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abstract: In this paper we introduce the notion of generalized permuting tri-derivations, g-derivations,
and g-tri-derivations on lattices, and we study and generalize some properties discussed in [14] and [29]. We
also give some properties characterizing the g-derivations, the g-tri-derivations, and the generalized permuting
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1. Introduction

In 1940, the concept of lattice theory was introduced by Birkhoff [1]. After many researchers have
studied this concept in different points as partially ordered set (Poset) given by Hoffmann and in [11]
Balbes and Dwinger gave the concept on distributive lattices. Some authors have studied analytic and
algebraic properties of lattices [3,4,13].

The derivation is consequent topic to study, Posner [2] defined the derivation on ring and many
researchers studied the derivation theory in rings, near rings and on BCI-algebras [6,8,19,31]. Multi-
derivations (e.g. bi-derivations, tri-derivations, or n-derivations in general) have been studied in prime
and semi-prime rings [9,22,23,24]. The concept of generalized derivation in rings is introduced by Braser
[10] and Hvala [5]. This concept has been studied by many researchers, for example Agraç and Albas
[25] on prime rings, Ozturk and Sapancy [26] on symmetric bi-derivation in prime rings and Jana et all
[32] on KUS-algebras. In the lattice context, the notion of lattice derivation was defined and developed
by Szasz in [19] and used by Ferrari [21] and Xin [20] to study further properties.

Xin et all [20] introduced the concept of derivation for a lattice and discussed some related properties.
The concept of generalized derivation on a lattice is introduced and some related properties are discussed
in [20], and for generalized derivation on a lattice by Alshehri [27].

On the application side, lattices have played an extremely important role in many disciplines, in
information theory [15], information retrieval [16], information access control [12], and in [18]. Durfee
applied tools from the geometry of numbers to solve various problems in cryptanalysis. They used al-
gebraic techniques to cryptanalyze several public key cryptosystems and used tools from the theory of
integer lattices to obtain some results.

Recently, in [28] Çeven defined symmetric bi-derivations and their trace for a lattice and proved some
results, and in [30] he extended his definitions and theorems to the n-derivation of lattices.

Öztürk et all [29] introduced the idea of permuting tri-derivations in lattices and studied some related
properties. In [14] Çeven also studied the notion of generalized symmetric bi-derivation on lattices and
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investigated various properties. Our research was mainly inspired by the work in [14] and [29].
Our work is divided into two parts. The first part deals with the notions of g-derivations and g-tri-
derivations on lattices, as well as some results, while the second part deals with the notion of generalized
permuting tri-derivations on lattices, as well as its fundamental properties.
In the first part, we defined new notions called g-derivations and g-tri-derivations on lattices, therefore
we enriched this part with some important examples and theorems that characterize the g-derivations
and g-tri-derivations.
In the second part, we present a new notion called generalized permuting tri-derivations on a lattice,
as well as examples that demonstrate the existence of this class of applications. We also present some
properties that characterize in detail the generalized permuting tri-derivation and its trace, as well as we
have generalized some results from the references [14] and [29].

2. Some preliminaries

In this section, we will provide some definitions and results that will be useful in the following.

Lemma 2.1. [1, Lemma 1, p: 8] Let L be a nonempty set endowed with the operations ∧ and ∨. By a
lattice (L, ∨, ∧) we mean a set L which satisfies the following conditions:

1. x ∧ x = x; x ∨ x = x,

2. x ∧ y = y ∧ x; x ∨ y = y ∨ x,

3. (x ∧ y) ∧ z = x ∧ (y ∧ z); (x ∨ y) ∨ z = x ∨ (y ∨ z),

4. (x ∧ y) ∨ x = x; (x ∨ y) ∧ x = x,

for all x, y, z ∈ L.

Lemma 2.2. [1, Lemma 1, p: 8] Let (L, ∧, ∨) be a lattice. A binary relation ≤ is defined by x ≤ y if
and only if x ∧ y = x and x ∨ y = y.

Lemma 2.3. [20, Lemma 2.6, p: 308 ] Let (L, ∧, ∨) be a lattice. Define the binary relation ≤ as in
Definition 2.2. Then (L, ≤) is a poset and for any x, y ∈ L, x ∧ y is the greatest lower bound of {x, y}
and x ∨ y is the least upper bound of {x, y}.

Definition 2.4. [1, Definition, p: 12] A lattice L is distributive if the identity (1) or (2) holds:

1. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);

2. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z);

In any lattice, the conditions (1) and (2) are equivalent.

Definition 2.5. [1, Definition, p: 25] An ideal is a non-void subset I of a lattice L with the properties:

1. x ≤ y, y ∈ I ⇒ x ∈ I;

2. x, y ∈ I ⇒ x ∨ y ∈ I.

If I1 and I2 are ideals of lattice L, so I1 ∩ I2 is as well.

Definition 2.6. [29, Definition 6, p: 416 ] Let L be a lattice. A mapping D : L × L × L −→ L is called
permuting if it satisfies the following condition:

D(x, y, z) = D(x, z, y) = D(y, x, z) = D(y, z, x) = D(z, x, y) = D(z, y, x)

for all x, y, z ∈ L.

Definition 2.7. [29, Definition 6, p: 416 ] A mapping d : L −→ L defined by d(x) = D(x, x, x) is called
the trace of D, where D is a permuting mapping.
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Definition 2.8. [29, Definition 7, p: 416 ] Let L be a lattice. The map D : L3 → L will be called a
permuting Tri-derivations if D is a derivation according to all components; that is,

D(x ∧ w, y, z) = (D(x, y, z) ∧ w) ∨ (x ∧ D(w, y, z))
D(x, y ∧ w, z) = (D(x, y, z) ∧ w) ∨ (y ∧ D(x, w, z))
D(x, y, z ∧ w) = (D(x, y, z) ∧ w) ∨ (z ∧ D(x, y, w))

for all x, y, z, w ∈ L.

Proposition 2.9. [29] Let L be a lattice and D be a permuting tri-derivations on L with the trace d.
Then the following assertions hold:

(i) D(x, y, z) ≤ x, D(x, y, z) ≤ y and D(x, y, z) ≤ z,

(ii) D(x, y, z) ≤ (x ∧ y) ∧ z,

(iii) d(x) ≤ x,

(iv) d2(x) = d(x),

for all x, y, z ∈ L.

Corollary 2.10. [29, Corollary 1, p: 418] Let L be a lattice and D be a permuting tri-derivations on L.
If 1 is the greatest element of L and 0 is the smallest element of L, then D(x, y, z) = 0 if least one of the
component is 0, and D(1, x, y) ≤ x and D(1, x, y) ≤ y, for all x, y ∈ L.

3. Some results on Lattices involving g-derivations

This section introduces a new notion called g-derivations and g-tri-derivations for a lattice, followed
by an example that demonstrates the existence of this type of application.

Definition 3.1. Let L1 and L2 be two lattices and f, g : L1 → L2 be two maps. We say f is g-derivation
from L1 to L2, if f(x ∧ y) = (f(x) ∧ g(y)) ∨ (g(x) ∧ f(y)), for all x, y ∈ L1.

From the above definition, for each x ∈ L1, we have f(x) = f(x) ∧ g(x). This implies f(x) ≤ g(x),
for each x ∈ L1.

Whenever L1 = L2 = L and g(x) = x, then our definition is the old definition of derivation on a
lattice L.

Example 3.2. Let R be a reduced SA-ring (i.e., a ring for which the sum of two annihilator ideals is
an annihilator ideal). It is important to know that in this case R is an IN -ring, i.e., for each two ideals
I, J of R Ann(I ∩ J) = Ann(I) + Ann(J), see [7]. Now consider two lattices Ann(R) (i.e., the lattice of
annihilator ideals of R) and Id(R) (i.e., the lattice of ideals of R), see [17]. Put f : Id(R) → Ann(R), by
f(I) = Ann(I) and J : Id(R) → Ann(R), by g(I) = R, for each ideal I of R. Then f is a g-derivation.
For, f(I ∧ J) = Ann(I ∩ J) = Ann(I) + Ann(J). On the other hand, (f(I) ∧ g(J)) ∨ (g(I) ∧ f(J)) =
(Ann(I) ∩ R) ∨ (R ∩ Ann(J)) = Ann(I) ∨ Ann(J) = Ann(Ann(Ann(I) + Ann(J))) = Ann(I) + Ann(J).
Moreover, this is a g-derivation which is not an f -derivation. Consider two ideals I = eR and J = (1−e)R,
for some idempotent e ∈ R. Then f(I ∧ J) = f(o) = R, but f(I) ∧ f(J) = 0.

We may have a map f : L1 → L2 which is not g-derivation for each g ≥ f . See the next example.

Example 3.3. Let L1 = L2 = R. Consider the function f : R → R by f(1) = 2 and f(x) = 3, for all
x 6= 1. Then we have f(−1) = f(1 ∧ −1) 6= f(1) ∧ f(−1). Thus f is not f -derivation. Now let g > f be
a function from R to R. Then we have (f(1) ∧ g(2)) ∨ (g(1) ∧ f(2)) > 2 = f(1) = f(1 ∧ 2).

Definition 3.4. Let f, g : L1 → L2 be two maps. Define f ∨ g and f ∧ g from L1 to L2, by (f ∨ g)(x) =
f(x) ∨ g(x) and (f ∧ g)(x) = f(x) ∧ g(x), respectively.

Proposition 3.5. Let L2 be a distributive lattice. The following statements hold.
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1. If f1 and f2 are two g-derivation from L1 to L2, then f1 ∨ f2 is a g-derivation.

2. If f is g1 and g2-derivation from L1 to L2, then f is a g1 ∨ g2-derivation.

3. If f is g1 and g2-derivation from L1 to L2, then f is a g1 ∧ g2-derivation.

Proof. (1) As f1 and f2 are two g-derivations from L1 to L2 and L2 is a distributive lattice, we
conclude that;

(f1 ∨ f2)(x ∧ y) = f1(x ∧ y) ∨ f2(x ∧ y)

= [(f1(x) ∧ g(y)) ∨ (g(x) ∧ f1(y))] ∨ [(f2(x) ∧ g(y)) ∨ (g(x) ∧ f2(y))]

= ((f1(x) ∨ f2(x)) ∧ g(y)) ∨ (g(x) ∧ (f1(y) ∨ f2(y))

= ((f1 ∨ f2)(x) ∧ g(y)) ∨ (g(x) ∧ (f1 ∨ f2)(y)).

So we are done.
(2) By hypothesis, for x, y ∈ L1, f(x ∧ y) = (f(x) ∧ g1(y)) ∨ (g1(x) ∧ f(y)) and also f(x ∧ y) = (f(x) ∧
g2(y)) ∨ (g2(x) ∧ f(y)). Thus we have;

f(x ∧ y) = [(f(x) ∧ g1(y)) ∨ (g1(x) ∧ f(y))] ∨ [(f(x) ∧ g2(y)) ∨ (g2(x) ∧ f(y))]

= (f(x) ∧ (g1(y) ∨ g2(y))) ∨ ((g1(x) ∨ g2(x)) ∨ f(y))

= (f(x) ∧ (g1 ∨ g2)(x)) ∨ ((g1 ∨ g2)(y) ∧ f(y)).

(3) By hypothesis, for x, y ∈ L1, f(x∧y) = (f(x) ∧g1(y)) ∨ (g1(x) ∧f(y)) and f(x∧y) = (f(x) ∧g2(y)) ∨
(g2(x) ∧ f(y)). This is also important to know that f(x) ≤ g1(x) (resp., f(y) ≤ g1(y)) and f(x) ≤ g2(x)
(resp., f(y) ≤ g2(y)), for all x ∈ L1 (resp., for all y ∈ L1). This implies that;

f(x ∧ y) = f(x ∧ y) ∧ f(x ∧ y)

= [(f(x) ∧ g1(y)) ∨ (g1(x) ∧ f(y))] ∧ [(f(x) ∧ g2(y)) ∨ (g2(x) ∧ f(y))]

= (f(x) ∧ g1(y) ∧ g2(y)) ∨ (f(x) ∧ g1(y) ∧ g2(x) ∧ f(y)) ∨

(g1(x) ∧ f(y)) ∧ f(x) ∧ g2(y)) ∨ (g1(x) ∧ f(y) ∧ g2(x) ∧ f(y)

= (f(x) ∧ (g1 ∧ g2)(y)) ∨ (f(x) ∧ f(y)) ∨ (f(x) ∧ f(y)) ∨

((g1 ∧ g2)(x) ∧ f(y)).

As f(y) ≤ (g1 ∧ g2)(y), the above equality coincides to the (f(x) ∧ (g1 ∧ g2)(y)) ∨ ((g1 ∧ g2)(x) ∧ f(y)).
So we are done. �

The above proposition implies the next result. Whenever there exists g : L1 → L2 with f is a
g-derivation, we say f is a derivation from L1 to L2.

Corollary 3.6. Let f : L1 → L2 be a derivation, (L2, ≤, ∨, ∧) a distributive lattice and C = {g : L1 →
L2| f is a g-derivation }. Then (C, ≤, ∨, ∧) is a distributive lattice.

Proposition 3.7. The following statements hold.

1. Let f : L1 → L2. Then f is an f -derivation and a joinitive mapping if f is a homomorphism.

2. Let f, g : L1 → L2 and f be a g-derivation. Then f = g and is a joinitive mapping if f(x ∨ y) =
(f(x) ∨ g(y)) ∧ (g(x) ∨ f(y)), for all x, y ∈ L1.

Proof. (1) ⇒. The f -derivation of f implies f(x ∧ y) = f(x) ∧ f(y). And since f is a joinitive
mapping, f(x ∨ y) = f(x) ∨ f(y). So f is a homomorphism.

⇐. By hypothesis, f(x ∨ y) = f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y). Thus f is a joinitive mapping
and an f -derivation.

(2) ⇒. f is g-derivation and f = g is a joinitive map, hence

(f(x) ∨ g(y)) ∧ (g(x) ∨ f(y)) = f(x) ∨ f(y)

= f(x ∨ y).
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⇐. Put x = y. Then we have f(x) = f(x ∨ y) = f(x) ∨ g(x). This implies f ≥ g. As f is a g-derivation,
f ≤ g. Thus f = g, and by hypothesis, f(x ∨ y) = f(x) ∨ f(y), i.e., f = g is a joinitive mapping. �

Theorem 3.8. Let L2 be a modular lattice and f be a g-derivation from L1 to L2. Then the following
conditions are equivalent:

1. f is isotone.

2. f(x ∧ y) = f(x) ∧ f(y).

3. f is f -derivation.

Proof. (1) ⇒ (2). Assume f is isotone. Then f(x ∧ y) ≤ f(x) and f(x ∧ y) ≤ f(y). Then

f(x ∧ y) ≤ f(x) ∧ f(y)
(1)

. On the other hand, since L is modular and f(x) ∧ g(y) ≤ g(x), we have

f(x ∧ y) = (f(x) ∧ g(y)) ∨ (g(x) ∧ f(y))

= ((f(x) ∧ g(y)) ∨ f(y)) ∧ g(x)

= (f(x) ∨ f(y)) ∧ g(y) ∧ g(x)

≥ f(x) ∧ f(y) ∧ g(x) ∧ g(y)

= f(x) ∧ f(y)
(2)

.

Combining (1) and (2) we get f(x ∧ y) = f(x) ∧ f(y).
(2) ⇒ (1). Let x ≤ y. Then x = x ∧ y, and so

f(x) = f(x ∧ y)

= f(x) ∧ f(y).

It follows that f(x) ≤ f(y). This shows that f is isotone.
(2) ⇔ (3). Trivially, f is f -derivation if

f(x ∧ y) = (f(x) ∧ f(y)) ∨ (f(y) ∧ f(x))

= f(x) ∧ f(y).

�

Theorem 3.9. Let L2 be a distributive lattice and f be a g-derivation from L1 to L2. Then the following
conditions are equivalent:

1. f is isotone.

2. f(x ∧ y) = f(x) ∧ f(y).

3. f is f -derivation.

4. f(x ∨ y) ∧ (g(x) ∨ g(y)) = f(x) ∨ f(y).

Proof. Since a distributive lattice is a modular lattice, the conditions (1), (2) and (3) are equivalent
by Theorem 3.8. Now we prove (1) ⇔ (4).

(1) ⇒ (4). Assume f is isotone. Since f is g-derivation, we have

f(x) = f((x ∨ y) ∧ x)

= (f(x ∨ y) ∧ g(x)) ∨ (g(x ∨ y) ∧ f(x))

= (f(x ∨ y) ∧ g(x)) ∨ f(x)

= f(x ∨ y) ∧ g(x).
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Also

f(y) = f((x ∨ y) ∧ y)

= (f(x ∨ y) ∧ g(y)) ∨ (g(x ∨ y) ∧ f(y))

= (f(x ∨ y) ∧ g(y)) ∨ f(y)

= f(x ∨ y) ∧ g(y).

Thus

f(x) ∨ f(y) = (f(x ∨ y) ∧ g(x)) ∨ (f(x ∨ y) ∧ g(y))

= f(x ∨ y) ∧ (g(x) ∨ g(y)).

(4) ⇒ (1). Let x ≤ y. Then y = x∨y, and so f(y) = f(x∨y) and f(y)∨f(x) = f(y)∧(g(x)∨g(y)) = f(y).
It follows that f(x) ≤ f(y). This shows that f is isotone. �

Definition 3.10. Let f, g : L3 → L be two permuting maps. We say f is g-tri-derivation on a lattice L

if for each x, y, z, w ∈ L, we have

f(x ∧ w, y, z) = (f(x, y, z) ∧ g(w, y, z)) ∨ (g(x, y, z) ∧ f(w, y, z)),

f(x, y ∧ w, z) = (f(x, y, z) ∧ g(x, w, z)) ∨ (g(x, y, z) ∧ f(x, w, z)),

f(x, y, z ∧ w) = (f(x, y, z) ∧ g(x, y, w)) ∨ (g(x, y, z) ∧ f(x, y, w)).

Example 3.11. 1. If g(x) = x∧y∧z and f satisfies in the above definition, then f is a tri-derivation.

2. Let a, b ∈ L, b ≤ a, f, g : L3 → L be two functions by f(x, y, z) = x ∧ y ∧ z ∧ b and g(x, y, z) =
x ∧ y ∧ z ∧ a, respectively. Then we can see that f is a g-tri-derivation.

A mapping df : L → L defined by df (x) = f(x, x, x) is called the trace of f , where f is a g-derivation
for some g : L3 → L. Let f, g : L3 → L. Define two maps f1, g1 : L → L, by f1(x) = f(x, y, z) and
g1(x) = g(x, y, z).

Proposition 3.12. Let f, g : L3 → L and f be a g-tri-derivation. The following statements hold.

1. For all x, y, z ∈ L, f(x, y, z) ≤ g(x, y, z).

2. For all x ∈ L, df (x) ≤ dg(x).

3. f1 is a g1-derivation.

Proof. (1) f is g-derivation, so

f(x, y, z) = f(x ∧ x, y, z)

= (f(x, y, z) ∧ g(y, y, z)) ∨ (g(x, y, z) ∧ f(y, y, z))

= f(x, y, z) ∧ g(y, y, z).

This shows f(x, y, z) ≤ g(x, y, z)
(2) Put x = y = z in Part (1).
(3) Since f is a g-derivation, we have

f1(x ∧ w) = f(x ∧ w, y, z)

= (f(x, y, z) ∧ g(w, y, z)) ∨ (g(x, y, z) ∧ f(w, y, z))

= (f1(x) ∧ g1(w)) ∨ (g1(x) ∧ f1(w)).

So we are done. �
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4. Generalized permuting tri-derivations on Lattice

Definition 4.1. Let L be a lattice. A mapping D : L × L × L → L be a permuting tri-derivation and
∆: L × L × L → L be a permuting mapping. ∆ is called generalized permuting tri-derivation associated
with D, if it satisfies the following condition

∆(x ∧ w, y, z) = (∆(x, y, z) ∧ w) ∨ (x ∧ D(w, y, z))

for all x, y, z, w ∈ L.

It is obvious that ∆(x, y ∧ w, z) = (∆(x, y, z) ∧ w) ∨ (y ∧ D(x, w, z)) and ∆(x, y, z ∧ w) = (∆(x, y, z) ∧
w) ∨ (z ∧ D(x, y, w)).

Example 4.2. (i) Let D be a tri-derivation on a lattice L. Then D is a generalized permuting tri-
derivation associated with D.
(ii) Let L be a lattice a, b ∈ L and b > a. Consider two maps ∆(x, y, z) = [(x ∧ y) ∧ z] ∧ b and
D(x, y, z) = [(x ∧ y) ∧ z] ∧ a. Then, D is a permuting tri-derivation on L and we can see that ∆ is a
generalized permuting tri-derivation associated with D on L.
(iii) Let L be a lattice with the least element 0. The mapping defined on L by D(x, y, z) = 0 is a permuting
tri-derivation on L. Define the mapping ∆ on L by ∆(x, y, z) = [(x ∧ y) ∧ z] ∧ a for all x, y, z, a ∈ L.
Then, we can see that ∆ is a generalized permuting tri-derivation associated with D on L.

Example 4.3. Let L be a lattice. The mapping ∆(x, y, z) = (x ∧ y) ∨ z is not a generalized permuting
tri-derivation on L associated with D(x, y, z) = 0.

Proposition 4.4. Let ∆ be a generalized permuting tri-derivations associated with a permuting tri-
derivations D. Then the mappings f1 : L → L, f1(x) = ∆(x, y, z), f2 : L → L, f2(y) = ∆(x, y, z), and
f3 : L → L, f3(z) = ∆(x, y, z) are generalized derivations on L.

Proof. We have

f1(x ∧ a) = ∆(x ∧ a, y, z)

= (∆(x, y, z) ∧ a) ∨ (x ∧ D(a, y, z))

= (f1(x) ∧ a) ∨ (x ∧ g1(a)).

In this equation, the mapping g1 : L → L, g1(a) = D(a, y, z) is a derivation on L, where D is the
permuting tri-derivation. So, the mapping f1 is a generalized derivation on L.

Theorem 4.5. Let L be a lattice, ∆ be a generalized permuting tri-derivation associated with permuting
tri-derivation D, δ be the trace of ∆ and d be the trace of D. Then

(i) D(x, y, z) ≤ ∆(x, y, z) for all x, y, z ∈ L;

(ii) ∆(x, y, z) ≤ x and ∆(x, y, z) ≤ y and ∆(x, y, z) ≤ z,

(iii) ∆(x, y, z) ≤ (x ∧ y) ∧ z,

(iv) d(x) ≤ δ(x) ≤ x,

(v) d(x) = x ⇒ δ(x) = x,

for all x, y, z ∈ L.

Proof.
(i) Using the proposition 2.9 (i), we have

∆(x, y, z) = ∆(x ∧ x, y, z)

= (∆(x, y, z) ∧ x) ∨ (x ∧ D(x, y, z))

= (∆(x, y, z) ∧ x) ∨ D(x, y, z)
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It follows that D(x, y, z) ≤ ∆(x, y, z), for all x, y, z ∈ L

(ii) We have

∆(x, y, z) = ∆(x ∧ x, y, z)

= (∆(x, y, z) ∧ x) ∨ (x ∧ D(x, y, z))

And by (i), D(x, y, z) ≤ ∆(x, y, z) for all x, y, z ∈ L, we obtain
x ∧ D(x, y, z) ≤ x ∧ ∆(x, y, z), it then ∆(x, y, z) = ∆(x, y, z) ∧ x. Which implies that ∆(x, y, z) ≤ x for
all x, y, z ∈ L.

Since ∆ is permuting, we can conclude that ∆(x, y, z) ≤ y and ∆(x, y, z) ≤ z.

(iii) Using (ii) we can see that ∆(x, y, z) ≤ (x ∧ y) ∧ z.
(iv) Using (i) together with (ii), for x = y = z we obtain d(x) ≤ δ(x) ≤ x for all x ∈ L

(v) The proof is clear by (iv). �

By Theorem 4.5 (2), we find the following corollary:

Corollary 4.6. Let L be a lattice with a least element 0, ∆ be a generalized permuting tri-derivation
associated with a permuting tri-derivation D, then ∆(x, y, z) = 0 if at least one of the component is 0.

Proof. The proof is clear. �

Theorem 4.7. Let L be a lattice, ∆ be a generalized permuting tri-derivation associated with a permuting
tri-derivation D, δ be the trace of ∆ and d be the trace of D. Then

δ(x ∧ y) = (δ(x) ∧ y) ∨ D(x, y, y) ∨ D(x, x, y) ∨ (x ∧ d(y)).

for all x, y ∈ L.

Proof.

δ(x ∧ y) = ∆(x ∧ y, x ∧ y, x ∧ y)

= (∆(x, x ∧ y, x ∧ y) ∧ y) ∨ (x ∧ D(y, x ∧ y, x ∧ y))

= ∆(x, x ∧ y, x ∧ y) ∨ D(y, x ∧ y, x ∧ y)

= (∆(x, x, x ∧ y) ∧ y) ∨ (x ∧ D(x, y, x ∧ y)) ∨ (D(y, x, x ∧ y) ∧ y)

∨ (x ∧ D(y, y, x ∧ y))

= ∆(x, x, x ∧ y) ∨ D(x, y, x ∧ y) ∨ D(y, x, x ∧ y) ∨ D(y, y, x ∧ y)

= (∆(x, x, x) ∧ y) ∨ (x ∧ D(x, x, y)) ∨ (D(x, y, x) ∧ y) ∨ (x ∧ D(x, y, y))

∨ (D(y, x, x) ∧ y) ∨ (x ∧ D(y, x, y)) ∨ (D(y, y, x) ∧ y) ∨ (x ∧ D(y, y, y))

= (δ(x) ∧ y) ∨ D(x, x, y) ∨ D(x, y, y) ∨ (x ∧ d(y)).

And our proof is complete. �

Corollary 4.8. Let L be a lattice, and ∆ be a generalized permuting tri-derivation associated with a
permuting tri-derivation D, δ be the trace of ∆ and d be the trace of D, then

(i) δ(x) ∧ y ≤ δ(x ∧ y);

(ii) x ∧ d(y) ≤ δ(x ∧ y);

(iii) δ2(x) = δ(x);

for all x, y ∈ L.
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Proof. (i) and (ii) are clear by Theorem 4.7.
(iii)

δ2(x) = δ(δ(x))

= δ(x ∧ δ(x))

= (δ(x) ∧ δ(x)) ∨ D(x, x, δ(x)) ∨ D(x, δ(x), δ(x)) ∨ (x ∧ d(δ(x))

= δ(x).

For all x ∈ L. �

Theorem 4.9. Let L be a lattice and ∆ be a generalized permuting tri-derivation associated with a
permuting tri-derivation D, δ be the trace of ∆ and d be the trace of D. Then

d(x) ∧ d(y) ≤ δ(x) ∧ δ(y) ≤ δ(x ∧ y)

for all x, y ∈ L.

Proof.
Since d(x) ≤ δ(x) and d(y) ≤ δ(y), by Theorem 4.5 (iv), we obtain d(x) ∧ d(y) ≤ δ(x) ∧ δ(y) for all
x, y ∈ L. By Corollary 4.8 (i), we get δ(x) ∧y ≤ δ(x∧y). From Theorem 4.5 (iv), we can deduce δ(y) ≤ y

then δ(x) ∧ δ(y) ≤ δ(x) ∧ y for all x, y ∈ L, hence we can conclude that δ(x) ∧ δ(y) ≤ δ(x ∧ y) for all
x, y ∈ L. �

Theorem 4.10. Let L be a lattice and ∆ be a generalized permuting tri-derivation associated with a
permuting tri-derivation D, δ be the trace of ∆ and d be the trace of D. Let the greatest element of L be
1, then

(i) If x ≤ δ(1), then δ(x) = x,

(ii) If x ≥ δ(1), then δ(x) ≥ δ(1)

(iii) If x ≤ y and δ(y) = y, then δ(x) = x,

For all x, y ∈ L.

Proof. (i) By applying Corollary 4.8 (i), we have x ∧ δ(1) ≤ δ(x ∧ 1). Since 1 be the greatest element
of L, we get x ∧ δ(1) ≤ δ(x) and by our hypothesis, we arrive at x ≤ δ(x). From Theorem 4.5 (iv), we
have δ(x) ≤ x, which forces that δ(x) = x for all x ∈ L.

(ii) Suppose that x ≥ δ(1). By corollary 3.2 (i), we have x ∧ δ(1) ≤ δ(x ∧ 1), which gives δ(1) ≤ δ(x)
for all x ∈ L.

(iii) By Corollary 4.8 (i), we find that x ∧ δ(y) ≤ δ(x ∧ y). Since δ(y) = y and x ∧ y = x, we get
x ≤ δ(x) and by Theorem 4.5 (iv), we conclude that δ(x) = x. �

Corollary 4.11. Let L be a lattice and ∆ be a generalized permuting tri-derivation associated with a
permuting tri-derivation D, δ be the trace of δ and the greatest element of L be 1, then δ(1) = 1 if and
only if δ is an identity mapping on L.

Proof. By hypothesis we have x ≤ 1 for all x ∈ L and δ(1) = 1, using Theorem 4.10 (iii) we get
δ(x) = x for all x ∈ L. Conversely, it is clear that if δ is an identity mapping on L, then δ(1) = 1. �

Definition 4.12. Let L be a lattice, the map ∆: L × L × L → L is called joinitive mapping (∨-
homomorphism) if it satisfies

∆(x ∨ w, y, z) = ∆(x, y, z) ∨ ∆(w, y, z)

∆(x, y ∨ w, z) = ∆(x, y, z) ∨ ∆(x, w, z)

∆(x, y, z ∨ w) = ∆(x, y, z) ∨ ∆(x, y, w)

For all x, y, z, w ∈ L.



10 L. Bedda, A. Boua and A. Taherifar

Theorem 4.13. Let L be a lattice and ∆ be a joinitive and permuting tri-derivation with the trace δ on
L, then

(i) δ(x ∨ y) = δ(x) ∨ δ(y) ∨ ∆(x, x, y) ∨ ∆(x, y, y);

(ii) δ(x) ∨ δ(y) ≤ δ(x ∨ y),

for all x, y ∈ L.

Proof. (i) We have

δ(x ∨ y) = ∆(x ∨ y, x ∨ y, x ∨ y)

= ∆(x, x ∨ y, x ∨ y) ∨ ∆(y, x ∨ y, x ∨ y)

= ∆(x, x, x ∨ y) ∨ ∆(x, y, x ∨ y) ∨ ∆(y, x, x ∨ y) ∨ ∆(y, y, x ∨ y)

= ∆(x, x, x ∨ y) ∨ ∆(x, y, x ∨ y) ∨ ∆(y, y, x ∨ y)

= ∆(x, x, x) ∨ ∆(x, x, y) ∨ ∆(x, y, x) ∨ ∆(x, y, y)

∨ ∆(y, y, x) ∨ ∆(y, y, y)

= ∆(x, x, x) ∨ ∆(x, x, y) ∨ ∆(x, y, y) ∨ ∆(y, y, y)

Then δ(x ∨ y) = δ(x) ∨ ∆(x, x, y) ∨ ∆(x, y, y) ∨ δ(y). For all x, y, z ∈ L.

(ii) It is obvious from (i). �

Notation 4.1. Let L be a lattice, and δ be a mapping of L. We set

Fixδ(L) = {x ∈ L : δ(x) = x} and Bδ(L) = {x ∈ L : x ≤ δ(1)} .

Theorem 4.14. Let L be a lattice, and ∆ be a generalized permuting tri-derivation with the trace δ, and
1 be the greatest element of L. Then the following properties holds:

(i) δ(x) ∈ Bδ(L) for all x ∈ Bδ(L);

(ii) Bδ(L) ⊂ Fixδ(L);

(iii) If ∆ is joinitive, then Fixδ(L) and Bδ(L) are ideals of L;

(iv) 1 ∈ Bδ if and only if δ is an identity mapping on L;

(v) x ≤ δ(1) ≤ y implies δ(x) ≤ δ(y), δ(x ∧ y) = x ∧ y and δ(x ∨ y) = δ(x) ∨ δ(y),

For all x, y ∈ L.

Proof. (i) Let x ∈ Bδ(L), then x ≤ δ(1), from Theorem 4.10 (i), we obtain δ(x) ≤ δ(1), then
δ(x) ∈ Bδ(L).
(ii) Let x ∈ Bδ(L), then x ≤ δ(1). By Theorem 4.10 (i), we get δ(x) = x. Then x ∈ Fixδ(L) so
Bδ(L) ⊂ Fixδ(L).
(iii) By Ttheorem 4.10 (iii), if y ≤ x and x ∈ Fixδ(L), then y ∈ Fixδ(L).
Let x, y ∈ Fixδ(L), from the Theorem 4.13 (ii), we obtain δ(x) ∨ δ(y) ≤ δ(x ∨ y), since δ(x) = x and
δ(y) = y, we get x ∨ y ≤ δ(x ∨ y), and by Theorem 4.5 (iv), we conclude that δ(x ∨ y) = x ∨ y, then
x ∨ y ∈ Fixδ(L), and so Fixδ(L) is an ideal of L.
It is easy to proof that Bδ(L) is an ideal of L.
(iv) The proof is clear by Corollary 4.11.
(v) The condition x ≤ δ(1) ≤ y, implies δ(x) ≤ δ(1) ≤ δ(y), by Theorem 4.10 (i) and (ii).
It is obvious to see that δ(x ∧ y) = x ∧ y.
The proof of the result δ(x ∨ y) = δ(x) ∨ δ(y), it suffice to use the fact that δ(x ∨ y) = δ(y) and
δ(x) ∨ δ(y) = δ(y). �
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Proposition 4.15. Let L be a lattice, ∆1 and ∆2 are a two generalized permuting tri-derivation associated
with a same permuting tri-derivation D, δ1 be the trace of ∆1, δ2 be the trace of ∆2 and d be the trace
of D, then If δ2 ≤ δ1, then δ1(δ2(x)) = δ2(x) for all x ∈ L.

Proof. From Theorem 4.5 (iv) and Theorem 4.7, we get

δ1(δ2(x)) = δ1(x ∧ δ2(x))

= (δ1(x) ∧ δ2(x)) ∨ D1(x, x, δ2(x)) ∨ D1(x, δ2(x), δ2(x)) ∨

(x ∧ d1(δ2(x)))

= δ2(x) for all x ∈ L.

�

Proposition 4.16. Let L be a distributive lattice. The following statements hold.

1. If ∆1 and ∆2 are generalized permuting tri-derivations associated with D, then ∆1 ∨ ∆2 is too.

2. If ∆1 and ∆2 are generalized permuting tri-derivations associated with D, then ∆1 ∧ ∆2 is too.

3. If ∆ is generalized permuting tri-derivation associated with D1 and D2, then ∆ is generalized permuting
tri-derivation associated with D1 ∨ D2.

Proof. (1) By hypothesis for x, y, w, z ∈ L, we have

∆1(x ∧ w, y, z) = (∆1(x, y, z) ∧ w) ∨ (x ∧ D(w, y, z)

and
∆2(x ∧ w, y, z) = (∆2(x, y, z) ∧ w) ∨ (x ∧ D(w, y, z)).

Thus

∆1 ∨ ∆2(x ∧ w, y, z) = ∆1(x ∧ w, y, z) ∨ ∆2(x ∧ w, y, z)

= ((∆1(x, y, z) ∧ w) ∨ (x ∧ D(w, y, z))) ∨ ((∆2(x, y, z) ∧ w) ∨

(x ∧ D(w, y, z)))

= ((∆1(x, y, z) ∨ ∆2(x, y, z)) ∧ w) ∨ (x ∧ D(w, y, z))

= ((∆1 ∨ ∆2)(x, y, z) ∧ w) ∨ (x ∧ D(w, y, z)).

(2) Similar to the Part (1), we have

∆1 ∧ ∆2(x ∧ w, y, z) = ∆1(x ∧ w, y, z) ∧ ∆2(x ∧ w, y, z)

= ((∆1(x, y, z) ∧ w) ∨ (x ∧ D(w, y, z))) ∧ ((∆2(x, y, z) ∧ w) ∨

(x ∧ D(w, y, z)))

= (x ∧ D(w, y, z)) ∨ ((∆1(x, y, z) ∧ ∆2(x, y, z)) ∧ w)

= ((∆1 ∧ ∆2)(x, y, z) ∧ w) ∨ (x ∧ D(w, y, z)).

(3) By hypothesis for x, y, w, z ∈ L, we have

∆(x ∧ w, y, z) = (∆(x, y, z) ∧ w) ∨ (x ∧ D1(w, y, z))

and
∆(x ∧ w, y, z) = (∆(x, y, z) ∧ w) ∨ (x ∧ D2(w, y, z)).

Thus

∆(x ∧ w, y, z) = ((∆(x, y, z) ∧ w) ∨ (x ∧ D1(w, y, z))) ∨ ((∆(x, y, z) ∧ w) ∨

(x ∧ D2(w, y, z))

= ((∆(x, y, z) ∧ w) ∨ (x ∧ (D1(w, y, z) ∨ D2(w, y, z)))

= (∆(x, y, z) ∧ w) ∨ (x ∧ (D1 ∨ D2(w, y, z))).

�
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Corollary 4.17. Let L be a distributive lattice, D be a tri-derivation on L and Γ = {∆ : L3 → L| ∆ is
generalized permuting tri-derivation associated with D}. Then (Γ, ∨, ∧) is a distributive lattice.

Definition 4.18. Let L be a lattice, ∆ be a generalized permuting tri-derivation associated with a per-
muting tri-derivation D and δ be the trace of ∆. δ is called an isotone mapping, if x ≤ y implies
δ(x) ≤ δ(y).

Proposition 4.19. Let L be a distributive lattice and ∆ be a generalized permuting tri-derivation related
to a permuting tri-derivation D, δ be the trace of ∆ and d be the trace of D. If 1 is the greatest element
of L, then the following conditions are equivalent:

(i) δ is an isotone mapping,

(ii) δ(x) ∨ δ(y) ≤ δ(x ∨ y),

(iii) δ(x ∧ y) = δ(x) ∧ δ(y),

(iv) δ(x) = x ∧ δ(1),

for all x, y ∈ L.

Proof. (i) ⇒ (ii). We have x ≤ x ∨ y and y ≤ x ∨ y. Since δ is an isotone mapping, we obtain
δ(x) ≤ δ(x ∨ y) and δ(y) ≤ δ(x ∨ y), so δ(x) ∨ δ(y) ≤ δ(x ∨ y) for all x, y ∈ L.
(ii) ⇒ (i). Suppose that x ≤ y and δ(x) ∨ δ(y) ≤ δ(x ∨ y). Using the fact that x ∨ y = y, then
δ(x) ∨ δ(y) ≤ δ(y). Since δ(y) ≤ δ(x) ∨ δ(y), we find that δ(y) = δ(x) ∨ δ(y), which assures that
δ(x) ≤ δ(y) for all x, y ∈ L.
(i) ⇒ (iii). From Theorem 4.9, we have δ(x ∧ y) ≥ δ(x) ∧ δ(y). Since x ∧ y ≤ x, x ∧ y ≤ y and δ is an
isotone mapping, we get δ(x ∧ y) ≤ δ(x) and δ(x ∧ y) ≤ δ(y), so δ(x ∧ y) ≤ δ(x) ∧ δ(y), which conclude
that δ(x ∧ y) = δ(x) ∧ δ(y) for all x, y ∈ L.
(iii) ⇒ (i). Let δ(x ∧ y) = δ(x) ∧ δ(y) and x ≤ y, then δ(x) = δ(x) ∧ δ(y), so δ(x) ≤ δ(y) for all x, y ∈ L,
which implies that δ is an isotone mapping.
(i) ⇒ (iv). Since x ≤ 1 for all x ∈ L, and δ is an isotone mapping, we have δ(x) ≤ δ(1). From Theorem
4.5 (iv), it follows that δ(x) ≤ x, then δ(x) ≤ x ∧ δ(1) for all x ∈ L. By Corollary 4.8 (ii), we have
δ(1) ∧ x ≤ δ(x) for all x ∈ L, which forces that δ(x) = x ∧ δ(1) for all x ∈ L.
(iv) ⇒ (i). Assume that x ≤ y and δ(x) = x ∧ δ(1), then

δ(x) = δ(x ∧ y)

= (x ∧ y) ∧ δ(1)

= (x ∧ δ(1)) ∧ (y ∧ δ(1))

= δ(x) ∧ δ(y),

so δ(x) ≤ δ(y) for all x, y ∈ L. �

Remark 4.20. Let L be a lattice, ∆ be a generalized permuting tri-derivation associated with a permuting
tri-derivation D and δ the trace of ∆. We can easilly see that Fixδ(L) = Bδ(L) if δ is an isotone mapping.

Theorem 4.21. Let L be a lattice, ∆ be a generalized permuting tri-derivation associated with a per-
muting tri-derivation D and δ be the trace of ∆. The following conditions are equivalent:

(i) δ is the identity derivation;

(ii) δ(x ∨ y) = (δ(x) ∨ y) ∧ (x ∨ δ(y)) for all x, y ∈ L;

(iii) δ is a monomorphic derivation;

(iv) δ is an epic derivation.
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Proof. (i) ⇒ (ii). If δ(x) = x for all x ∈ L, then δ(x ∨ y) = x ∨ y and

(δ(x) ∨ y) ∧ (x ∨ δ(y)) = (x ∨ y) ∧ (x ∨ y)

= x ∨ y,

thus δ(x ∨ y) = (δ(x) ∨ y) ∧ (x ∨ δ(y)) for all x, y ∈ L.
(ii) ⇒ (i). Suppose that δ(x ∨ y) = (δ(x) ∨ y) ∧ (x ∨ δ(y) for all x, y ∈ L, then

δ(x) = δ(x ∨ x)

= (δ(x) ∨ x) ∧ (x ∨ δ(x))

= x ∧ x

= x for all x ∈ L,

which implies that δ is the identity derivation.
(i) ⇒ (iii) is obvious.
(i) ⇒ (iv) is obvious.
(iii) ⇒ (i) Let δ be a monomorphic derivation. Suppose there exists a ∈ L, such that δ(a) 6= a, then
δ(a) < a. Denote a1 = δ(a), then a1 < a. From Theorem 4.7, Proposition 2.9 (1) and Theorem 4.5 (iv),
we get

δ(a1) = δ(a1 ∧ a)

= (δ(a1) ∧ a) ∨ D(a1, a1, a) ∨ D(a1, a, a) ∨ (a1 ∧ d(a))

= (δ2(a) ∧ a) ∨ D(a1, a1, a) ∨ D(a1, a, a) ∨ (δ(a) ∧ d(a))

= (δ(a) ∧ a) ∨ D(a1, a1, a) ∨ D(a1, a, a) ∨ d(a)

= δ(a) ∨ D(a1, a1, a) ∨ D(a1, a, a) ∨ d(a)

= δ(a),

which contradicts with the fact that δ is monomorphic and a1 6= a.
(iv) ⇒ (i). Suppose that δ is an epic derivation, then δ(L) = L. Thus for any x ∈ L, there exists y ∈ L,
such that x = δ(y). By Corollary 4.8 (iii), we conclude that δ(x) = δ(δ(y)) = δ2(y) = δ(y) = x for all
x ∈ L. Which shows that δ is the identity derivation on L. �
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