
n , n ≥ 0, i ∈ {1, ..., p} ,

and we have

y
(i+j) mod p

n+l = y
(i+j−1) mod p

n+k − y(i+j−1) mod p
n , n ≥ 0, i, j ∈ {1, ..., p} . (2.4)

Now, for n ≥ 0, i ∈ {1, ..., p} , we have

y
(i+p−1) mod p

n+l = y
(i+p−2) mod p

n+k − y(i+p−2) mod p
n

= y
(i+p−3) mod p

n+2k−l − 2y
(i+p−3) mod p

n+k−l + y
(i+p−3) mod p

n−l

= y
(i+p−4) mod p

n+3k−2l − 3y
(i+p−4) mod p

n+2k−2l + 3y
(i+p−4) mod p

n+k−2l − y
(i+p−4) mod p

n−2l

= y
(i+p−5) mod p

n+4k−3l − 4y
(i+p−5) mod p

n+3k−3l + 6y
(i+p−5) mod p

n+2k−3l − 4y
(i+p−5) mod p

n+k−3l + y
(i+p−5) mod p

n−3l

...

=

p−1∑

j=0

(−1)
j

C
j
p−1y

(i)
n+(p−1−j)k−(p−2)l

,
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using (2.4) for j = p, we have

y
(i)
n+l = y

(i+p−1) mod p

n+k − y(i+p−1) mod p
n

=

p−1∑

j=0

(−1)
j

C
j
p−1y

(i)
n+(p−j)k−(p−1)l

−
p∑

j=1

(−1)
j−1

C
j−1
p−1y

(i)
n+(p−j)k−(p−1)l

,

for i ∈ {1, ..., p} , this system can be rewritten as

y
(i)
n+pk−(p−1)l

+

p∑

j=1

(−1)
j

Cj
py

(i)
n+(p−j)k−(p−1)l

− y
(i)
n+l = 0, i ∈ {1, ..., p} ,

hence, we get the general solution to the system (2.2),

y(i)
n =

τ̂∑

m=1

R̂m−1∑

r=0

K̂mrnrλn
m, n ≥ 0, i ∈ {1, ..., p} ,

where λm, m ∈ {1, ..., τ̂ (τ̂ ≤ pk)} are the roots of the characteristic polynomial P̂k (λ) =
p∑

j=0

(−1)
j

Cj
pλ(p−j)k − λpl, K̂mr ∈ R, r ∈

{
0, ..., R̂m − 1

}
, m ∈ {1, ..., τ̂} and R̂m, m ∈ {1, ..., τ̂} are

the multiplicity of the characteristic roots λm, m ∈ {1, ..., τ̂} , respectively.�

�

Remark 2.2. When s = s′ = 0 and k = l + 1 = 2, the system (2.2) becomes

y
(i)
n+2 = y

(i)
n+1 + y(i)

n , n ≥ 0, i ∈ {1, ..., p} .

If the initial conditions y
(i)
0 = y

(i)
1 = 1, i ∈ {1, ..., p} then y

(i)
n = Fn, i ∈ {1, ..., p} , where (Fn) is the

Fibonacci sequence.

Example 2.3. We consider interesting numerical example for the system (2.1) with k = 4, l = 2, p = 4
and the initial conditions

i /j 0 1 2 3

1
23

3

12

5

13

2

−12

15

2
−114

3
13 16

39

4

3 2
−12

5

15

2

17

3

4
−5

2
3 6 5

Table 1. The initial conditions.

The plot of the system (2.1) is shown in Figure 1.
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Figure 1: The plot of the system (2.1); when (a):s = s′ = 0, (b):s = s′ = 1, (c):s′ = 1 − s = 0,
(d):s = 1 − s′ = 0 and we put the initial conditions in Table 1.
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Figure 2: The plot of the solutions of system (2.1); when (a):s = s′ = 0 and the initial conditions in
Table 1.

2.2. Second state α 6= 0 or β 6= 0

In this subsection, we also present the solutions to the system (1.3) by considering three-states sepa-
rately.

2.2.1. State α+β = 0. In this state, we have a following hyperbolic-cotangent–type system of p−difference
equations

x
(i)
n+k =

x
(i+s) mod p

n+l x
(i+s′) mod p

n + α2

x
(i+s) mod p

n+l + x
(i+s′) mod p
n

, n ≥ 0, i ∈ {1, ..., p} , (2.5)

which is an extension of the following works [23] for one-dimensional and [21], [22], [25] and [26]
for two-dimensional. It is easy to exhibit that (2.5) has two fundamental equilibrium points given by
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(
x(1), ..., x(p)

)
= ±α1′

(p), where 1(p) is an unit vector. We can write system (2.5) after a simple calculation

on the following form

x
(i)
n+k ± α =

(
x

(i+s) mod p

n+l ± α
)(

x
(i+s′) mod p
n ± α

)

x
(i+s) mod p

n+l + x
(i+s′) mod p
n

, n ≥ 0, i ∈ {1, ..., p} ,

thus, we get

x
(i)
n+k + α

x
(i)
n+k − α

=
x

(i+s) mod p

n+l + α

x
(i+s) mod p

n+l − α

x
(i+s′) mod p
n + α

x
(i+s′) mod p
n − α

, n ≥ 0, i ∈ {1, ..., p} .

In order to determine the solution of this system, we use the change of variables y
(i)
n =

x
(i)
n + α

x
(i)
n − α

, i ∈

{1, ..., p}, which allows us to obtain a following product-type system of p−difference equations,

y
(i)
n+k = y

(i+s) mod p

n+l y
(i+s′) mod p
n , n ≥ 0, i ∈ {1, ..., p} , (2.6)

which is an extension of the following works [19] and [20]. As it is known to researchers that the product-
type system (2.6) of nonlinear difference equations is solvable. For this, we get the second result that we
summarize in the following theorem

Theorem 2.4. Consider the system of difference equations (2.5). Suppose that

∣∣∣x(i)
j

∣∣∣ > α, j ∈ {0, ..., k − 1} ,

i ∈ {1, ..., p}, then system (2.5) is solvable and we have

a. If s = s′ = 0 then x
(i)
n = α

exp

(
τ∑

m=1

Rm−1∑
r=0

Kmrnrλn
m

)
+ 1

exp

(
τ∑

m=1

Rm−1∑
r=0

Kmrnrλn
m

)
− 1

, i ∈ {1, ..., p} .

b. If s = s′ = 1 then x
(i)
n = α

exp

(
τ̃∑

m=1

R̃m−1∑
r=0

K̃mrnrλn
m

)
+ 1

exp

(
τ̃∑

m=1

R̃m−1∑
r=0

K̃mrnrλn
m

)
− 1

, i ∈ {1, ..., p} .

c. If s = 1 − s′ = 0 then x
(i)
n = α

exp

(
τ∑

m=1

Rm−1∑
r=0

Kmrnrλn
m

)
+ 1

exp

(
τ∑

m=1

Rm−1∑
r=0

Kmrnrλn
m

)
− 1

, i ∈ {1, ..., p} .

d. If s′ = 1 − s = 0 then x
(i)
n = α

exp

(
τ̂∑

m=1

R̂m−1∑
r=0

K̂mrnrλn
m

)
+ 1

exp

(
τ̂∑

m=1

R̂m−1∑
r=0

K̂mrnrλn
m

)
− 1

, i ∈ {1, ..., p} .

Proof. The system (2.6) can be rewritten as

z
(i)
n+k = z

(i+s) mod p

n+l + z
(i+s′) mod p
n , n ≥ 0, i ∈ {1, ..., p} ,

where z
(i)
n = log

(
y

(i)
n

)
, i ∈ {1, ..., p} . This system is ultimately the same as system (2.1). Thus, the

system (2.5) is solvable.� �
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Example 2.5. We consider interesting numerical example for the system (2.5) with k = 4, l = 2, p = 4,

α = 0.25 and the initial conditions

i /j 0 1 2 3

1
23

3

12

5

13

2

12

15

2
114

3
13 16

39

4

3 2
12

5

15

2

17

3
4 0.5 0.3 0.6 0.5
Table 2. The initial conditions.

The plot of the system (2.5) is shown in Figure 3.
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Figure 3: The plot of the system (2.5); when (a):s = s′ = 0, (b):s = s′ = 1,(c):s′ = 1 − s = 0,
(d):s = 1 − s′ = 0 and we put the initial conditions in Table 2.

The plot of the solutions, when (a) : s = s′ = 0 is shown in Figure 4.
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Figure 4: The plot of the solutions of system (2.5); when (a):s = s′ = 0 and the initial conditions in
Table 2.

2.2.2. State α = β. In this state, we have a following hyperbolic-cotangent–type system of p−difference
equations

x
(i)
n+k =

x
(i+s) mod p

n+l x
(i+s′) mod p
n − α2

x
(i+s) mod p

n+l + x
(i+s′) mod p
n − 2α

, n ≥ 0, i ∈ {1, ..., p} , (2.7)

It is easy to exhibit that (2.7) has one fundamental equilibrium point given by
(

x(1), ..., x(p)
)

= α1′

(p).

We can write system (2.7) after a simple calculation on the following form

x
(i)
n+k − α =

(
x

(i+s) mod p

n+l − α
)(

x
(i+s′) mod p
n − α

)

x
(i+s) mod p

n+l − α + x
(i+s′) mod p
n − α

, n ≥ 0, i ∈ {1, ..., p} .

In order to determine the solution of this system, we use the change of variables y
(i)
n = x

(i)
n − α, i ∈

{1, ..., p}, which allows us to obtain a system of p−difference equations

y
(i)
n+k =

y
(i+s) mod p

n+l y
(i+s′) mod p
n

y
(i+s) mod p

n+l + y
(i+s′) mod p
n

, n ≥ 0, i ∈ {1, ..., p} ,

similar to the system (2.6). For this, we get the third result that we summarize in the following theorem

Theorem 2.6. Consider the system of difference equations (2.7). Then system (2.7) is solvable and we

have

a. If s = s′ = 0 then x
(i)
n =

(
τ∑

m=1

Rm−1∑
r=0

Kmrnrλn
m

)−1

+ α, i ∈ {1, ..., p} .

b. If s = s′ = 1 then x
(i)
n =

(
τ̃∑

m=1

R̃m−1∑
r=0

K̃mrnrλ
n
m

)−1

+ α, i ∈ {1, ..., p} .

c. If s = 1 − s′ = 0 then x
(i)
n =

(
τ∑

m=1

Rm−1∑
r=0

Kmrnrλn
m

)
−1

+ α, i ∈ {1, ..., p} .

d. If s′ = 1 − s = 0 then x
(i)
n =

(
τ̂∑

m=1

R̂m−1∑
r=0

K̂mrnrλn
m

)−1

+ α, i ∈ {1, ..., p} .

Proof. The proof is similar to the proof of Theorem 2.1.� �

Example 2.7. We consider interesting numerical example for the system (2.7) with k = 4, l = 2, p = 4
and α = 0.5.
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The plot of the system (2.7) is shown in Figure 5.
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Figure 5: The plot of the system (2.7); when (a):s = s′ = 0, (b):s = s′ = 1, (c):s′ = 1 − s = 0,
(d):s = 1 − s′ = 0 and we put the initial conditions in Table 1.

The plot of the solutions, when (a) : s = s′ = 0 is shown in Figure 6.
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Figure 6: The plot of the solutions of system (2.7); when (a):s = s′ = 0 and the initial conditions in
Table 1.

2.2.3. State α 6= β. It is easy to exhibit that (1.3) has two fundamental equilibrium points given by(
x(1), ..., x(p)

)
= α1′

(p) and
(

x(1), ..., x(p)
)

= β1′

(p). In this state, we can write system (1.3) after a simple
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calculation on the following form

x
(i)
n+k − α =

(
x

(i+s) mod p

n+l − α
)(

x
(i+s′) mod p
n − α

)

x
(i+s) mod p

n+l + x
(i+s′) mod p
n − α − β

, n ≥ 0, i ∈ {1, ..., p} ,

x
(i)
n+k − β =

(
x

(i+s) mod p

n+l − β
)(

x
(i+s′) mod p
n − β

)

x
(i+s) mod p

n+l + x
(i+s′) mod p
n − α − β

, n ≥ 0, i ∈ {1, ..., p} ,

thus, we get

x
(i)
n+k − β

x
(i)
n+k − α

=
x

(i+s) mod p

n+l − β

x
(i+s) mod p

n+l − α

x
(i+s′) mod p

n − β

x
(i+s′) mod p
n − α

, n ≥ 0, i ∈ {1, ..., p} .

In order to determine the solution of this system, we use the change of variables y
(i)
n =

x
(i)
n − β

x
(i)
n − α

, i ∈

{1, ..., p}, which allows us to obtain a product-type system of p−difference equations similar to the
system (2.6). For this, we get the fourth result that we summarize in the following theorem

Theorem 2.8. Consider the system of difference equations (1.3). Suppose that

∣∣∣x(i)
j

∣∣∣ > max (α, β) ,

j ∈ {0, ..., k − 1} , i ∈ {1, ..., p}, then system (1.3) is solvable and we have

a. If s = s′ = 0 then x
(i)
n =

α exp

(
τ∑

m=1

Rm−1∑
r=0

Kmrnrλn
m

)
− β

exp

(
τ∑

m=1

Rm−1∑
r=0

Kmrnrλn
m

)
− 1

, i ∈ {1, ..., p} .

b. If s = s′ = 1 then x
(i)
n =

α exp

(
τ̃∑

m=1

R̃m−1∑
r=0

K̃mrnrλn
m

)
− β

exp

(
τ̃∑

m=1

R̃m−1∑
r=0

K̃mrnrλn
m

)
− 1

, i ∈ {1, ..., p} .

c. If s = 1 − s′ = 0 then x
(i)
n =

α exp

(
τ∑

m=1

Rm−1∑
r=0

Kmrnrλ
n
m

)
− β

exp

(
τ∑

m=1

Rm−1∑
r=0

Kmrnrλn
m

)
− 1

, i ∈ {1, ..., p} .

d. If s′ = 1 − s = 0 then x
(i)
n =

α exp

(
τ̂∑

m=1

R̂m−1∑
r=0

K̂mrnrλn
m

)
− β

exp

(
τ̂∑

m=1

R̂m−1∑
r=0

K̂mrnrλn
m

)
− 1

, i ∈ {1, ..., p} .

Proof. The proof is similar to the proof of Theorem 2.4.� �

Example 2.9. We consider interesting numerical example for the system (1.3) with k = 4, l = 2, p = 4,

α = 0.5, β = 0.1 and the initial conditions

i /j 0 1 2 3
1 23 12 -13 15
2 −11 −3 6 4
3 -2 −12 15 −17
4 5 3 6 5
Table 3. The initial conditions.
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The plot of the system (1.3) is shown in Figure 7.
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Figure 7: The plot of the system (1.3)); when (a):s = s′ = 0, (b):s = s′ = 1,(c):s′ = 1 − s = 0,
(d):s = 1 − s′ = 0 and we put the initial conditions in Table 3.

The plot of the solutions, when (a) : s = s′ = 0 is shown in Figure 8.
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Figure 8: The plot of the solutions of system (1.3); when (a):s = s′ = 0 and the initial conditions in
Table 3.
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